24
Next Generation Self-Healing Concrete: Infusing Bacteria into Engineered Cementitious Composite Presented by Benjamin G. Kaplan Mentor: Paramita Mondal, PhD (Mondal, 2012)

Next Generation Self-Healing Concrete-Infusing Bacteria into Engineered Cementitious Composite

Embed Size (px)

Citation preview

Next Generation Self-Healing Concrete:

Infusing Bacteria into Engineered Cementitious Composite

Presented by Benjamin G. Kaplan

Mentor: Paramita Mondal, PhD

(Mondal, 2012)

♜Holes in bridge deck(Rice, 2013)

♜D+ by ASCE(ASCE, 2013)

♜ $2.2 trillion to repair(Li, 2012)

(Wikipedia Commons)

America’s Crumbling Concrete

In t roductory

In format ion

Se l f -Hea l ing

Bacter ia l Concrete ECC Object ives Hypothes is

The Problem with Concrete

In t roductory

In format ion

Se l f -Hea l ing

Bacter ia l Concrete ECC Object ives Hypothes is

(Texturel ib .com)

♜Most used construction material on planet(The Concrete Conundrum, 2008)

♜Vulnerable to degradation

♜Diffi cult to repair

♜ 7% of carbon footprint( James, 2013)

♜ Calcium carbonate crystalizes in the matrix

♜ Water dissolves calcium hydroxide

♜ Healing agents consumed

♜ Can’t heal cracks larger than 100-200 µm ( Jonkers & Schlangen, 2008)

What is Self-Healing

In t roductory

In format ion

Se l f -Hea l ing

Bacter ia l Concrete ECC Object ives Hypothes is

(Breugel, 2007)

Concrete Cover

Steel

♜ Microbial Induced Calcium Carbonate Precipitation (MICCP)

♜ Urease: (CO(NH2)2) NH4+ + CO3

2–

♜ Ca+ + cell cell-Ca+

♜ cell-Ca+ + CO32– cell-CaCO

Bacterial Concrete: A Novel Approach to Self-Healing

In t roductory

In format ion

Se l f -Hea l ing

Bacter ia l Concrete ECC Object ives Hypothes is

(DeMuynck, 2007)

♜ Micromechanically-designed material “Tailored” to limit crack growth

♜ Tensile strain Strain hardening

♜ Limits crack size (up to 150 µm) natural self-healing occurs (Li, 2012)

♜ 500 times more ductile(Şahmaran, 2012)

♜ Double initial cost greatly lower end cost(L i , 2012)

Engineered Cementitious Composite

In t roductory

In format ion

Se l f -Hea l ing

Bacter ia l Concrete ECC Object ives Hypothes is

♜ 40% less concrete used(Li, 2012)

♜ 90% recovery of Resonant Frequency(Li, 2011)

♜ Cracks < 20 µm healed (Li, 2011)

(Panoramio.com)

ECC Self-Healing in the Field

In t roductory

In format ion

Se l f -Hea l ing

Bacter ia l Concrete ECC Object ives Hypothes is

Objectives

In t roductory

In format ion

Se l f -Hea l ing

Bacter ia l Concrete ECC Object ives Hypothes is

♜ Investigate infusion of bacteria into ECC

1. Hybrid’s healing capabilities

2. Healing in fi eld environments vs. laboratory

3. Compressive strength and amount of water absorbed (sorptivity) testing

Hypotheses

In t roductory

In format ion

Se l f -Hea l ing

Bacter ia l Concrete ECC Object ives Hypothes is

H01 Bacterial-ECC won’t show additional healing

H1 Bacterial-ECC will show greatest healing

H02 Lab healing = fi eld healing

H2 Lab healing > underground healing > exposed healing

H03 Compressive strength & sorptivity are equal for all groups

H3 Bacterial-ECC has greatest compressive strength &

lowest sorptivity

My Role in the Study

♜ Read 25 articles + 100 primer pages

♜ Independently conceived

♜ Determined parameters Environments Duration Test types

♜ Mixed, molded, and de-molded

♜ Tested specimens

♜ Analyzed all stats and wrote report(Kaplan, 2013)

M y R o le M a t e r i a l s S p e c im e n P r e p a r a t i o n

E n v i r o n m e nt s

R e so n a n t Fr e q u e n cy

Te s t i n g

C o m p / S o r p Te s t i n g &

S t a t s

Materials

♜Derived from ECC R0(L i , 2004)

♜ Changes to Formula: Less superplasticizer W/C = 0.395

♜Amounts Cement: 446.39g F110 si l ica

sand:446.05g Polyvinyl alcohol

(PVA) fi bers: 11.90g Water/medium:

178.90g (with 1.6g of super plasticizer for ECC)

Mix

♜ Solid media Yeast: 2.00g Ammonium sulfate

(NH4) 2 SO 4 : 1.00g Tris (HOCH 2) 3(CNH 2):

1.57g Agar: 2.00g

♜ Liquid media Yeast: 20.00 g in

400mL Ammonium sulfate:

10.00 g in 300mL 5.73 g of tris in

300mL

Nutrient Mediums

♜Sporosarcina pasteurii

♜Cultivation30°C Shaking

table24h petri dish

♜Repeated in vat

Bacteria Culturing

(Kaplan, 2013)

M y R o le M a t e r i a l s S p e c im e n P r e p a r a t i o n

E n v i r o n m e nt s

R e so n a n t Fr e q u e n cy

Te s t i n g

C o m p / S o r p Te s t i n g &

S t a t s

Specimen Preparation

(Kaplan, 2013)(Kaplan, 2013)

Cubes5.08 x 5.08 x 5.08

cm

Beams30.48 x 2.54 x

2.54 cm

Bisection12.7x2.54x2.54 cm

M y R o le M a t e r i a l s S p e c im e n P r e p a r a t i o n

E n v i r o n m e nt s

R e so n a n t Fr e q u e n cy

Te s t i n g

C o m p / S o r p Te s t i n g &

S t a t s

Environments

(Kaplan, 2013)

♜Laboratory Control Lime water 30°C Re-saturated

♜ Underground

Buried 21.6 cm

♜Exposed Dry, l itt le

rainfal l(Angel, 2013)

M y R o le M a t e r i a l s S p e c im e n P r e p a r a t i o n

E n v i r o n m e nt s

R e so n a n t Fr e q u e n cy

Te s t i n g

C o m p / S o r p Te s t i n g &

S t a t s

1.

2.

3.

Resonant Frequency Testing

♜ Wave propagation “stiff ness” measurement ASTM C215

♜ 7 days curing RF tests

♜ 3 point 1st crack

♜ RF re-measured

♜ 28 days healing

♜ RF re-measured

(Kaplan, 2013)

M y R o le M a t e r i a l s S p e c im e n P r e p a r a t i o n

E n v i r o n m e nt s

R e so n a n t Fr e q u e n cy

Te s t i n g

C o m p / S o r p Te s t i n g &

S t a t s

Compressive/Sorptivity Testing & Stats

♜ Sorptivity ASTM C642 standard 48 h oven drying Weighed, immersed, surface-dried, re- immersed, repeatedly 0, 0.25, 0.5, 1, 1.5, 2, 3, 6, 24, 48, 52.5 h

♜ Compressive Strength 48 h re-drying Forney QC-0410-D3 point load frame

♜ Stats T-test

✜ Independent✜ Paired✜ 1-tai led

Pearson’s R

α = 0.05

M y R o le M a t e r i a l s S p e c im e n P r e p a r a t i o n

E n v i r o n m e nt s

R e so n a n t Fr e q u e n cy

Te s t i n g

C o m p / S o r p Te s t i n g &

S t a t s

Self-Healing Beams

Genera l Trends

Hea l ing by Type

Hea l ing by Env i ro nme

nt

Sorp t i v i ty Resu l t s

Compress i ve S t rength

Resu l t s

Conc lus ions

♜RF increases as samples cure (age) Healing gains may be exaggerated

(absolutely)

Control: ECC Control: ECC + Medium

Control: ECC + Bacteria

Exposed: ECC Exposed: ECC + Medium

Exposed: ECC + Bacteria

Undergound: ECC Undergound: ECC + Medium

Undergound: ECC + Bacteria

0%

2%

4%

6%

8%

10%

12%

14%

Enviormental Group: Type

R.F.

% In

crea

se

Damage-Healing Correlation

Genera l Trends

Hea l ing by Type

Hea l ing by Env i ro nme

nt

Sorp t i v i ty Resu l t s

Compress i ve S t rength

Resu l t s

Conc lus ions

0.00% 5.00% 10.00% 15.00% 20.00% 25.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

Laboratory Environment

Linear (Laboratory Environment)

Underground Environment

Linear (Underground Environment)

Exposed Environment

Linear (Exposed Environment)Percent reduction in R.F. from damage

Perc

ent i

ncre

ase

in R

.F. a

fter r

ecov

ery

♜ Damage and RF regains: signifi cantly positive for all Lab: r = 0.90 & p = 0.000036 Exposed: r = 0.55 & p = 0.033 Underground: r = 0.86 & p = 0.00014

Differences amongst ECC types

Genera l Trends

Hea l ing by Type

Hea l ing by Env i ro nme

nt

Sorp t i v i ty Resu l t s

Compress i ve S t rength

Resu l t s

Conc lus ions

♜Healing for ECCbacteria significantly > ECCregular (p = 0.042) > ECCmedium (p = 0.007)

ECC ECC+ Medium ECC + Bacteria0%

2%

4%

6%

8%

10%

12%

Type

R.F.

% In

crea

se

Environmental Testing

Genera l Trends

Hea l ing by Type

Hea l ing by Env i ro nme

nt

Sorp t i v i ty Resu l t s

Compress i ve S t rength

Resu l t s

Conc lus ions

♜No sig. diff erence between lab and underground healing (p = 0.44)

Control Exposed Underground0%

2%

4%

6%

8%

10%

12%

14%

Environment

R.F

% In

crea

se

Sorptivity Testing

Genera l Trends

Hea l ing by Type

Hea l ing by Env i ro nme

nt

Sorp t i v i ty Resu l t s

Compress i ve S t rength

Resu l t s

Conc lus ions

♜ Not in line with expectations

♜ Micro-cracking?

0 10 20 30 40 50 600.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

OPC-R-AOPC-R-BOPC-R-COPC-M-AOPC-M-BOPC-M-COPC-B-AOPC-B-BOPC-B-C

Time [hrs]

% W

ater

Upt

ake

OPC-R

OPC-MOPC-B

ECC-R

ECC-M

ECC-B

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80 Absorption Rate

Compressive Strength Testing

Genera l Trends

Hea l ing by Type

Hea l ing by Env i ro nme

nt

Sorp t i v i ty Resu l t s

Compress i ve S t rength

Resu l t s

Conc lus ions

♜ Microcracking OPC cube results inconclusive

♜ Dead bacteria weaker comp. strength(Ramachandran, 2001)

ECC-R-A ECC-R-B ECC-R-C ECC-M-A ECC-M-B ECC-M-C ECC-B-A ECC-B-B ECC-B-C ECC-R ECC-M ECC-B0

10000

20000

30000

40000

50000

60000

70000

Individual ECC Specimen ECC Type Average

Pasc

als R

equi

red

for F

ailu

re

Conclusions

♜ H1 confi rmed

♜ H02 serendipitously confi rmed in part

♜ Proof of concept for bacterial-ECC Future inquiries: more sophisticated methods

♜ Additional fi eld studies E.g. Underwater Diff erent seasons Diff erent climates

♜ Alternative measuring

♜ Infrastructure for the 21st century

Genera l Trends

Hea l ing by Type

Hea l ing by Env i ro nme

nt

Sorp t i v i ty Resu l t s

Compress i ve S t rength

Resu l t s

Conc lus ions

AcknowledgmentsI would like to thank my mentor, Dr. Paramita Mondal, her doctoral candidates, Pete Stynoski and Bin Zhang along with graduate student Jeevaka Somaratna, my science research advisors: Mr. David Keith, Mr. Ken Kaplan, and Ms. Stephanie Greenwald, and lastly my parents: Dr. Howard Kaplan and Ms. Jennifer Lacks Kaplan, my stepmother: Janet Shimer, and my grandfather: Dr. Sanford Lacks.

References