51
Non-Geometric String Theory Backgrounds from Gauged Supergravities to Interacting Chiral Bosons Nikolaos Prezas Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics University of Bern based on "Conformal Chiral Boson Models on Twisted Doubled Tori and Non-Geometric String Backgrounds", with S. Avramis and J. P. Derendinger, Nucl. Phys. B827 (2010) 281; arXiv:0910.0431 "Worldsheet Theories for Non-Geometric String Backgrounds", with G. Dall’Agata, JHEP 0808 (2008) 088; arXiv:0712.1026 "Gauged Supergravities from Twisted Doubled Tori and Non-Geometric String Backgrounds", with G. Dall’Agata, H. Samtleben and M. Trigiante, Nucl. Phys. B799 (2008) 80; arXiv:0712.1026

Non-Geometric String Theory Backgroundshep.physics.uoc.gr/conf09/TALKS/Prezas.pdfNon-Geometric String Theory Backgrounds ... Dabholkar,Hull’02; ... matrix: M AB = G ab cbB acGcdB

Embed Size (px)

Citation preview

Non-Geometric String Theory Backgrounds from Gauged Supergravities to Interacting Chiral Bosons ≺

Nikolaos Prezas

Albert Einstein Center for Fundamental PhysicsInstitute for Theoretical Physics

University of Bern

based on• "Conformal Chiral Boson Models on Twisted Doubled Tori and Non-Geometric

String Backgrounds", with S. Avramis and J. P. Derendinger,Nucl. Phys. B827 (2010) 281; arXiv:0910.0431

• "Worldsheet Theories for Non-Geometric String Backgrounds",with G. Dall’Agata, JHEP 0808 (2008) 088; arXiv:0712.1026

• "Gauged Supergravities from Twisted Doubled Tori and Non-Geometric StringBackgrounds", with G. Dall’Agata, H. Samtleben and M. Trigiante,Nucl. Phys. B799 (2008) 80; arXiv:0712.1026

Motivation and overview

Fluxes, twists and supergravity gaugings

Non-geometric backgrounds and twisted doubled tori

Interacting chiral boson models: Lorentz invariance

Interacting chiral boson models: one-loop effective action

Summary and open problems

Standard lore about string theory

I Consistent unification of gauge and gravitational interactions• However, it requires (typically) more dimensions than four!• How can we make contact to four-dimensional physics ?

Compactification approach

I Assumption: spacetime of the formM4 × Y6

• Classify possible internal spaces Y6

• Derive effective theory in 4 dimensions

Traditional compactification scheme (80s)

I Non-trivial metric on Y6 + SUSY → Calabi–Yau(or manifolds with exceptional holonomy)• However: huge vacuum degeneracy• Moduli: scalars without potential (fluctuations of internal

fields)• Problems: long range forces + loss of predictive power• Moduli stabilization

Flux compactifications (90s)

I Enlarge landscape: fluxes of antisymmetric tensor fieldsI Generate potential for "moduli" fields• Special holonomy → manifolds with G -structure• Scalar potential + extended SUSY: gauged supergravity• Fluxes ↔ gauging parameters

Scherk–Schwarz reductions - twisted tori - geometric fluxes

I Twisted reduction on a torus: twisted torus[Scherk, Schwarz ’79; Kaloper, Myers ’99]

• Induces scalar potential and non-abelian gauge symmetry• Consistent truncation on a (local) group manifold

Are there more general backgrounds/fluxes ?

I Non-geometric backgrounds: T-folds[Flournoy, Wecht, Williams ’02; Hellerman, McGreevy, Williams ’02; Dabholkar, Hull ’02;

Kachru, Schulz, Tripathy, Trivedi ’02]

• Background data: patched with T-dualities• Associated non-geometric fluxes (from duality covariance)

[Shelton, Taylor, Wecht ’05; Dabholkar, Hull ’05; Aldazabal, Camara, Font, Ibanez ’06; Shelton,

Taylor, Wecht ’06]

Are there more general effective theories ?

I General framework: embedding tensor[de Wit, Samtleben, Trigiante ’05]

• Yields all supergravity gaugings for N ≥ 1

Non-geometric backgrounds and doubled geometries

I Inherently stringy constructions: winding modes• Doubling of coordinates

[Witten ’88; Duff ’90; Tseytlin ’90, ’91; Kugo, Zwiebach ’92; Maharana, Schwarz ’92; Siegel ’93]

• Doubled torus: geometry for non-geometric string backgrounds[Hull ’04, ’06, ’07]

• Twisted doubled torus (TDT): electric N = 4 gaugings[Hull, Reid-Edwards ’07; Dall’Agata, Prezas, Samtleben, Trigiante ’07]

Worldsheet approach: chiral bosons

I Momentum and winding modes on equal footing: chiral bosons[Siegel ’84; Floreanini, Jackiw ’87]

• Interacting models: conditions from 2d Lorentz invariance[Tseytlin ’90, ’91]

• TDT as target space: Lorentz invariant![Dall’Agata, Prezas ’08]

• Conditions for conformal invariance[Avramis, Derendinger, Prezas ’09]

• Computation of the one-loop effective action• Agreement with corresponding gauged supegravity

Motivation and overview

Fluxes, twists and supergravity gaugings

Non-geometric backgrounds and twisted doubled tori

Interacting chiral boson models: Lorentz invariance

Interacting chiral boson models: one-loop effective action

Summary and open problems

Compactifications without fluxes

I Consider a toroidal reduction of string/M-theory• Abelian gauge theory without scalar potential• Existence of global duality symmetries

[Cremmer, Scherk, Ferrara ’79; Cremmer, Julia ’79]

Flux compactifications

I Our setup: heterotic strings on T6 (ignoring the gauge sector)I Let us assume NS-NS 3-form flux in the internal torus:

〈Hijk(x , y)〉 = hijk

• Decompose 2-form, metric tensor and dilaton:

BMN(x , y) → Bµν(x),Bµi (x),Bij (x)GMN(x , y) → Gµν(x),Gµi (x),Gij (x)

φ(x , y) → φ(x)

• 3-form kinetic term yields potential for metric moduli∫M4×T6

H ∧∗H =∫M4

d4x√−g4(hijkhmlnG im(x)G jl (x)G kn(x)+ · · · )

and non-abelian gauge interactions∫M4

d4x√−g4(· · ·+ ∂µB i

νGµjG νkhijk + · · · )

• Generators: Zi for Gµi , X i for Bµi . Gauge algebra:

[X i ,X i ] = 0[Zi ,X j ] = 0[Zi ,Zj ] = hijkX k

Scherk-Schwarz reductions (a.k.a. twisted tori, geometric fluxes)

I Can we enrich the previous gauge algebra ?I Consider reduction ansatz

ds2(10) = Gµν(x)dxµdxν

+ (δab + Gab(x))(ηa + Aaµ(x)dx

µ)(ηb + Abν(x)dx

ν)

with ηa(y) being left-invariant 1-forms satisfying

dηa = −12

τ abc ηb ∧ ηc

• Similar expansion for other fields• τ a

bc are structure constants of Lie algebra g (Jacobi identity)I Consistent truncation to singlets under GL

[Duff, Pope ’85; Hull, Reid-Edwards ’05]

I Geometric flux: spin connection condensate

〈ω abc (x , y)〉 = 1

2τ abc

• Compactification on a twisted torus: local group manifold G/ΓI Equivalent to a twisted reduction on a torus

[Scherk, Schwarz ’79]

ηa(y) = Uaj (y)dy

i

• Introduces y -dependance that is eliminated if

U−1ib (y)U−1j

c (y)∂[iUaj ] = τ a

bc

I Combining with NS-NS flux yields gauge algebra:[Kaloper, Myers ’99]

[X a,X b] = 0[X a,Zb] = τ a

bc X c

[Za,Zb] = τ cab Zc + habcX c

• Part of isometry group GR appears as gauge symmetry

• Introduce XA = Za,X a, gauge algebra:

[XA,XB ] = TABCXC

• Fluxes ⇒ gauge algebra structure constants TABC

• Jacobi for TABC : Bianchi for fluxes and Jacobi for τ abc

I Pack scalar fields in O(6,6)O(6)×O(6) matrix:

MAB =

(Gab − BacG cdBdb BacG cb

−GbcBca G ab

)• Scalar potential:

V ∼ T CDA T D

CB MAB +13T ACE T B

DF MABMCDMEF

I What type of theory is this ?• 4 dimensions, 16 supersymmetries, gravity, non-abelian gauge

symmetry, scalar potential =⇒ N = 4,D = 4 gaugedsupergravity[Kaloper, Myers ’99]

General gauge algebras[Shelton, Taylor, Wecht ’05; Dabholkar, Hull ’05; Aldazabal, Camara, Font, Ibanez ’06]

I Fill in the gaps in Kaloper–Myers gauge algebra:

[Za,Zb] = τ cab Zc + habcX c

[X a,Zb] = τ abc X c −Q ac

b Zc[X a,X b] = Q ab

c X c + RabcZc

• Physical and geometric fluxes: non-semisimple gauge groups• Q ab

c : non-abelian gauge symmetry from B-field gauge vectors!I What is the origin of the new "fluxes" Q and R ? T-dualityI Organizing principle: N = 4,D = 4 gauged supergravity

Gauged supergravity perspective

I General gauging: adjoint of gauge group → fundamental ofduality group[de Wit, Samtleben, Trigiante ’05]

XA = θmA tm

• Embedding tensor θaM : subject to conditions ⇒ full theory• In particular: gauge algebra ⇒ all possible fluxes!

I Focus on N = 4,D = 4 gauged supergravity• N = 4 graviton multiplet: graviton, axio-dilaton, 6 vectors• N = 4 vector multiplet: vector, 6 scalars• Duality group of ungauged theory: SL(2)×O(6, 6+ n)• Scalars

τ ∈ SL(2)U(1)

, MAB ∈O(6, 6+ n)

O(6)×O(6+ n)

• Embedding tensor (subject to quadratic constraints)[Schön, Weidner ’06]

fαABC , ξαA

• Heterotic reduction (n = 0): T-duality group O(d , d), d = 6

• Electric gaugings

f−ABC = 0, ξαA = 0

• For electric gaugings: embedding tensor ≡ structure constants

f+ABC := fABC = TABDηCD = TABC

• O(d , d) metric ηAB

ηAB =

(0 1d

1d 0

)• N = 4 gauge algebra

[XA,XB ] = TABCXC

• ηAB invariant metric on gauge algebra• N = 4 scalar potential

V (M) ∼ 12

(13MAA′MBB ′MCC ′ +

(23

ηAA′ −MAA′)

ηBB ′ηCC ′)TABCTA′B ′C ′

• Consider geometric T6 symmetry: GL(6) ⊂ O(6, 6)I Decompose fundamental rep 12→ 6⊕ 6

XA = Za,X a

fABC = (fabc , f cab , f bc

a , f abc)

• N = 4 electric gaugings: include all possible (NS-NS) fluxes[Derendinger, Petropoulos, Prezas ’07]

habc , τ cab ,Q bc

a ,Rabc

• There is a similar set of S-dual fluxes: f−ABC• ξαI : reduction with SO(1, 1) duality twist

[Derendinger, Petropoulos, Prezas ’07]

I Similar story: N = 8 gauged supergravity (type II/M-theory )

Motivation and overview

Fluxes, twists and supergravity gaugings

Non-geometric backgrounds and twisted doubled tori

Interacting chiral boson models: Lorentz invariance

Interacting chiral boson models: one-loop effective action

Summary and open problems

Duality related backgrounds

I h, τ,Q,R are related by T-dualityI Toy model (not a solution but can be promoted to one)

[Kachru, Schulz, Tripathy, Trivedi ’02; Lowe, Nastase, Ramgoolam ’03]

• 3-torus with N units of NS-NS flux hxyz

ds2 = dx2 +dy2 +dz2, H = Ndx ∧dy ∧dz , B = Nxdy ∧dz

• x ∼ x + 1: gauge transformation on BI T-duality along z ⇒ twisted torus (geometric flux τz

xy )

ds2 = dx2 + dy2 + (dz +Nxdy)2, H = 0

τy ,z (x) = Nx + i

• x ∼ x + 1: SL(2;Z) modular transformation on fiber T2y ,z

• Bianchi II or nilmanifold

I T-duality along y ⇒ T-fold (Q-flux Qzyx )

ds2 = dx2 +1

1+N2x2 (dz2 + dy2), B =

Nx1+N2x2 dy ∧ dz

• x ∼ x + 1: T-duality group O(2, 2;Z) action onMAB ≡ Gab,Bab

MAB(x + 1) =

1 0 0 00 1 0 00 −N 1 0N 0 0 1

MAB(x)

• There is a local geometric description• Globally well-defined up to T-duality• In this sense: non-geometric

I T-duality along x : cannot be done using Buscher rules• At the level of the effective theory: R-flux Rxyz

• In this case there is no local geometric description• Explicit dependance on dual coordinate xI Other non-geometric string constructions: S-folds, U-folds,

mirror-folds, asymmetric orbifolds, CFT constructions

Doubling and doubled tori[Witten ’88; Duff ’90; Tseytlin ’90, ’91; Kugo, Zwiebach ’92; Maharana, Schwarz ’92]

I y i conjugate to momenta, y i conjugate to windings• Double coordinates Y I = y i , y i ⇒ doubled torus T2n

dS2 = 2dy idyi , O(n, n;Z) ∈ GL(2n;Z)

• Realize T-duality group O(n, n;Z) geometricallyI Geometry for non-geometric string backgrounds

[Hull ’04, ’06, ’07]

I Scherk–Schwarz: torus → twisted torus → geometric fluxesI Natural idea: why not double everything and then twist• Generalization of Scherk–Schwarz on the doubled torus!

Twisted doubled tori (TDT)[Hull, Reid-Edwards ’07; Dall’Agata, Prezas, Samtleben, Trigiante ’07]

I Consider ordinary compactification on Td

• Full gauge group U(1)2d : isometry of the doubled torus T2d

• Suggests: generic gauging G from twisting the doubled torus!• Generalization of Scherk–Schwarz via a double field theoryI Gauge algebra and Gab potential in Scherk-Schwarz reduction

(twisted torus) of pure gravity:

[Za,Zb] = τkabZc

V ∼ 2 τabc τb

ad gcd + τa

bc τdef gadg

beg cf

• Gauge algebra XA = Za,X a and MAB ≡ Gab,Babpotential for electric N = 4 gaugings (twisted doubled torus)

[XA,XB ] = TABCXC

V ∼ 3 T CDA T D

CB MAB + T ACE T B

DF MABMCDMEF

• MAB "metric" moduli on twisted doubled torus

I General gauging: Scherk–Schwarz – but doubled!I Geometric flux on doubled torus ⇔ all fluxesI Twisted doubled torus (TDT): local group manifold G

EA = EAI (Y )dY I

dEA = −12T ABCE

B ∧ EC

T ABC = habc , τ a

bc ,Q bca ,Rabc

I Geometric interpretation of embedding tensorI Gauging ⇔ Fluxes ⇔ TDT =⇒ spacetime data (partially)

[Dall’Agata, Prezas, Samtleben, Trigiante ’07]

I Is it really the underlying geometry or just bookkeeping tool ?

Motivation and overview

Fluxes, twists and supergravity gaugings

Non-geometric backgrounds and twisted doubled tori

Interacting chiral boson models: Lorentz invariance

Interacting chiral boson models: one-loop effective action

Summary and open problems

Chiral bosons

I Twisted doubled torus as string target space ?• Treat momentum and winding independentlyI Chiral boson theory

[Siegel ’84; Floreanini, Jackiw ’87]

• Floreanini–Jackiw (FJ) approach (∂± = ∂0 ± ∂1)

S+ =12

∫d2σ∂1φ+∂−φ+

∂1(∂−φ+) = 0⇒ ∂−φ+ = 0

• Lorentz invariant on-shell

δLS+ =12

∫d2σ(∂−φ+)

2

• Similarly for antichiral boson S− = − 12

∫d2σ∂1φ−∂+φ−

I Introducing usual and dual fields

φ =1√2(φ+ + φ−), χ =

1√2(φ+ − φ−)

S = S++S− =12

∫d2σ

(∂0φ∂1χ+ ∂1φ∂0χ− (∂1φ)2− (∂1χ)2

)• Symmetric under φ↔ χ

• Double integration by parts, set p = ∂1χ: first order

S =12

∫d2σ

(2∂0φp − (∂1φ)2 − p2

)• Non-local duality relation p ≡ ∂1χ = ∂0φ

• Second order action of free boson φ

S =12

∫d2σ

((∂0φ)2 − (∂1φ)2

)

I T-duality invariant formulation• Start with compact boson at radius R

S =R2

2

∫d2σ

((∂0φ)2 − (∂1φ)2

)• First order

S =12

∫d2σ

(− p2

R2 + 2p∂0φ− (R∂1φ)2)

• Introduce dual field ∂1χ = p, integrate by parts

S =12

∫d2σ

(∂1χ∂0φ + ∂0χ∂1φ− (R−1∂1χ)2 − (R∂1φ)2

)• Manifest T-duality invariance: φ↔ χ,R ↔ R−1

• Dual boson at radius R−1

S =R−2

2

∫d2σ

((∂0χ)2 − (∂1χ)2

)

Interacting chiral bosons

I Consider the following action (YI = y i , y i)[Tseytlin ’90, ’91]

S =12

∫d2σ

(−HIJ (Y)∂1YI ∂1YJ +

(ηIJ (Y) + CIJ (Y)

)∂0YI ∂1YJ

)• HIJ , ηIJ : symmetric, CIJ antisymmetric• Interacting generalization of Floreanini-JackiwI Free theory

HIJ =

(1d 00 1d

), ηIJ =

(0 1d

1d 0

), CIJ = const.

• Yields d + d copies of FJ for y i± = y i ± y i : double torus• Integrate out y i (or y i ): original (or dual) torus vacuum

I Lorentz invariance condition

ηIJ

(∂0YI ∂0YJ + ∂1YI ∂1YJ

)− 2HIJ∂0YI ∂1YJ = 0

• Rearrange to(η −Hη−1H

)IJ ∂1YI ∂1YJ + ηIJVIVJ = 0 with

VI ≡ ηIJ∂0YJ −HIJ∂1YJ

• Sufficient (η −Hη−1H

)IJ = 0 and ηIJVIVJ = 0

• Notice: equation of motion

2∂1VI + ∂IHJK ∂1YJ∂1YK

− GIJK ∂0YJ∂1YK − 2ηJLΓLIK (η)∂0YJ∂1YK = 0

I Lorentz invariant modelsI Standard sigma models

[Tseytlin ’90, ’91]

HIJ =

(Gij − BikGklBlj BikGkj

−G ikBkj G ij

), ηIJ =

(0 1d

1d 0

),CIJ = const.

• Metric Gij = Gij (y), B-field Bij = Bij (y)• Integrating out y i

S =∫

d2σ(√

γγµνGij + εµνBij )∂µy i∂νy j

I Interacting non-abelian chiral scalars[Depireux, Gates, Park ’89; Gates, Siegel ’88; Tseytlin ’90, ’91]

I η = ±H: quantum Lorentz anomaly[Dall’Agata, Prezas ’08]

I Twisted doubled tori[Dall’Agata, Prezas ’08]

• Gauge algebra → group representative → vielbein

dEA = −12T ABCE

B ∧ EC , EA = EAI (Y )dY I

• Construct ηIJ and HIJ as

ηIJ = ηABEAI E

BJ ; ηAB =

(0 1d

1d 0

)HIJ = HABEA

I EBJ ; ηAB = HACηCDHDB

• HAB ∈ O(d ,d)O(d)×O(d) (cf. N = 4 moduli MAB)

• First Lorentz invariance condition is satisfied by construction• Add generalized three-form flux

GABC = 3∂[ACBC ] = TABC

• Equation of motion reads

(DIVJ −12T KIJ VK )∂1YI = 0

• Second Lorentz invariance condition is satisfied• Compact gaugings

TABDHDC = −TACDHDB

• Choose GABC = −TABC ⇒ V I = 0• Electric N = 4 gauging and moduli matrix MAB ⇔

Lorentz invariant chiral boson model• Related (equivalent ?) second order constrained formulation

[Albertsson, Kimura, Reid-Edwards ’08, Hull, Reid-Edwards ’09, Reid-Edwards ’09]

I Application: recover spacetime background fields[Dall’Agata, Prezas ’08]

• Impossible to integrate out dual coordinates for R-flux• No local geometric description

Motivation and overview

Fluxes, twists and supergravity gaugings

Non-geometric backgrounds and twisted doubled tori

Interacting chiral boson models: Lorentz invariance

Interacting chiral boson models: one-loop effective action

Summary and open problems

One-loop effective action

I Can the TDT models be promoted to conformal field theories ?I Starting point

S =12

∫d2σ

(−HIJ (Y)∂1YI ∂1YJ +

(ηIJ (Y) + CIJ (Y)

)∂0YI ∂1YJ

)• Earlier work: HIJ and ηIJ depend on base coordinates Xm

[Berman, Copland, Thompson ’07; Berman, Copland ’07]

• Background field method YI = YIcl + πI (ξI )

[Alvarez-Gaume, Freedman, Mukhi ’81; Braaten, Curtright, Zachos ’85; Mukhi ’86; Howe,

Papadopoulos, Stelle ’88]

• Covariant expansion, recursive algorithm[Mukhi ’86]

Sn =1n!DnS ≡ 1

n!

(∫d2σξI (σ)

DDYI (σ)

)n

S

I η-covariant expansion

S1 =∫

d2σ( 1

2ηIJ (∂0YID1ξJ +D0ξI ∂1YJ )−HIJ∂1YID1ξJ

− 12DKHIJ ξK ∂1YI ∂1YJ +

12GIJK ξK ∂0YI ∂1YJ

)

S2 =12

∫d2σ

(−HIJD1ξID1ξJ + ηIJD0ξID1ξJ

+

(12DJGIKL + RKIJL

)ξI ξJ∂0YK ∂1YL

− 12(DIDJHKL +HKMRM

IJL +HLMRMIJK )ξI ξJ∂1YK ∂1YL

+12GIJK ξK (∂0YID1ξJ +D0ξI ∂1YJ )− 2DKHIJξKD1ξI ∂1YJ

)

I One-loop effective action Seff = Scl + Γ

exp (iΓ[Y]) =∫Dξ exp (iS2[Y; ξ])

I Propagators of tangent space fields ξA

[Tseytlin ’90, ’91; Berman, Copland, Thompson ’07]

〈ξA(σ)ξB(σ′)〉 = HAB∆(σ− σ′) + ηAB ∆(σ− σ′)

∆(σ− σ′) =12(∆+(σ− σ′) + ∆−(σ− σ′)

)= − 1

4πln(σ− σ′)2

∆(σ− σ′) =12(∆+(σ− σ′)− ∆−(σ− σ′)

)= − 1

2πarctanh

σ1 − σ′1

σ0 − σ′0

• Regularize: ln(σ− σ′)2 → ln((σ− σ′)2 + µ2), set

σ1−σ′1

σ0−σ′0 = tanh δ

• Limiting expressions

∆(0)→ − 12π

ln µ , ∆(0)→ − 12π

δ

• Breakdown of scale invariance and Lorentz invariance

I Weyl anomaly and global Lorentz anomaly

W =12

∫d2σ

(W 00

IJ ∂0YI ∂0YJ +W 01IJ ∂0YI ∂1YJ +W 11

IJ ∂1YI ∂1YJ)

L =12

∫d2σ

(L00IJ ∂0YI ∂0YJ + L01IJ ∂0YI ∂1YJ + L11IJ ∂1YI ∂1YJ

)• Vanishing on-shell: equations of motion and/or constraints• Weyl anomaly coefficients:

W 00IJ =

14(HA[CHD]B − ηA[C ηD]B )Q0

AB,IQ0CD,J

W 01IJ = HABS01AB,IJ +

12(HA[CHD]B − ηA[C ηD]B )Q0

AB,IQ1CD,J

− 14(HA[C ηD]B + ηA[CHD]B )

(Q0

AB,IP1CD,J + P1

AB,IQ0CD,J

)W 11

IJ = HABS11AB,IJ +14(HA[CHD]B − ηA[C ηD]B )Q1

AB,IQ1CD,J

− 14(HA[C ηD]B + ηA[CHD]B )

(Q1

AB,IP1CD,J + P1

AB,IQ1CD,J

)− 1

4(HA[CHD]B + 3ηA[C ηD]B )P1

AB,IP1CD,J

• Lorentz anomaly coefficients

L00IJ = 0

L01IJ = ηABS01AB,IJ −12

ηA[C ηD]B (Q0AB,IP1

CD,J + P1AB,IQ0

CD,J)

L11IJ = ηABS11AB,IJ −12(HA[C ηD]B + ηA[CHD]B )P1

AB,IP1CD,J

− 12

ηA[C ηD]B (Q1AB,IP1

CD,J + P1AB,IQ1

CD,J)

• Basic building blocks:

S11AB,IJ = − 12DADBHIJ −

12(HIKRK

ABJ +HJKRKABI )−HCDΩ C

I AΩ DJ B

− DAHCI Ω CJ B −DAHCJΩ C

I B

S01AB,IJ = RIABJ +12DBGAIJ + ηCDΩ C

I AΩ DJ B +

12(GIDAΩ D

J B −GJDAΩ DI B )

Q1AB,I = −2Ω C

I AHCB − 2DAHBI

Q0AB,I = − 1

2GIAB + Ω C

I AηCB

P1AB,I =

12GIAB + Ω C

I AηCB

Specialize to twisted doubled tori

I Use general flux GABC = λTABCI Lorentz anomaly (TABC = T D

AB HDC ,TABI = T CAB HCDED

I )

L01IJ =

λ2 − 14TIABT AB

J

L11IJ = − (λ− 1)2

4TI ABT

ABJ − λ− 1

4(TI ABT

ABJ + TJABT

ABI )

• Vanish for all gaugings when λ = 1• Compact gaugings

L11IJ = −λ2 − 1

4TIABT

ABJ ,

• Vanish for λ = ±1 as well• Classical Lorentz invariance, once established, survives inthe quantum theory

I Weyl anomaly

W 00IJ =

(λ− 1)2

16(TIABT AB

J − TIABT ABJ )

W 01IJ =

λ− 14

(TIABT AB

J − TIABT ABJ + (λ + 1)TIABT AB

J

)W 11

IJ =(λ + 1) (8− 3(λ + 1))

16TIABT AB

J +(λ + 1) (8− (λ + 1))− 16

16TIABT AB

J

− 14(TIABT

ABJ − TIABT

ABJ )− λ− 1

4(TIABT

ABJ + TJABT

ABI )

• General gaugings with λ = 1: W 00IJ = W 01

IJ = 0• Condition for (one-loop) conformal invariance

W 11AB =

14(ηAE ηBE ′ −HAEHBE ′ )(η

CC ′ηDD ′ −HCC ′HDD ′ )T ECD T E ′

C ′D ′ = 0

• Compact gaugings: W 00IJ = W 01

IJ = 0 for λ = ±1 and

W 11IJ = −λ2 − 1

4TIABT AB

J

• Conformal models for λ = ±1

Correspondence with N = 4 electric gaugings

I Introduce projectors (recall η = Hη−1H)

PABCD± (H) =

12(ηA(CηD)B ±HA(CHD)B)

• Define

ZAB(H) =12(ηC [C ′ηD ′]D −HC [C ′HD ′]D)TCDATC ′D ′B

• Weyl anomaly

WAB = P CD−AB (H)ZCD(H)

• N = 4 gauged supergravity potential (electric gaugings)

V (M) =12

(13MAA′MBB ′MCC ′ +

(23

ηAA′ −MAA′)

ηBB ′ηCC ′)TABCTA′B ′C ′

• Incorporate constraint MAB ∈ O(d ,d)O(d)×O(d)

V = V + Λ BA (MACηCB − ηACMCB)

• Condition for extremum: set to zero

∂V∂MAB = −ZAB(M) +

12(ηACηBD +MABMCD)ΛCD

= −ZAB(M) + P+ABCD(M)ΛCD

• Identify HAB = MAB and act with P−(H)

PABCD− (H)ZCD(H) = 0

• N = 4 electric vacuum ⇒ conformal chiral boson model

I Assume now conformal invariance condition is satisfied. Then

ZAB(H) = P+ABCD(H)ZCD(H)

• Thus

∂V∂MAB

∣∣∣∣M=H

= P+ABCD(H)(

ΛCD − ZCD(H))

• N = 4 vacuum for ΛCD = ZCD(H)

I N = 4 electric vacua ⇔ conformal chiral boson modelsI SUSY: TDT is even-dim group manifold ⇒ N = 2 SCFT

Compact gaugings and chiral WZW models

I Compact gaugings ⇒ conformal chiral boson modelsI Compact gauging conditions for HAB = δAB

habc = Q bca , Rabc = τ a

bc , τ cab = −τ b

ac , Q abc = −Q cb

a

• Change basis Za,X a to T±a = 12 (Za ± X a)

• Gauge algebra is a sum

[T±a ,T±b ] = f ±cab T±c , [T+a ,T−b ] = 0

f ±cab = τ cab ±Q bc

a

• Gauge group GL × GR ∈ O(d)×O(d)

I Corresponding chiral boson model (chiral basis y iL,R = y i ± y i )

S =14

∫d2σ

((GL

ij + λBLij )∂−y

iL∂1y

jL − (GR

ij + λBRij )∂+y

iR∂1y

jR

)• GL,R

IJ and dBL,R invariant metric and 3-form of GL,R• Chiral and antichiral WZW based on GL and GR

[Sonnenscheim ’88; Tseytlin ’91]

• Kac–Moody symmetry ⇒ all order conformal invariance!• When GL = GR : ordinary WZW model• In line with previous observations for GL = GR = SU(2)

[Dabholkar, Hull 05; Dall’Agata, Prezas ’08]

• WZW model is realized in terms of non-geometric fluxes• Notion of non-geometricity needs refinement

Motivation and overview

Fluxes, twists and supergravity gaugings

Non-geometric backgrounds and twisted doubled tori

Interacting chiral boson models: Lorentz invariance

Interacting chiral boson models: one-loop effective action

Summary and open problems

Summary

I Supergravity gaugings: non-geometric string backgrounds• Embedding tensor ⇒ gauge algebra ⇒ all fluxes!• New interpretation: geometric flux on doubled torus• Twisted doubled tori: underlying geometriesI Interacting chiral bosons: doubled geometry sigma models• Twisted doubled tori ⇒ Lorentz invariant chiral bosons• Conformal invariance condition ⇔ Vacua of N = 4 potential• Compact gaugings are always conformal: chiral WZW modelsI Twisted doubled tori are actual physical backgroundsI Scherk–Schwarz on doubled geometries → general

supergravity gaugings

Open problems

I Straightforward generalizations• Include dilaton (gaugings with SO(1, 1) duality twist)• Include non-compact spacetime dimensions• Include worldsheet supersymmetry• Full equations of motion of N = 4 gauged supergravityI Other classes of Lorentz invariant chiral boson models ?I Conformal field theory aspects• Origin of conformal invariance condition• Deformations of (chiral, gauged) WZW models ?

[Tseytlin ’93]

• Relation to affine Virasoro constructions

I Relation to other worldsheet models[Albertsson, Kimura, Reid-Edwards ’08; Hull, Reid-Edwards ’09; Reid-Edwards ’09; Halmagyi ’09]

• Non-commutativity of Q-flux and non-associativity of R-flux ?[Mathai, Rosenberg ’04; Bouwknegt, Hannabuss, Mathai ’04; Ellwood, Hashimoto ’06]

I Connection with double field theory[Hohm, Hull, Zwiebach ’10]

• Equations of motion: beta functionals• Explicit Scherk–Schwarz on twisted doubled torus: electricN = 4 gaugings

I Exotic constructions• Incorporate SL(2,Z) S-duality, double the doubled torus!• Account for all N = 4 gaugings• E7 invariant membrane theory!• Account for all N = 8 gaugings