20
NON-LINEAR REGRESSION Introduction Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent variable. A model that includes quadratic or higher order terms may be needed. The number of possible comparisons is equal to the number of levels of a factor minus one. For example, if there are three levels of a factor, there are two possible comparisons. Polynomials are equations such that each is associated with a power of the independent variable (e.g. X, linear; X 2 , quadratic; X 3 , cubic, etc.). 1 st order comparisons measure linear relationships. 2 nd order comparisons measures quadratic relationships. 3 rd order comparisons measures cubic relationships. Example Effect of row spacing on yield (bu/ac) of soybean. Row spacing (inches) Block 18 24 30 36 42 ΣY .j 1 33.6 31.1 33.0 28.4 31.4 157.5 2 37.1 34.5 29.5 29.9 28.3 159.3 3 34.1 30.5 29.2 31.6 28.9 154.3 4 34.6 32.7 30.7 32.3 28.6 158.9 5 35.4 30.7 30.7 28.1 29.6 154.5 6 36.1 30.3 27.9 26.9 33.4 154.6 Y i. 210.9 189.8 181.0 177.2 180.2 939.1 . Y i 35.15 31.63 30.17 29.53 30.03 31.3 Step 1. Determine the polynomials that can be included in the model 5 rows spacing’s, so we can use X, X 2 ,X 3 , and X 4 . Step 2. Run the Stepwise Regression analysis. Input row block yield row2=row*row; row3=row2*row; row4=row3*row; datalines;

NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

Embed Size (px)

Citation preview

Page 1: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

NON-LINEAR REGRESSION Introduction

• Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent variable.

• A model that includes quadratic or higher order terms may be needed.  

• The  number  of  possible  comparisons  is  equal  to  the  number  of  levels  of  a  factor  minus  one.  

 • For  example,  if  there  are  three  levels  of  a  factor,  there  are  two  possible  comparisons.  

 • Polynomials  are  equations  such  that  each  is  associated  with  a  power  of  the  independent  variable  (e.g.  X,  linear;  X2,  quadratic;  X3,  cubic,  etc.).  

 § 1st  order  comparisons  measure  linear  relationships.  § 2nd  order  comparisons  measures  quadratic  relationships.  § 3rd  order  comparisons  measures  cubic  relationships.  

 Example    Effect  of  row  spacing  on  yield  (bu/ac)  of  soybean.     Row spacing (inches) Block 18 24 30 36 42 ΣY.j 1 33.6 31.1 33.0 28.4 31.4 157.5 2 37.1 34.5 29.5 29.9 28.3 159.3 3 34.1 30.5 29.2 31.6 28.9 154.3 4 34.6 32.7 30.7 32.3 28.6 158.9 5 35.4 30.7 30.7 28.1 29.6 154.5 6 36.1 30.3 27.9 26.9 33.4 154.6 Yi. 210.9 189.8 181.0 177.2 180.2 939.1

.Yi 35.15 31.63 30.17 29.53 30.03 31.3

   Step  1.    Determine  the  polynomials  that  can  be  included  in  the  model  

• 5  rows  spacing’s,  so  we  can  use  X,  X2,  X3,  and  X4.    

Step  2.    Run  the  Stepwise  Regression  analysis.       Input  row  block  yield     row2=row*row;     row3=row2*row;     row4=row3*row;     datalines;        

Page 2: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

  Proc  STEPWISE;     Model=row  row2  row3  row4;     Run;      Step  3:    Determine  which  parameters  should  remain  in  the  model.      Row  and  Row2    Step  4:    Rerun  the  analysis  using  the  parameters  that  contributed  significantly  to  the  model  using  the  Proc  REG  command  and  test  for  lack  of  fit.       Proc  REG     Model=yield  row  row2/LACKFIT;     RUN;      

𝑌 = 52.037− 1.261 𝑅𝑜𝑤 + 0.018(𝑅𝑜𝑤!)    

   

28  

30  

32  

34  

36  

18   24   30   36   42  

Effect  of  row  spacing  on  soybean  yield  

Row  spacing  (inches)  

Yield  (bu/ac)  

 

Page 3: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

Analysis  using  stepwise  regression    

The  STEPWISE  Procedure  Model:  MODEL1  Dependent  Variable:  

yield    

 

12:13    Thursday,  June  19,  2014    1  

Number of Observations Read 30

Number of Observations Used 30

Stepwise Selection: Step 1

Variable row Entered: R-Square = 0.4452 and C(p) = 9.8393

Analysis of Variance

Source DF Sum of

Squares Mean

Square F Value Pr > F

Model 1 91.26667 91.26667 22.47 <.0001

Error 28 113.72300 4.06154

Corrected Total 29 204.98967

Variable Parameter

Estimate Standard

Error Type II SS F Value Pr > F

Intercept 37.47000 1.35192 3120.00200 768.18 <.0001

row -0.20556 0.04336 91.26667 22.47 <.0001

Bounds on condition number: 1, 1

   

Page 4: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

Analysis  using  stepwise  regression    

The  STEPWISE  Procedure  Model:  MODEL1  Dependent  Variable:  

yield    

 

 

Stepwise Selection: Step 2

Variable row2 Entered: R-Square = 0.6096 and C(p) = 1.2210

Variable Parameter

Estimate Standard

Error Type II SS F Value Pr > F

Intercept 52.03667 4.47218 401.29928 135.39 <.0001

row -1.26111 0.31526 47.42972 16.00 0.0004

row2 0.01759 0.00522 33.69333 11.37 0.0023

Bounds on condition number: 72.429, 289.71

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

Summary of Stepwise Selection

Step Variable Entered

Variable Removed

Number Vars In

Partial R-Square

Model R-Square C(p) F Value Pr > F

1 row 1 0.4452 0.4452 9.8393 22.47 <.0001

2 row2 2 0.1644 0.6096 1.2210 11.37 0.0023

Analysis of Variance

Source DF Sum of

Squares Mean

Square F Value Pr > F

Model 2 124.96000 62.48000 21.08 <.0001

Error 27 80.02967 2.96406

Corrected Total 29 204.98967

Page 5: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

Analysis  using  Proc  REG  and  LACKFIT    

 

Number of Observations Read 30

Number of Observations Used 30

Parameter Estimates

Variable DF Parameter

Estimate Standard

Error t Value Pr > |t|

Intercept 1 52.03667 4.47218 11.64 <.0001

row 1 -1.26111 0.31526 -4.00 0.0004

row2 1 0.01759 0.00522 3.37 0.0023

Analysis of Variance

Source DF Sum of

Squares Mean

Square F Value Pr > F

Model 2 124.96000 62.48000 21.08 <.0001

Error 27 80.02967 2.96406

Lack of Fit 2 0.70133 0.35067 0.11 0.8958

Pure Error 25 79.32833 3.17313

Corrected Total 29 204.98967

Root MSE 1.72165 R-Square 0.6096

Dependent Mean 31.30333 Adj R-Sq 0.5807

Coeff Var 5.49988

Lack  of  fit  is  NS,  indicating  that  the  model  is  worth  considering.  

Page 6: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

 

 

 

RESPONSE SURFACE REGRESSION OR MODELING (RSM)

Introduction • A form of multivariate non-linear regression where the influences of several independent

or “response” variables on a dependent variable are determined.

• The goal of RSM is typically to optimize a response.

• In most cases the relationship between the response and dependent variable are unknown; thus, it is necessary to obtain an estimate of the effects.

• Quite often, a “first order model” in the form of:  

𝑌 = 𝛽! + 𝛽!𝑋! + 𝛽!𝑋!+  . . .+𝛽!𝑋! + 𝜀! is determined.

• If there is a non-linear effect, the a “second order model” in the form of:  

𝑌 = 𝛽! + 𝛽!𝑋! + 𝛽!!𝑋!! + 𝛽!"𝑋!𝑋! + 𝜀!!!!!!!

!!!! is determined.

• The least squares method is used to estimate the parameters in the models. Common Results Obtained From RSM

1. Simple maximum

 

http://www.google.com/imgres?q=response+surface+plot&hl=en&biw=1916&bih=1070&gbv=2&tbm=isch&tbnid=enwaXmtFKVsjPM:&imgrefurl=http://www.ualberta.ca/~csps/JPPS5(3)/P.Ellaiah/alkaline.htm&docid=pllnWaKwfSsfmM&imgurl=http://www.ualberta.ca/~csps/JPPS5(3)/P.Ellaiah/Figure-2.gif&w=545&h=502&ei=IfnMT_ONPMbL0QGr28jADg&zoom=1&iact=hc&vpx=425&vpy=127&dur=642&hovh=215&hovw=234&tx=120&ty=118&sig=102023753706153885228&page=1&tbnh=110&tbnw=117&start=0&ndsp=59&ved=1t:429,r:2,s:0,i:77

Page 7: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

 

 

 

2. Simple minimum

3. Ridge

http://www.google.com/imgres?q=response+surface+plot&hl=en&biw=1916&bih=1070&gbv=2&tbm=isch&tbnid=ypHy-aZPpzs4HM:&imgrefurl=http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/statug_rsreg_sect005.htm&docid=1K_vsjsQdRZ0GM&imgurl=http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/images/rsrgd.png&w=640&h=480&ei=IfnMT_ONPMbL0QGr28jADg&zoom=1

http://2.bp.blogspot.com/_uf8HSnevUy8/SKB3i_uk2AI/AAAAAAAAAEE/k05DBmHPGmM/s320/Picture4.jpg

Page 8: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

 

 

 

4. Saddle

Basic Steps in RSM

• Step 1: Determine which parameters may have an influence on the variation in the

dependent variable.

o You may have known factors determined from previous experiments.

o You may need to conduct additional simple 2n factorial experiments to identify additional parameters that may be important.

§ These types of 2n factorial experiments are considered low resolution.

• Step 2: Determine which parameters you want to continue and whether or not you will

have a first order (no curvature) or second order (curvature) model.

o First order model: 𝑌 = 𝛽! + 𝛽!𝑋! + 𝛽!𝑋!+  . . .+𝛽!𝑋! + 𝜀!.

o Second order model: 𝑌 = 𝛽! + 𝛽!𝑋! + 𝛽!!𝑋!! + 𝛽!"𝑋!𝑋! + 𝜀!!!!!!!

!!!!

• Step 3: Develop the Response Surface Model.

o This is an optimization process.

http://www.pqsystems.com/products/sixsigma/DOEpack/images/ResponseSurfacePlotLarge.gif

Page 9: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

 

 

 

o Parameters can be best estimated if proper experimental design (response surface designs) are used.

o A common design for 2-factor models is the Central Composite Design.

o A common design for the 3-factor model is the Box-Behnken Design.

• Step4: Validate the model.

Cautions on Using Happenstance Data for RSM

• It is often very tempting to use data we have already collected from an experiment and perform RSM on these data; however, the results obtained may not be reliable.

• Happenstance data are typically obtained from experiments where:

o The process being maximized is typically highly controlled so inputs and outputs vary little.

o Inputs tend to be highly correlated.

• Just as we do in many experiments where we are trying to detect differences between treatment means, choice of experimental design is very important when setting up experiments for RSM.

Experimental Design for RSM Experiments

o Some researchers often use the One Factor At-A-Time Approach, where they maximize one factor, fix the factor at this level and then maximize a second variable.

o For example, lets say we wish to conduct an experiment to determine the proper nitrogen (N) fertilizer rate and plant population to maximize sugar yield in sugarbeet.

o The first step would be to determine the N rate that maximizes sugar yield. Using

this N rate, conduct another experiment to determine what plant population now maximizes sugar yield.

o The problem with this type of approach is that you often end up with an increasing ridge type of response. You may be on the top of the ridge, buy not at the maximum on the plot.

1. Two-level factorial design with center points

• Extremely useful when you believe there are interactions between factors.

• Let’s say we have a three factor experiments, with two levels of each factor

o Time (minutes): 80, 90, and 100

Page 10: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

 

 

 

o Temperature (oC): 140, 145, and 150

o Rate of adding chemical (mL/min): 4, 5, and 6

o The model would be :

𝑌 = 𝛽! + 𝛽!𝐴 + 𝛽!𝐵 + 𝛽!𝐶 + 𝛽!"𝐴𝐵 + 𝛽!"𝐴𝐶 + 𝛽!"𝐵𝐶

o This first order model will not provide an estimate of curvature.

o A strict factorial would require us to use 27 treatments (3 x 3 x 3) or runs of the experiment.

o Another option is available where we repeat the center points but not the outside points of the cube.

o This design allowed us to use only 12 runs and experimental error is estimated

based on the replicated center points.

o To simplify the analysis, the data are typically coded to ease model fitting and coefficient interpretation.

http://courseware.ee.calpoly.edu/~dbraun/papers/K155Fig1a.gif

Page 11: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

 

 

 

• Example of data for a 23 factorial with center points (treatments are presented before randomization)†.

Treatment Time (min) Temp (oC) Rate (mL/min) Yield (g) 1 80 (-1) 140 (-1) 4 (-1) 72.6 2 100 (+1) 140 (-1) 4 (-1) 82.5 3 80 (-1) 150 (+1) 4 (-1) 86.0 4 100 (+1) 150 (+1) 4 (-1) 75.9 5 80 (-1) 140 (-1) 6 (+1) 79.1 6 100 (+1) 140 (-1) 6 (+1) 82.1 7 80 (-1) 150 (+1) 6 (+1) 88.2 8 100 (+1) 150 (+1) 6 (+1) 79.0 9 90 (0) 145 (0) 5 (0) 87.1 10 90 (0) 145 (0) 5 (0) 85.7 11 90 (0) 145 (0) 5 (0) 87.8 12 90 (0) 145 (0) 5 (0) 84.2 †Data obtained from Anderson, M.J., and P.J. Whitcomb. 2005. RSM simplified, optimizing

processes using response surface methods for design of experiments. Productivity Press, New York.

2. Central Composite Design

• This design allows you to get a better estimate of curvature that may be occurring in your model.

http://www.mathworks.com/help/toolbox/stats/cc1.gif

Page 12: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

 

 

 

• The model for a three factor study would be:

𝑌 = 𝛽! + 𝛽!𝐴 + 𝛽!𝐵 + 𝛽!𝐶 + 𝛽!"𝐴𝐵 + 𝛽!"𝐴𝐶 + 𝛽!"𝐵𝐶 + 𝛽!!𝐴!+𝛽!!𝐵!+𝛽!!𝐶!

• Example of data for a 23 factorial with the Central Composite Design (treatments are presented before randomization)†.

Treatment Time (min) Temp oC Rate (mL/min) Yield (g)

1 80 140 4 72.6 2 100 140 4 82.5 3 80 150 4 86.0 4 100 150 4 75.9 5 80 140 6 79.1 6 100 140 6 82.1 7 80 150 6 88.2 8 100 150 6 79.0 9 90 145 5 87.1 10 90 145 5 85.7 11 90 145 5 87.8 12 90 145 5 84.2 13 73 145 5 79.1 14 107 145 5 82.1 15 90 137 5 88.2 16 90 153 5 79.0 17 90 145 3.3 87.1 18 90 145 6.7 85.7 19 90 145 5 87.8 20 90 145 5 84.2

†Data obtained from Anderson, M.J., and P.J. Whitcomb. 2005. RSM simplified, optimizing processes using response surface methods for design of experiments. Productivity Press, New York.

Desirable Results from RSM

• Main effects for the parameters entered in the model are all significant. o If some parameters are not significant, drop them from the model and reanalyze

the data.

• Lack of fit is non-significant. o If lack of fit is significant, you will need to use a more complex model.

• A minimum or maximum point is identified.

Page 13: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

 

 

 

o If a minimum or maximum value is not obtained, then you will need to redo the experiments with treatment levels that are closer to the optimum.

Using SAS for the Response Surface Analysis of CCD Data

• SAS commands options pageno=1; data rsreg; input v1 v2 x1 x2 yield; label v1='original_variable_1' v2='original_variable_2' x1='coded_variable_1' x2='coded_variable_2'; datalines; 80 170 -1 -1 76.5 80 180 -1 1 77 90 170 1 -1 78 90 180 1 1 79.5 85 175 0 0 79.9 85 175 0 0 80.3 85 175 0 0 80 85 175 0 0 79.7 85 175 0 0 79.8 92.07 175 1.414 0 78.4 77.93 175 -1.414 0 75.6 85 182.07 0 1.414 78.5 85 167.93 0 -1.414 77 ;; ods rtf file='rsreg.rtf'; ods graphics on; proc print label; title 'Example of Response Surface Regression with Two Independent Variables'; run; proc rsreg data=rsreg plots (unpack)=surface (3d); model yield =v1 v2/lackfit; run; ods graphics off; ods rtf close;

Page 14: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

Example  of  Response  Surface  Regression  with  Two  Independent  Variables    

 

 

Obs   original_variable_1   original_variable_2   coded_variable_1   coded_variable_2   yield  

1   80.00   170.00   -­‐1.000   -­‐1.000   76.5  2   80.00   180.00   -­‐1.000   1.000   77.0  3   90.00   170.00   1.000   -­‐1.000   78.0  4   90.00   180.00   1.000   1.000   79.5  5   85.00   175.00   0.000   0.000   79.9  6   85.00   175.00   0.000   0.000   80.3  7   85.00   175.00   0.000   0.000   80.0  8   85.00   175.00   0.000   0.000   79.7  9   85.00   175.00   0.000   0.000   79.8  10   92.07   175.00   1.414   0.000   78.4  11   77.93   175.00   -­‐1.414   0.000   75.6  12   85.00   182.07   0.000   1.414   78.5  13   85.00   167.93   0.000   -­‐1.414   77.0  

Page 15: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

Example  of  Response  Surface  Regression  with  Two  Independent  Variables    

The  RSREG  Procedure    

 

 

Coding  Coefficients  for  the  Independent  Variables  

Factor   Subtracted  off   Divided  by  

v1   85.000000   7.070000  v2   175.000000   7.070000  

   

Response  Surface  for  Variable  yield  

Response  Mean   78.476923  Root  MSE   0.266290  R-­‐Square   0.9827  Coefficient  of  Variation  

0.3393  

   

Regression   DF  Type  I  Sum  of  Squares   R-­‐Square   F  Value   Pr  >  F  

Linear   2   10.042955   0.3494   70.81   <.0001  Quadratic   2   17.953749   0.6246   126.59   <.0001  Crossproduct   1   0.250000   0.0087   3.53   0.1025  Total  Model   5   28.246703   0.9827   79.67   <.0001  

               

Residual   DF  Sum  of  Squares   Mean  Square   F  Value   Pr  >  F  

Lack  of  Fit   3   0.284373   0.094791   1.79   0.2886  Pure  Error   4   0.212000   0.053000      Total  Error   7   0.496373   0.070910      

Collectively,  the  linear  and  quadratic  components  of  the  model  are  significant,  but  the  interaction  was  not.  

Lack of fit is non-significant, indicating that a more complex model is not needed

Page 16: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

Example  of  Response  Surface  Regression  with  Two  Independent  Variables    

The  RSREG  Procedure    

 

 

 

Parameter   DF   Estimate  Standard  

Error   t  Value   Pr  >  |t|  

Parameter  Estimate  

from  Coded  Data  

Intercept   1   -­‐1430.688438   152.851334   -­‐9.36   <.0001   79.939955  v1   1   7.808865   1.157823   6.74   0.0003   1.407001  v2   1   13.271745   1.484606   8.94   <.0001   0.728497  v1*v1   1   -­‐0.055058   0.004039   -­‐13.63   <.0001   -­‐2.752067  v2*v1   1   0.010000   0.005326   1.88   0.1025   0.499849  v2*v2   1   -­‐0.040053   0.004039   -­‐9.92   <.0001   -­‐2.002067  

             

Factor   DF  Sum  of  Squares  

Mean  Square   F  Value   Pr  >  F   Label  

v1   3   21.344008   7.114669   100.33   <.0001   original_variable_1  v2   3   9.345251   3.115084   43.93   <.0001   original_variable_2  

𝑌𝚤𝑒𝑙𝑑! = −1430.69+ 7.81(𝑣!) + 13.27(𝑣!) − 0.055𝑣!! + 0.01(𝑣!𝑣!) − 0.04(𝑣!!)  Even  though  some  of  the  components  of  the  model  are  non-­‐significant,  a  common  rule  of  thumb  is  RSM  is  to  include  all  parameters.  

Page 17: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

Example  of  Response  Surface  Regression  with  Two  Independent  Variables    

The  RSREG  Procedure  Canonical  Analysis  of  Response  Surface  Based  on  Coded  

Data    

 

 

Factor  

Critical  Value  

Label  Coded   Uncoded  

v1   0.275269   86.946152   original_variable_1  v2   0.216299   176.529233   original_variable_2  Predicted  value  at  stationary  point:  80.212393  

                   

Eigenvalues  

Eigenvectors  

v1   v2  

-­‐1.926415   0.289717   0.957112  

-­‐2.827719   0.957112   -­‐0.289717  Stationary  point  is  a  maximum.  

The  maximum  yield  is  obtained  when  v1=86.95  and  v2=176.53.  

Page 18: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

RSreg  with  all  parameters    

                                                                                                                                         The  RSREG  Procedure    

 

 

 

   

 

Page 19: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

 

 

 

3. Box-Behnken Design (BBD) • Constructed by combining two-level factorial designs with incomplete block designs,

and then adding a specified number of center points.

• The BBD is used to fit second order models.

• The figure below shows the points in space for the BBD, including replicated center points.

http://ars.sciencedirect.com/content/image/1-s2.0-S0584854705000224-gr1.jpg

Page 20: NON-LINEAR REGRESSION Introduction - NDSU REGRESSION Introduction • Quite often in regression a straight line is not the “best” model for explaining the variation in the dependent

 

 

 

• An example of coefficients for a three factor BBD

Runs A B C 1 -1 -1 0 2 +1 -1 0 3 -1 +1 0 4 +1 +1 0 5 -1 0 -1 6 +1 0 -1 7 -1 0 +1 8 +1 0 +1 9 0 -1 -1 10 0 -1 -1 11 0 +1 +1 12 0 +1 +1 13 0 0 0 14 0 0 0 15 0 0 0 16 0 0 0 17 0 0 0

• The BBD can handle more than three factors, but additional treatments are needed. The options of using blocks also can be incorporated.

Factors BBD Runs (Center points) BBD Blocks

3 17 (5) 1 4 29 (5) 1 or 3 5 46 (6) 1 or 2 6 54 (6) 1 or 2 7 62 (6) 1 or 2