45
EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez EE 201A Noise Modeling Jeff Wong and Dan V asquez Electrical Engineering Department University of California, Los Angeles

noise modelling

Embed Size (px)

Citation preview

Page 1: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 1/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

EE 201A

Noise Modeling

Jeff Wong and Dan Vasquez

Electrical Engineering Department

University of California, Los Angeles

Page 2: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 2/45

MEMS Research Laboratory Joe Zendejas and Jack W. Judy

Efficient Coupled Noise Estimation

for On-Chip Interconnects

Anirudh Devgan

Austin Research Laboratory

IBM Research Division, Austin TX

Page 3: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 3/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Motivation

Noise failure can be more severe thantiming failure ± Difficult to control from chip terminals

 ±

Expensive to correct (refabrication) Circuit or timing simulation (like SPICE)

can be used ± Linear reduction techniques can be applied for 

linearly modeled circuits i.e. moment matching methods

 ± Inefficient for noise verification and avoidanceapplications

Page 4: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 4/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Noise Estimation

The paper presents an electrical metric for efficiently estimating coupled noise for on-chip interconnects

Capacitive coupling between an aggressor net and a victim net leads to couplednoise ± Aggressor net: switches states; source of 

noise for victim net

 ± Victim net: maintains present state; affected bycoupled noise from aggressor net

Page 5: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 5/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Schematic

Switchingsignal

Vs(t)

Coupling

capacitors

CC = [CC,ii]

C1 = [C1,ii]

C2 = [C2,ii]

Let¶s analyze the case for one aggressor net and one victim net

V2,1 V2,n

V1,1 V1,n

Page 6: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 6/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Equations

Coupled equation for circuit:

In Laplace domain:

1 1 111 12 1

2 2 221 22 2

d C  dt 

 sd 

C  dt 

C C v t v t    A A Bv t 

C C v t v t    A A B

« » « »« » « » « »! ¬ ¼ ¬ ¼¬ ¼ ¬ ¼ ¬ ¼

- ½ - ½- ½ - ½ - ½

r r 

r r 

1 11 12 11 1

2 21 22 22 2

C  s

C C A A B  sV s V s V sC C A A B  sV s V s

« » « »« » « » « »! ¬ ¼ ¬ ¼¬ ¼ ¬ ¼ ¬ ¼¬ ¼ ¬ ¼- ½ - ½- ½ - ½ - ½

r r 

r r 

Page 7: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 7/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Equations

Aggressor net:

Victim net:

1 1 2 11 1 12 2 1

1

1 1 11 12 2 1

C  s

C  s

 sC V  sC V A V A V BV  

V  sC A A sC V BV  

!

« » ! - ½

r r r r  

r r 

1 2 2 21 1 22 2 2

1

2 2 22 21 1 2

C s

C s

 sC V sC V A V A V B V  V sC A A sC V B V  

!

« »! - ½

r r r r  

r r 

Page 8: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 8/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Transfer Function

Transfer function:

Simplifications (details later):

Simplified transfer function:

1

21 1 11 1 22

1

2 22 21 1 11 12

 s C C 

  A sC sC A B BV  H s

V  sC A A sC sC A A sC  

! !

12 21 20, 0, 0  A A B! ! !

1

1 11 12

2 1

2 22 1 11

 s C 

  sC sC A BV  H s

V  sC A sC sC A

! !

Page 9: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 9/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Simplifications

A12

= 0

 ± No resistive (or DC) path exists from the

aggressor net to the victim net

A21 = 0

 ± No resistive (or DC) path exists from the victim

net to the aggressor net

B2

= 0

 ± No resistive (or DC) path exists from thevoltage/noise source to the victim net

Page 10: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 10/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Maximum Induced Noise

H ( s=0) = 0

 ± Coupling between aggressor and victim

net is purely capacitive

 ± Maximum induced noise can be

computed

Assume V  s is a finite or infinite ramp

 ± max

2 2lim 0 is finited dt 

t V V 

pg!

r r 

Page 11: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 11/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Final value theorem:

 ±

Ramp input u( s): ±

 ±

 ±

1

1 11 1max

2 2 102 22 1 11

limC 

 sC 

C  sC A BV  u

 sC A sC  sC A

p

!

r &

Maximum Induced Noise

max

2 2 20

lim limt s

V v t sV spg p

« »| ! - ½r r r 

max

2 20 0 0lim lim lim  s s s

 H suV sH s u s sH s u

 s sp p p

! ! !r 

max 1 1

2 22 11 1C V A C A B u !

Page 12: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 12/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Interpretation

max 1 1

2 22 11 1C V A C A B u

!

Switching

slope

1

 ssV &

C  I 

Page 13: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 13/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(matrix method)

Step 1: Compute

 ± Requires circuit analysis of the

aggressor net

Step 2: Compute

 ± Requires a matrix multiplication

Step 3: Compute

 ± Requires circuit analysis of the victim

net

1

1 11 1

 ssV A B u!

& &

1

 ss

C C  I  C V !r  &

max 1

2 22 C V A I 

!r r 

Page 14: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 14/45

Page 15: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 15/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(by inspection)

Step 1: Compute

 ± Typical interconnects:

Negligible loss: no resistive path to ground

1

1 11 1

 ssV A B u!

& &

1

 ss

 sV V !& &

Page 16: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 16/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(by inspection)

Step 2: Compute

 ± Convert steady state derivative on the

aggressor net to a current on the victim

net

 ±

 ± 

i : index of node on the victim net ±  j : index of node on the aggressor net

1

 ss

C C   I C V  !r r 

&

? A , 1

 ss

C i C ij j

 j

  I I C V  « »

! ! ¬ ¼- ½§

r &

Page 17: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 17/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(by inspection)

Step 3: Compute

 ± Victim circuit transformation:

Replace capacitors with coupling currents

The voltage at each node corresponds to

that node¶s maximum induced noise

max max 1

2 22 C   N V A I 

| !r r r 

Page 18: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 18/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(by inspection)

Step 3: Compute

 ± Typical interconnects:

Compute by inspection in linear time

max max 1

2 22 C   N V A I 

| !r r r 

max max max

1

i

C  i i j i

 L

V V R I  N 

« »« »! ! ¬ ¼- ½

- ½

Page 19: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 19/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Circuit Computations

(by inspection)

Step 3: Compute

 ± 3RC Circuit example:

max max 1

2 22 C   N V A I 

| !r r r 

max max

1

i

i i j i

 L

 N R I  N 

! §

max

1 1 1 2 3 N R I I I !

max

2 1 1 2 3 2 2 N R I I I  R I !

max

1 1 1 2 3 3 3 N R

I I I R

I !

Page 20: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 20/45

Page 21: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 21/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Experiment

Typical small RC interconnect

structure

 ± Rise time of 200 ps or 100 ps

 ± Power supply voltage of 1.8 V

 ± Conventional circuit simulation vs.

proposed metric

 ± Run-time comparisons for variouscircuit sizes

Page 22: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 22/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Accuracy Results

ode ircuit Simulation roposed Metric % Error 1 0.0084 0.0084 0.00%

2 0.016 0.016 0.00%

3 0.0227 0.0227 0.00%

4 0.0286 0.0286 0.00%

5 0.0336 0.0336 0.00%6 0.0378 0.0379 0.26%

7 0.0412 0.0412 0.00%

8 0.0437 0.0438 0.23%

9 0.0454 0.0454 0.00%

10 0.0462 0.0463 0.22%

10 nodes, 200 ps rise time

Page 23: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 23/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Accuracy Results

10 nodes, 100 ps rise time

ode ircuit Simulation roposed Metric % Error 1 0.0147 0.0168 7.73%

2 0.0277 0.0319 13.10%

3 0.0392 0.0454 13.65%

4 0.0492 0.0572 13.98%

5 0.0578 0.0673 14.11%6 0.0651 0.0757 14.00%

7 0.0709 0.0824 13.95%

8 0.0752 0.0875 14.05%

9 0.0782 0.0908 13.87%

10 0.0797 0.0925 13.83%

Page 24: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 24/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Accuracy Results

Metric accuracy degrades with reductionin rise times

Metric estimation is more conservative

than circuit model¶s ± Fast rise times don¶t allow circuit to reach

ramp steady state noise

Loading of interconnect normally does notallow for very small rise times ± Metric accuracy should be acceptable for 

many applications

Page 25: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 25/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Run-time Results

ir uitum er   um er of  Elements Arnoldi ModelRedu tion roposedMetri Matri

Met od

roposedMetri y

Inspe tion

1 500 .2s .00s .00s

2 5,000 5.86s .07s .01s

3 50,000 145s 3.44s .05s

4 500,000 - 360.55s .35s

Arnoldi- ased model redu tion used amatri solution to ompute ir uit

response ± Requires repeated fa torizations, eigenvalue

al ulations, and time e ponential evaluations

Page 26: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 26/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Conclusions

The proposed metric determines anupper bound on coupled noise for RC and over-damped RLC

interconnects ± Metric becomes less accurate as rise

time decreases

The proposed metric is much more

run-time efficient than circuitmodeling methods

Page 27: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 27/45

MEMS Research Laboratory Joe Zendejas and Jack W. Judy

Improved Crosstalk Modeling for Noise

Constrained Interconnect Optimization

Jason Cong, David Zhigang Pan &Prasanna V. Srinivas

Department of Computer Science, UCLAMagma Design Automation, Inc.

2 Results Way, Cupertino, CA 95014

Page 28: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 28/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Motivation Deep sub-micron net designs have higher 

aspect ratio (h/w) ± Increased coupling capacitance between nets

Longer propagation delay

Increased logic errors --- Noise

Reduced noise margins

 ± Lower supply voltages

 ± Dynamic Logic

Crosstalk cannot be ignored

Page 29: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 29/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Aggressor 

Victim

Aggressor / Victim Network

Assuming idle victim net

 ± Ls: Interconnect length before coupling

 ± Lc : Interconnect length of coupling

 ± Le: Interconnect length after coupling

Aggressor has clock slew t r 

Page 30: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 30/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

2- Model Victim net is modeled as 2-RC circuits

R d : Victim drive resistance

C  x  is assumed to be in middle of Lc 

Rise timevictim / aggressor 

coupling capacitance

Page 31: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 31/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Aggressor 

Victim

2- Model Parameters

2

e

 L l 

C C C !

12

 sC C  ! 2

2

 s eC C 

!

Page 32: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 32/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Analytical Solution

Page 33: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 33/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Analytical Solution part 2 s-domain output voltage

Transform function H (s)

Page 34: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 34/45

Page 35: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 35/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Simplification of Closed Form Solution

Closed form solution complicated Non-intuitive

 ± Noise peak amplitude, noise width?

Dominant-pole simplification

Page 36: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 36/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Dominant-Pole Simplification

RC delay from upstream resistance of coupling element

Elmore delay of victim net

Page 37: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 37/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Intuition of Dominant Pole Simplification

v ou t 

rises until tr and

decays after 

vmax evaluated at tr 

Page 38: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 38/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Extension to RC Trees

Similar to previous model with addition of 

lumped capacitances

Page 39: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 39/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Results

Average errors of 4

95 of nets have errors less than 10

Page 40: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 40/45

Page 41: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 41/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Effect of Aggressor Location As aggressor is moved close to receiver,

peak noise is increased

Ls varies from 0 to 1mm

Lc  has length of 1mm

Le varies from 1mm to 0

Page 42: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 42/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Optimization Rules

Rule 1:

 ± If R sC 

1< R 

eC 

L

Sizing up victim driver will reduce peaknoise

 ± If R sC 

1> R 

eC 

Land t 

r << t 

Driver sizing will not reduce peak noise

Rule 2:

 ±

Noise-sensitive victims should avoidnear-receiver coupling

Page 43: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 43/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Optimization Rules part 2 Rule 3:

 ± Preferred position for shield insertion is near anoise sensitive receiver 

Rule 4:

 ± Wire spacing is an effective way to reduce

noise

Rule 5:

 ± Noise amplitude-width product has lower 

bound

 ± And upper bound

Page 44: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 44/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

Conclusions

2-model achieves results within6 error of HSPICE simulation

Dominant node simplification givesintuition to important parameters

Design rules established to reducenoise

Page 45: noise modelling

8/7/2019 noise modelling

http://slidepdf.com/reader/full/noise-modelling 45/45

EE 201A Modeling and Optimization for VLSI Layout Jeff Wong and Dan Vasquez

References

Anirudh Devgan, ³Efficient Coupled Noise

Estimation for On-chip Interconnects´, ICCAD,

1997.

J. Cong, Z. Pan and P. V. Srinivas, ³Improved

Crosstalk Modeling for Noise Constrained

Interconnect Optimization´, Proc. Asia South

Pacific Design Automation Conference

(ASPDAC), Jan. 30 - Feb. 2, 2001, Pacifico

 Yokohama, Japan.