58
Introduction Painlevé II equation Non-commutative Painlevé II Applications: M. Bertola - M. Cafasso M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé II Reference Non-commutativity versus quantization: Painlevé II - a toy model Vladimir Roubtsov LAREMA, U.M.R. 6093 associé au CNRS Université d’Angers and Theory Division, ITEP, Moscow March , 2, 2012 - University of Glasgow, "Matrix models, tau-functions and geometry" Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Non-commutativity versus quantization: Painlevé II- a toy model

Vladimir Roubtsov

LAREMA, U.M.R. 6093 associé au CNRSUniversité d’Angers and Theory Division, ITEP, Moscow

March , 2, 2012 - University of Glasgow, "Matrix models,tau-functions and geometry"

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 2: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Based on joint work with Vladimir Retakh (Rutgers University),J. Phys. A: Math. Theor. 43 (2010) 505204,on some results of Mahmood Irfan(Angers University)(J. Geom. Phys. to appear)and on some results of Marco Bertola(CRM, Montreal) and MattiaCafasso (Angers University).(Comm. Math. Phys. 2011)

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 3: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Plan

1 Introduction

2 Painlevé II equation

3 Non-commutative Painlevé II

4 Applications: M. Bertola - M. Cafasso

5 M. Irfan : Zero-curvature and Lax representations for thealgebraic NC Painlevé II

6 Reference

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 4: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Quantum Theory and Non-Commutativity-1

String theory in its supersymmetric version - a consistentdescription of quantum gravity.It is still not clear how to merge real (non supersymmetric)fundamental interactions in the strings framework.The unifying theories of strings (or a larger M− theory)contain degrees of freedom which cannot be described byordinary gauge theories.The noncommutative (NC) geometry emerges in relation toparticular string configurations involving branes andfluxes.When non trivial fluxes are turned on, ordinary fieldtheories get deformed by non-commutativity.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 5: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Quantum Theory and Non-Commutativity-1

String theory in its supersymmetric version - a consistentdescription of quantum gravity.It is still not clear how to merge real (non supersymmetric)fundamental interactions in the strings framework.The unifying theories of strings (or a larger M− theory)contain degrees of freedom which cannot be described byordinary gauge theories.The noncommutative (NC) geometry emerges in relation toparticular string configurations involving branes andfluxes.When non trivial fluxes are turned on, ordinary fieldtheories get deformed by non-commutativity.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 6: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Quantum Theory and Non-Commutativity-1

String theory in its supersymmetric version - a consistentdescription of quantum gravity.It is still not clear how to merge real (non supersymmetric)fundamental interactions in the strings framework.The unifying theories of strings (or a larger M− theory)contain degrees of freedom which cannot be described byordinary gauge theories.The noncommutative (NC) geometry emerges in relation toparticular string configurations involving branes andfluxes.When non trivial fluxes are turned on, ordinary fieldtheories get deformed by non-commutativity.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 7: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Quantum Theory and Non-Commutativity-1

String theory in its supersymmetric version - a consistentdescription of quantum gravity.It is still not clear how to merge real (non supersymmetric)fundamental interactions in the strings framework.The unifying theories of strings (or a larger M− theory)contain degrees of freedom which cannot be described byordinary gauge theories.The noncommutative (NC) geometry emerges in relation toparticular string configurations involving branes andfluxes.When non trivial fluxes are turned on, ordinary fieldtheories get deformed by non-commutativity.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 8: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Quantum Theory and Non-Commutativity-2

Independently of string theory, NC geometry was initiallyformulated with the hope that it could mild ultravioletdivergences in quantum field theories.Noncommutative relation among space-time coordinates mayalso be interpreted as a possible deformation of geometrybeyond the Planck scale.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 9: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Quantum Theory and Non-Commutativity-2

Independently of string theory, NC geometry was initiallyformulated with the hope that it could mild ultravioletdivergences in quantum field theories.Noncommutative relation among space-time coordinates mayalso be interpreted as a possible deformation of geometrybeyond the Planck scale.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 10: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Motivation to extend to noncommutative spaces

Noncommutative extension of field theories is not just ageneralization of them but a fruitful study direction in both physicsand mathematics.

Noncommutative spaces are characterized by thenoncommutativity of the spatial coordinates xµ

[xµ, xν ] = iθµν

(anti-symmetric tensor θµν -the noncommutative parameter⇔ a real constant closely related to existence of a backgroundfluxResolution of singularities ⇒ U(1)−instantons;

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 11: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Motivation to extend to noncommutative spaces

Noncommutative extension of field theories is not just ageneralization of them but a fruitful study direction in both physicsand mathematics.

Noncommutative spaces are characterized by thenoncommutativity of the spatial coordinates xµ

[xµ, xν ] = iθµν

(anti-symmetric tensor θµν -the noncommutative parameter⇔ a real constant closely related to existence of a backgroundfluxResolution of singularities ⇒ U(1)−instantons;

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 12: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

"Quantum" = "non-commutative"

Historically the word "quantum" was introduced in relation tothe discretness of the spectrum of operators (Hamiltonian,angular momentum...)Further development of QM had generalized its use to thedescription of non-classical objects(= non-commutingoperators).

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 13: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

"Quantum" = "non-commutative"

Historically the word "quantum" was introduced in relation tothe discretness of the spectrum of operators (Hamiltonian,angular momentum...)Further development of QM had generalized its use to thedescription of non-classical objects(= non-commutingoperators).

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 14: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Towards noncommutative integrable systems

The integrable equations involving non-commuting variables(i.e.SUSY or fermionic extensions of integrable evolutionequations) are very relevant to modern quantum field Theories.Noncommutative extension of integrable equations such as theKdV/KP equations is also one of the hot topics.Difficulties:These equations imply no gauge field and noncommutativeextension of them perhaps might have no physical picture orno good property on integrability.A commutation rule should be consistent with the evolutionSuch equations should be examined one by one.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 15: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Towards noncommutative integrable systems

The integrable equations involving non-commuting variables(i.e.SUSY or fermionic extensions of integrable evolutionequations) are very relevant to modern quantum field Theories.Noncommutative extension of integrable equations such as theKdV/KP equations is also one of the hot topics.Difficulties:These equations imply no gauge field and noncommutativeextension of them perhaps might have no physical picture orno good property on integrability.A commutation rule should be consistent with the evolutionSuch equations should be examined one by one.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 16: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Towards noncommutative integrable systems

The integrable equations involving non-commuting variables(i.e.SUSY or fermionic extensions of integrable evolutionequations) are very relevant to modern quantum field Theories.Noncommutative extension of integrable equations such as theKdV/KP equations is also one of the hot topics.Difficulties:These equations imply no gauge field and noncommutativeextension of them perhaps might have no physical picture orno good property on integrability.A commutation rule should be consistent with the evolutionSuch equations should be examined one by one.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 17: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Towards noncommutative integrable systems

The integrable equations involving non-commuting variables(i.e.SUSY or fermionic extensions of integrable evolutionequations) are very relevant to modern quantum field Theories.Noncommutative extension of integrable equations such as theKdV/KP equations is also one of the hot topics.Difficulties:These equations imply no gauge field and noncommutativeextension of them perhaps might have no physical picture orno good property on integrability.A commutation rule should be consistent with the evolutionSuch equations should be examined one by one.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 18: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Towards noncommutative integrable systems

The integrable equations involving non-commuting variables(i.e.SUSY or fermionic extensions of integrable evolutionequations) are very relevant to modern quantum field Theories.Noncommutative extension of integrable equations such as theKdV/KP equations is also one of the hot topics.Difficulties:These equations imply no gauge field and noncommutativeextension of them perhaps might have no physical picture orno good property on integrability.A commutation rule should be consistent with the evolutionSuch equations should be examined one by one.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 19: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Towards noncommutative integrable systems

The integrable equations involving non-commuting variables(i.e.SUSY or fermionic extensions of integrable evolutionequations) are very relevant to modern quantum field Theories.Noncommutative extension of integrable equations such as theKdV/KP equations is also one of the hot topics.Difficulties:These equations imply no gauge field and noncommutativeextension of them perhaps might have no physical picture orno good property on integrability.A commutation rule should be consistent with the evolutionSuch equations should be examined one by one.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 20: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Moyal-product

The Moyal-product is defined for ordinary fields explicitly by

f ? g(x) := exp(i2θµν

∂x ′µ∂

∂x ′′ν)f (x ′)g(x ′′)|x ′=x ′′=x

= f (x)g(x) +i2θµν

∂f∂xµ

∂g∂xν

+O(θ2)

Moyal product has associativity: f ? (g ? h) = (f ? g) ? h,"commutative limit" f ? g → f · g , θµν → 0 and[xµ, xν ]? = xµ ? xν − xν ? xµ = iθµν .

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 21: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Noncommutative KdV equation

Noncommutative KdV equation in (1 + 1)-dimension, [t, x ]? = iθ,:

∂u∂t

=14∂3u∂x3 +

34{∂u∂x, u}?

where{xµ, xν}? = xµ ? xν + xν ? xµ

.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 22: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Noncommutative KP equation

Noncommutative KP equation in (2 + 1)-dimension, [t, x ]? = iθ,:

∂u∂t

=14∂3u∂x3 +

34{∂u∂x, u}? +

34∂−1

x∂2u∂x2 −

34

[u, ∂−1x∂u∂y

]?

where∂−1

x f (x) :=

∫ xf (u)du

.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 23: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Painlevé II equation

The Painlevé equations are non-linear ordinary differential equationsof 2nd order, which were discovered by P. Painlevé around 1900 inhis study of algebraic differential equations y ′′ = R(t; y ; y ′) withoutmovable singularities (branching points).

ExamplePainlevé II equation:

PII (u, β) : u′′ = 2u3 − 4ux + 4(β +12

).

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 24: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Painlevé transcendents - paradigmatic integrable systems

Reductions of soliton equations (KdV, KP, NLS);They admit a Hamiltonian formulation;They can be expressed as the isomonodromic deformation ofsome linear differential equation with rational coefficients;All Painlevés (except for PI ) admit one-parameter family ofsolutions (in terms of special functions) and for some specialvalues of parameteres they have particular rational solutions;Recently: PII - is non-integrable as a meromorphicHamiltonian system.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 25: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Painlevé transcendents - paradigmatic integrable systems

Reductions of soliton equations (KdV, KP, NLS);They admit a Hamiltonian formulation;They can be expressed as the isomonodromic deformation ofsome linear differential equation with rational coefficients;All Painlevés (except for PI ) admit one-parameter family ofsolutions (in terms of special functions) and for some specialvalues of parameteres they have particular rational solutions;Recently: PII - is non-integrable as a meromorphicHamiltonian system.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 26: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Painlevé transcendents - paradigmatic integrable systems

Reductions of soliton equations (KdV, KP, NLS);They admit a Hamiltonian formulation;They can be expressed as the isomonodromic deformation ofsome linear differential equation with rational coefficients;All Painlevés (except for PI ) admit one-parameter family ofsolutions (in terms of special functions) and for some specialvalues of parameteres they have particular rational solutions;Recently: PII - is non-integrable as a meromorphicHamiltonian system.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 27: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Painlevé transcendents - paradigmatic integrable systems

Reductions of soliton equations (KdV, KP, NLS);They admit a Hamiltonian formulation;They can be expressed as the isomonodromic deformation ofsome linear differential equation with rational coefficients;All Painlevés (except for PI ) admit one-parameter family ofsolutions (in terms of special functions) and for some specialvalues of parameteres they have particular rational solutions;Recently: PII - is non-integrable as a meromorphicHamiltonian system.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 28: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Painlevé transcendents - paradigmatic integrable systems

Reductions of soliton equations (KdV, KP, NLS);They admit a Hamiltonian formulation;They can be expressed as the isomonodromic deformation ofsome linear differential equation with rational coefficients;All Painlevés (except for PI ) admit one-parameter family ofsolutions (in terms of special functions) and for some specialvalues of parameteres they have particular rational solutions;Recently: PII - is non-integrable as a meromorphicHamiltonian system.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 29: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Painlevé II, Hankel matrix and tau-functions

N. Joshi, K. Kajiwara and M.Mazzocco ("Asterisque", 2004): ThePainlevè II (PII ) equation

u′′ = 2u3 − 4xu + 4(β +12

)

admits a unique rational solution for a half-integer value of theparameter β. These solutions can be expressed in terms oflogarithmic derivatives of ratios of Hankel-type determinants: forβ = N + 1

2

u =ddx

logdetAN+1(x)

detAN(x),

where AN(x) = ||ai+j || where i , j = 0, 1, . . . , n− 1. The entries arepolynomials an(x) subjected to the recurrence relations:

a0 = x , a1 = 1, an = a′n−1 +n−1∑i=0

aian−1−i .Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 30: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

"Quantum" Painlevè II

Recently a "quantized" version of PII was proposed (H. Nagoya, B.Grammaticos, A. Ramani)

Three unknown ("operators"): f0, f1, f3 and two "parameters"α0, α1.The commutation rules:

[f0, f2] = [f2, f1] = ~, [f1, f0] = 2~f2.The "Hamiltonian system" ("quantum" PII ):

∂t f0 = f0f2 + f2f0 + α0, ∂t f1 = −f1f2 − f2f1 + α1, ∂t f2 = f1 − f0.

Compatibility of commutation rules and the evolution.f ′′2 = 2f 3

2 − tf2 + α1 − α0

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 31: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

"Quantum" Painlevè II

Recently a "quantized" version of PII was proposed (H. Nagoya, B.Grammaticos, A. Ramani)

Three unknown ("operators"): f0, f1, f3 and two "parameters"α0, α1.The commutation rules:

[f0, f2] = [f2, f1] = ~, [f1, f0] = 2~f2.The "Hamiltonian system" ("quantum" PII ):

∂t f0 = f0f2 + f2f0 + α0, ∂t f1 = −f1f2 − f2f1 + α1, ∂t f2 = f1 − f0.

Compatibility of commutation rules and the evolution.f ′′2 = 2f 3

2 − tf2 + α1 − α0

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 32: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

"Quantum" Painlevè II

Recently a "quantized" version of PII was proposed (H. Nagoya, B.Grammaticos, A. Ramani)

Three unknown ("operators"): f0, f1, f3 and two "parameters"α0, α1.The commutation rules:

[f0, f2] = [f2, f1] = ~, [f1, f0] = 2~f2.The "Hamiltonian system" ("quantum" PII ):

∂t f0 = f0f2 + f2f0 + α0, ∂t f1 = −f1f2 − f2f1 + α1, ∂t f2 = f1 − f0.

Compatibility of commutation rules and the evolution.f ′′2 = 2f 3

2 − tf2 + α1 − α0

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 33: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

"Quantum" Painlevè II

Recently a "quantized" version of PII was proposed (H. Nagoya, B.Grammaticos, A. Ramani)

Three unknown ("operators"): f0, f1, f3 and two "parameters"α0, α1.The commutation rules:

[f0, f2] = [f2, f1] = ~, [f1, f0] = 2~f2.The "Hamiltonian system" ("quantum" PII ):

∂t f0 = f0f2 + f2f0 + α0, ∂t f1 = −f1f2 − f2f1 + α1, ∂t f2 = f1 − f0.

Compatibility of commutation rules and the evolution.f ′′2 = 2f 3

2 − tf2 + α1 − α0

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 34: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

"Quantum" Painlevè II

Recently a "quantized" version of PII was proposed (H. Nagoya, B.Grammaticos, A. Ramani)

Three unknown ("operators"): f0, f1, f3 and two "parameters"α0, α1.The commutation rules:

[f0, f2] = [f2, f1] = ~, [f1, f0] = 2~f2.The "Hamiltonian system" ("quantum" PII ):

∂t f0 = f0f2 + f2f0 + α0, ∂t f1 = −f1f2 − f2f1 + α1, ∂t f2 = f1 − f0.

Compatibility of commutation rules and the evolution.f ′′2 = 2f 3

2 − tf2 + α1 − α0

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 35: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Properties of the quantum PII

It admits the affine Weyl groupA(1)

1 (s2i = 1, π2 = 1, πsi = si+1π, i = 0, 1) action which

preserves the commutation relations;They are the Bäcklund transformations of this equation.The quantum PII Hamiltonian: H = 1

2(f0f1 + f1f0) + α1f2 and"canonical variables";"Commutative time"- t.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 36: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Properties of the quantum PII

It admits the affine Weyl groupA(1)

1 (s2i = 1, π2 = 1, πsi = si+1π, i = 0, 1) action which

preserves the commutation relations;They are the Bäcklund transformations of this equation.The quantum PII Hamiltonian: H = 1

2(f0f1 + f1f0) + α1f2 and"canonical variables";"Commutative time"- t.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 37: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Properties of the quantum PII

It admits the affine Weyl groupA(1)

1 (s2i = 1, π2 = 1, πsi = si+1π, i = 0, 1) action which

preserves the commutation relations;They are the Bäcklund transformations of this equation.The quantum PII Hamiltonian: H = 1

2(f0f1 + f1f0) + α1f2 and"canonical variables";"Commutative time"- t.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 38: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Properties of the quantum PII

It admits the affine Weyl groupA(1)

1 (s2i = 1, π2 = 1, πsi = si+1π, i = 0, 1) action which

preserves the commutation relations;They are the Bäcklund transformations of this equation.The quantum PII Hamiltonian: H = 1

2(f0f1 + f1f0) + α1f2 and"canonical variables";"Commutative time"- t.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 39: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Non-commutative Toda chains

Let R be an associative algebra over a field with a derivation D.Set Df = f ′ for any f ∈ R . Assume that R is a division ring.

Definition(Two-sided NC Toda chains)

(θ′nθ−1n )′ = θn+1θ

−1n − θnθ−1

n−1, n ≥ 1,

assuming that θ1 = φ, θ0 = ψ−1, φ, ψ ∈ R.“Negative" counterpart of it:

(η−1−mη

′−m)′ = η−1

−mη−m−1 − η−1−m+1η−m, m ≥ 1,

where η0 = φ−1, η−1 = ψ.Note that θ′θ−1 and θ−1θ′ are noncommutative analogues of thelogarithmic derivative (log θ)′.Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 40: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

From NC Toda to NC Painlevé

We use the solutions of the Toda equations under a certain ansatzfor constructing solutions of the noncommutative Painlevé IIequation

PII (u, β) : u′′ = 2u3 − 2xu − 2ux + 4(β +12

)

where u, x ∈ R , x ′ = 1 and β is a scalar parameter, β′ = 0.Unlike the quantum Painlevé II we consider here a "purenoncommutative" version of the Painlevé equation without anyadditional assumption for our algebra R .

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 41: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Quasideterminant

main organizing tool in noncommutative algebra.(Gelfand-Retakh-Wilson)

DefinitionGiven an n × n matrix A over some ring R , the(ij)-quasideterminant |A|ij is defined whenever Aij is invertible, andin that case,|A|ij=

Figure: Quasideterminant |A|ijVladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 42: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Example 2x2

ExampleSuppose

A =

(a11 a12a21 a22

);

here are two of its four quasideterminants:|A|11 = a11 − a12a−1

22 a21 and |A|21 = a21 − a22a−112 a11.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 43: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Hankel matrix solutions of NC Toda

Assume that θ0 = ψ−1, θ1 = φ and η0 = φ−1, η−1 = ψ.Set a0 = φ, b0 = ψ and

an = a′n−1 +∑

i+j=n−2,i ,j≥0

aiψaj ,

bn = b′n−1 +∑

i+j=n−2,i ,j≥0

biφbj , n ≥ 1.

Construct Hankel matrices An = ||ai+j ||,Bn = ||bi+j ||, i , j = 0, 1, 2 . . . , n.

TheoremSet θp+1 = |Ap|p,p, η−q−1 = |Bq|q,q. The elements θn for n ≥ 1satisfy the Toda system and the elements η−m,m ≥ 1 satisfy the"negative" analogue of the system.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 44: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Reduction to Painlevé II

TheoremLet φ and ψ satisfy the following identities:

ψ−1ψ′′ = φ′′φ−1 = 2x − 2φψ,

ψφ′ − ψ′φ = 2β.

Then for n ∈ Nun = θ′nθ

−1n satisfies nc − PII (x , β + n − 1);

u−n = η′−nη−1−n satisfies nc − PII (x , β − n).

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 45: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Reduction to Painlevé II

TheoremLet φ and ψ satisfy the following identities:

ψ−1ψ′′ = φ′′φ−1 = 2x − 2φψ,

ψφ′ − ψ′φ = 2β.

Then for n ∈ Nun = θ′nθ

−1n satisfies nc − PII (x , β + n − 1);

u−n = η′−nη−1−n satisfies nc − PII (x , β − n).

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 46: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Remark-1

Our result is a generalization of the following old observation of I.Gelfand and V. Retakh:Let R be a division ring with a derivation ∂. Suppose φ ∈ Rinvertible and all quasideterminants

τn(φ) :=

∣∣∣∣∣∣∣∣∣φ ∂φ . . . ∂n−1φ∂φ ∂2φ . . . ∂nφ. . . . . . . . . . . .

∂n−1φ ∂nφ . . . ∂2n−2φ

∣∣∣∣∣∣∣∣∣are defined and invertible.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 47: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Remark-2

If we set φ1 := φ and φn := τn(φ) then

TheoremElements φn, n ≥ 1 satisfy the following identities:

(∂(∂φ1)φ1−1) = φ2φ1

−1,

(∂(∂φn)φ−1n ) = φn+1φ

−1n − φnφ

−1n−1.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 48: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

NC Painlevé and Fredholm detrminants

Consider the example of the matrix Airy convolution kernel onL2(R+,Cn) defined as:

Ai s(f ) :=

∫R+

Ai(x + y ; s)f (y)dy ,

where

Ai(x ; s) :=

∫γ+

exp θ(µ)C exp θ(µ) exp xµdµ2π

=∣∣∣∣cjkAi(x + sj + sk)

∣∣∣∣θ :=

iµ3

6In + isµ, C ∈ Matn(C)

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 49: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Lax isomonodromic pair-1

TheoremZero constant matrix NC Painlevé II equation

∂2U = 4(2U3 + {s,U}) (1)

is equivalent to the isomonodromy matrix linear system with2n × 2n matrices

∂jΨ(λ, s) = Sj(λ, s)Ψ(λ, s)

∂λΨ(λ, s) = A(λ, s)Ψ(λ, s).

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 50: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Lax isomonodromic pair-2

Here σi ∈ Mat2(C), i = 1, 2, 3 -Pauli matrices and

Sj(λ, s) = iλej ⊗ σ3 + i [V , ej ]⊗ I + {U, ej} ⊗ σ1,

A(λ, s) =i2λ2σ̂3 + λU ⊗ σ1 −

12∂2U ⊗ σ2 + i(U2 + s)⊗ σ3,

∂ :=n∑

j=1

∂j , s := diag(s1, . . . , sn), σ̂3 := In ⊗ σ3.

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 51: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

NC Painlevé II and Fredholm determinants for the Airykernel -1

TheoremThere is a unique solution U to (1) with any C ∈ Matn(C) withthe prescribed asymptotics:∣∣∣∣Ujk

∣∣∣∣ = −cjkAi(sj + sk) +O(√S exp−[

43

(2S − 2m)3/2]),

S :=1n

∑j=1

nsj →∞, δj := sj − S are kept fixed, |δj | ≤ m.

If C = C † the solution is pole-free on Rn iff ||C || ≤ 1

Such solutions are called Hastings-McLleod solutions.Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 52: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

NC Painlevé II and Fredholm determinants for the Airykernel -2

TheoremLet U be a Hastings-McLleod solution to (1). Then

det(Id − Ai2s) = exp [−4∫ ∞

S(t − S)TrU2(t + δdt],

where

S :=1n

n∑j=1

sj , t + δ := (t + δ1, . . . , t + δn).

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 53: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Zero-curvature representation-1

Let A and B be two matrices with non-commutative entries:

A =

(8iλ2 + iv2 − 2iz −ivz + 1

4Cλ−1 − 4λv

ivz + 14Cλ

−1 − 4λv −8iλ2 − iv2 + 2iz

). and

B =

(−2iλ vv 2iλ

)with central λ and constant C .

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 54: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Zero-curvature representation-2

TheoremThe compatibility (or "zero-curvature") condition Ψzλ = Ψλz forthe linear system

Ψλ = A(z , λ)Ψ, Ψz = B(z , λ)

is equivalent to the following NC Painlevé II equation:

vzz = 2v3 − 2{z , v}+ C .

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 55: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Lax representation-1

There is another representation of NC Painlevé II which transformsthe equivalent system

v′0 = v2v0 + v0v2 + α0

v′1 = −v2v1 − v1v2 + α1

v′2 = v1 − v0

to the Lax system Lz = [P, L] for the following L− P-pair:

L =

L1 O OO L2 OO O L3

, P =

P1 O OO P2 OO O P3

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 56: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Lax representation-2

Here

L1 =

(1 0−v0 −1

),L2 =

(1 0−v1 −1

),L3 =

(−1 0−v2 1

)and the elements of the matrix P are given by

P1 =

(ρ1 00 −ρ1

),P2 =

(−ρ2 00 ρ2

),P3 =

(−1 012σ 1

)where

ρ1 = −v2 −12α0v−1

0 , ρ2 = −v2 +12α1v−1

1 , σ = v0 − v1 + 2v2

and

O =

(0 00 0

).

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 57: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,

Page 58: Non-commutativity versus quantization: Painlevé II - a toy modelcomputing.coventry.ac.uk/~mengland/OLD/2012Workshop/... · 2015-05-27 · Applications: M. Bertola - M. Cafasso M

IntroductionPainlevé II equation

Non-commutative Painlevé IIApplications: M. Bertola - M. Cafasso

M. Irfan : Zero-curvature and Lax representations for the algebraic NC Painlevé IIReference

THANK YOU FOR YOUR ATTENTION!

Vladimir Roubtsov Exposé à Glasgow, March 2, 2012,