119
NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 3: Fission-Product Transport and Dose PIRTs OAK RIDGE NATIONAL LABORATORY U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001

Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

  • Upload
    vuliem

  • View
    220

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 3: Fission-Product Transport and Dose PIRTs OAK RIDGE NATIONAL LABORATORY

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001

Page 2: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

AVAILABILITY OF REFERENCE MATERIALS

IN NRC PUBLICATIONS NRC Reference Material As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC’s Public Electronic Reading Room at http://www.nrc.gov/reading-rm.html. Publicly released records include, to name a few, NUREG-series publications; Federal Register notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments. NRC publications in the NUREG series, NRC regulations, and Title 10, Energy, in the Code of Federal Regulations may also be purchased from one of these two sources. 1. The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202–512–1800 Fax: 202–512–2250 2. The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000 A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows: Address: Office of the Chief Information Officer, Reproduction and Distribution Services Section U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 E-mail: [email protected] Facsimile: 301–415–2289 Some publications in the NUREG series that are posted at NRC’s Web site address http://www.nrc.gov/reading-rm/doc-collections/nuregs are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, Federal Register notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from–

American National Standards Institute 11 West 42nd Street New York, NY 10036–8002 www.ansi.org

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor-prepared publications in this series are not necessarily those of the NRC. The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG–XXXX) or agency contractors (NUREG/CR–XXXX), (2) proceedings of conferences (NUREG/CP–XXXX), (3) reports resulting from international agreements (NUREG/IA–XXXX), (4) brochures (NUREG/BR–XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors‘ decisions under Section 2.206 of NRC’s regulations (NUREG–0750).

212–642–4900

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

Page 3: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 3: Fission-Product Transport and Dose PIRTs Manuscript Completed: October 2007 Date Published: November 2007 Prepared by: R. N. Morris—Panel Chair Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831 Panel Members: M. Kissane (IRSN) D. Petti (INL)

D. Powers (SNL) R. Wichner (Consultant)

Sudhamay Basu, NRC Project Manager

Prepared for: Division of Risk Assessment and Special Projects Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Page 4: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

Page intentionally blank

Page 5: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

iii

ABSTRACT

This Fission Product Transport (FPT) Phenomena Identification and Ranking Technique (PIRT) report briefly reviews the high-temperature gas-cooled reactor (HTGR) FPT mechanisms and then documents the step-by-step PIRT process for FPT. The panel examined three FPT modes of operation:

1. Normal operation which, for the purposes of the FPT PIRT, established the fission product circuit loading and distribution for the accident phase.

2. Anticipated transients which were of less importance to the panel because a break in the pressure circuit boundary is generally necessary for the release of fission products. The transients can change the fission product distribution within the circuit, however, because temperature changes, flow perturbations, and mechanical vibrations or shocks can result in fission product movement.

3. Postulated accidents drew the majority of the panel’s time because a breach in the pressure boundary is necessary to release fission products to the confinement. The accidents of interest involved a vessel or pipe break, a safety valve opening with or without sticking, or leak of some kind.

Two generic scenarios were selected as postulated accidents:

1. the pressurized loss-of-forced circulation (P-LOFC) accident, and 2. the depressurized loss-of-forced circulation (D-LOFC) accidents.

FPT is not an accident driver; it is the result of an accident, and the PIRT was broken down into a two-part task. First, normal operation was seen as the initial starting point for the analysis. Fission products will be released by the fuel and distributed throughout the reactor circuit in some fashion. Second, a primary circuit breach can then lead to their release. It is the magnitude of the release into and out of the confinement that is of interest.

Depending on the design of a confinement or containment, the impact of a pressure boundary breach can be minimized if a modest, but not excessively large, fission product attenuation factor can be introduced into the release path. This exercise has identified a host of material properties, thermofluid states, and physics models that must be collected, defined, and understood to evaluate this attenuation factor.

The assembled PIRT table underwent two iterations with extensive reorganization between meetings. Generally, convergence was obtained on most issues, but different approaches to the specific physics and transport paths shade the answers accordingly.

The reader should be cautioned that merely selecting phenomena based on high importance and low knowledge may not capture the true uncertainty of the situation. This is because a transport path is composed of several serial linkages, each with its own uncertainty. The propagation of a chain of modest uncertainties can lead to a very large uncertainty at the end of a long path, resulting in a situation that is of little regulatory guidance.

Page 6: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

iv

Page intentionally blank

Page 7: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

v

FOREWORD

The Energy Policy Act of 2005 (EPAct), Public Law 109-58, mandates the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE) to develop jointly a licensing strategy for the Next Generation Nuclear plant (NGNP), a very high temperature gas-cooled reactor (VHTR) for generating electricity and co-generating hydrogen using the process heat from the reactor. The elements of the NGNP licensing strategy include a description of analytical tools that the NRC will need to develop to verify the NGNP design and its safety performance, and a description of other research and development (R&D) activities that the NRC will need to conduct to review an NGNP license application.

To address the analytical tools and data that will be needed, NRC conducted a Phenomena Identification and Ranking Table (PIRT) exercise in major topical areas of NGNP. The topical areas are: (1) accident analysis and thermal-fluids including neutronics, (2) fission product transport, (3) high temperature materials, (4) graphite, and (5) process heat and hydrogen production. Five panels of national and international experts were convened, one in each of the five areas, to identify and rank safety-relevant phenomena and assess the current knowledge base. The products of the panel deliberations are Phenomena Identification and Ranking Tables (PIRTs) in each of the five areas and the associated documentation (Volumes 2 through 6 of NUREG/CR-6944). The main report (Volume 1 of NUREG/CR-6944) summarizes the important findings in each of the five areas. Previously, a separate PIRT was conducted on TRISO-coated particle fuel for VHTR and high temperature gas-cooled reactor (HTGR) technology and documented in a NUREG report (NUREG/CR-6844, Vols. 1 to 3).

The most significant phenomena (those assigned an importance rank of “high” with the corresponding knowledge level of “low” or “medium”) in the thermal-fluids area include primary system heat transport phenomena which impact fuel and component temperatures, reactor physics phenomena which impact peak fuel temperatures in many events, and postulated air ingress accidents that, however unlikely, could lead to major core and core support damage.

The most significant phenomena in the fission products transport area include source term during normal operation which provides initial and boundary conditions for accident source term calculations, transport phenomena during an unmitigated air or water ingress accident, and transport of fission products into the confinement building and the environment.

The most significant phenomena in the graphite area include irradiation effect on material properties, consistency of graphite quality and performance over the service life, and the graphite dust issue which has an impact on the source term.

The most significant phenomena in the high temperature materials area include those relating to high-temperature stability and a component’s ability to withstand service conditions, long term thermal aging and environmental degradation, and issues associated with fabrication and heavy-section properties of the reactor pressure vessel.

The most significant phenomenon in the process heat area was identified as the external threat to the nuclear plant due to a release of ground-hugging gases from the hydrogen plant. Additional phenomena of significance are accidental hydrogen releases and impact on the primary system from a blowdown caused by heat exchanger failure.

Page 8: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

vi

The PIRT process for the NGNP completes a major step towards assessing NRC’s research and development needs necessary to support its licensing activities, and the reports satisfy a major EPAct milestone. The results will be used by the agency to: (1) prioritize NRC’s confirmatory research activities to address the safety-significant NGNP issues, (2) inform decisions regarding the development of independent and confirmatory analytical tools for safety analysis, (3) assist in defining test data needs for the validation and verification of analytical tools and codes, and (4) provide insights for the review of vendors’ safety analysis and supporting data bases.

_____________________________________________

Farouk Eltawila, Director Division of Systems Analysis Office of Nuclear Regulatory Research

Page 9: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

vii

CONTENTS

Page

ABSTRACT.................................................................................................................................................iii

FOREWORD ................................................................................................................................................ v

LIST OF FIGURES ..................................................................................................................................... ix

LIST OF TABLES....................................................................................................................................... ix

ACRONYMS...............................................................................................................................................xi

1. INTRODUCTION.................................................................................................................................. 1

2. BRIEF HTGR FISSION PRODUCT TRANSPORT BACKGROUND................................................ 3

3. FISSION PRODUCT TRANSPORT PIRT PROCESS ......................................................................... 7

3.1 Step 1—Issues ............................................................................................................................. 7

3.2 Step 2—PIRT Objectives ............................................................................................................ 9

3.3 Step 3—Hardware and Scenarios ................................................................................................ 9

3.3.1 Hardware........................................................................................................................ 9 3.3.2 Accident scenarios ....................................................................................................... 11 3.3.3 Significant radionuclides ............................................................................................. 14

3.4 Step 4—Evaluation Criteria....................................................................................................... 14

3.5 Step 5—Knowledge Base.......................................................................................................... 15

3.6 Steps 6 through 8—Identify Phenomena and Rank................................................................... 16

3.7 Step 9—Document PIRT—Summary ....................................................................................... 31

REFERENCES ........................................................................................................................................... 39

APPENDIX A. COMMENTS ON TRANSPORTATION MODELING................................................A-1

A.1 Brief Discussion of Transport Modeling Through Porous Media ...........................................A-1

A.2 Speciation ................................................................................................................................A-2

A.3 Aerosols...................................................................................................................................A-2

APPENDIX B. INDIVIDUAL PANELISTS’ RANKING TABLES...................................................... B-1

Page 10: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

viii

Page intentionally blank

Page 11: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

ix

LIST OF FIGURES

Figure Page

1 Transport of fission products from fuel to reactor materials............................................................... 4 2 Fission-product transport through the reactor circuit .......................................................................... 4

LIST OF TABLES

Table Page

1 Historically dominant radionuclides in a VHTR................................................................................. 5 2 Rough comparison between the GT-MHR (DOE version as developed by GA) and

the NGNP for normal operating conditions ........................................................................................ 9 3 Rough comparison between the GT-MHR (DOE version as developed by GA) and the NGNP

for design basis accident conditions.................................................................................................. 10 4 Public dose radionuclides.................................................................................................................. 14 5 Operation and maintenance dose radionuclides ................................................................................ 14 6 Fission product transport pathways from the fuel particle surface ................................................... 17 7 Phenomena importance ranking scale ............................................................................................... 20 8 State-of-knowledge (SOK) ranking scale ......................................................................................... 20 9 Status of fission-product modeling ranking scale ............................................................................. 20 10 Overall PIRT ranking........................................................................................................................ 21 11 Selected PIRT items from Tables 10 that have at least one high importance and low

knowledge ranking ............................................................................................................................ 32 B-1 Individual FPT PIRT Ranking Table .............................................................................................. B-3 B-2 Individual FPT PIRT Ranking Table ............................................................................................ B-13 B-3 Individual FPT PIRT Ranking Table ............................................................................................ B-21 B-4 Individual FPT PIRT Ranking Table ............................................................................................ B-29 B-5 Individual PIRT Ranking Table .................................................................................................... B-37

Part A: General issues affecting FP transport ............................................................................. B-39 Part B: Transport holdup in carbon matrix and graphite ............................................................ B-41 Part C: Emission from fuel element surface ............................................................................... B-44 Part D: FP transport in the coolant, normal operation ................................................................ B-45 Part E: Deposition sorption on primary system surfaces—normal operation ............................ B-47 Part F: Releases from the primary system—normal operation................................................... B-49 Part G: Factors affecting releases from the primary system—accident conditions .................... B-50 Part H: Releases from the confinement....................................................................................... B-54

Page 12: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

x

Page intentionally blank

Page 13: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

xi

ACRONYMS

D-LOFC depressurized loss-of-forced circulation FPT fission-product transport GA General Atomics GT-MHR gas-turbine–modular helium reactor HTGR high-temperature gas-cooled reactor IC initial condition IHX intermediate heat exchanger INL Idaho National Laboratory IRSN L’Institut de Radioprotection et de Sûreté Nucléaire LWR light-water reactor NGNP next generation nuclear plant NRC Nuclear Regulatory Commission O&M operations and maintenance P-LOFC pressurized loss-of-forced circulation PBMR pebble-bed modular reactor PIRT phenomena identification and ranking tables RCCS reactor cavity cooling system SNL Sandia National Laboratory SOK state of knowledge VHTR very high temperature gas-cooled reactor

Page 14: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

xii

Page intentionally blank

Page 15: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

1

1. INTRODUCTION

This section of the next generation nuclear plant phenomena identification and ranking tables (NGNP PIRT) applies the Nuclear Regulatory Commission (NRC) PIRT process to the issue of fission-product transport (FPT) under routine and accident conditions in both the process heat and the electric-power-producing versions of the very high temperature gas-cooled reactor (VHTR) (either prismatic core or pebble-bed fuel). Currently, the direct-cycle VHTR is the main concept for power generation; the process heat version of the VHTR differs from earlier applications in that its purpose is to provide high-temperature process heat to some chemical process. As such, there is a linkage to the chemical process [through the intermediate heat exchanger (IHX)], the safety implications of which are relatively new. In addition, the chemical process itself can become a factor in fission-product transport evaluations. NGNP is based on aspects of VHTR, and for the purposes of the PIRT, they are considered equivalent.

The VHTR is expected to use one of the standard high-temperature gas-cooled reactor (HTGR) core configurations. HTGRs have been analyzed for fission-product transport many times; however, there still appear to be several incompletely resolved issues. In particular, use of a gas turbine in a direct cycle is relatively new with respect to safety and fission product-transport analysis.

Each version of the VHTR may use either a pebble-type fuel element or a fuel element of prismatic geometry. To date, the U.S. General Atomics and AREVA designs favor the prismatic fuel element, while the pebble-bed modular reactor (PBMR) of South Africa has adopted the pebble-type fuel element. The materials are somewhat different in these two fuel element types. While the PBMR uses fuel particles with UO2 kernels, prismatic fuel-element designers prefer a UCO fuel form for future use, because this fuel offers improved burnup capability (due to less CO formation) and lessens the effect of “amoeba”-type fuel problems.

The main driver for the FPT PIRT exercise is the NGNP. This nuclear plant is based on a VHTR, as mentioned above, that is constructed of materials that are quite different from those used in a light water reactor (LWR), and the accident characteristics identified to date develop along different lines. Thus, there is reason to believe that the approaches used for LWR analysis may not be appropriate or successful when applied to VHTRs. A technology-neutral safety approach is needed and should be applied to the VHTR. Finally, the regulatory experience for this reactor type, especially in its high-temperature process heat configuration, is very limited [1–5, 50]. Material presented at the February 2007 PIRT meeting was used as guidance for the process.

Implicit in the panel’s discussions was the role played by high-temperature materials, the large amounts of graphite, the high-pressure noncondensable coolant, and the dual role that the VHTR reactor could play.

One particular issue was noted, and this issue revolves around the fact that the FPT task depends on a high level of coordination with other groups. FPT is not an accident driver; it is the result of an accident, and in general, these accident scenarios will be identified and their evolution calculated by others. The role of this PIRT is seen as a two-part task. First, normal operation is seen as the initial starting point for the analysis. Fission products will be released by the fuel and distributed throughout the reactor circuit in some fashion. The major concern at this point is the dose and contamination associated with maintenance and operational issues. In the event of an accident, a transient occurs along with the possible redistribution of fission products within the reactor circuit; a primary circuit breach could then lead to their release. It is the magnitude of the release into and out of the confinement that then becomes the matter of interest.

Page 16: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

2

This report segment first briefly reviews the HTGR fission-product transport mechanisms and then proceeds with the step-by-step PIRT process for fission-product transport. A previous fuel PIRT was conducted, and the starting point for this analysis is the outer surface of the fuel particle [49].

Page 17: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

3

2. BRIEF HTGR FISSION PRODUCT TRANSPORT BACKGROUND

Even though the VHTR fuels are designed to preclude large scale fuel failure during accidents, dose significant fission product transport from the reactor cannot be discounted [1–8, 50], especially for the higher temperature VHTR. Even in the ideal case of no fuel failures during the accident, fission products are available for release because of three main factors:

1. The fuel is not perfect and some fraction (~10-5) of the particles is defective or damaged during fabrication. In addition, a small fraction of the fuel may fail during normal operation. These fuel populations partially release their fission products to the reactor system during normal operation and during the accident.

2. The reactor graphite components have uranium contamination due to natural causes or due to fuel particles that have been crushed during fuel element fabrication. This uranium fissions and releases some part of its fission products to the reactor circuit.

3. The high pressure coolant provides a means to transport fission products from the reactor circuit to the confinement building following primary system breaks.

Past VHTR (prior HTGR) work sets the desired maximum level of 10-4 as the fuel fraction release at the time of the accident, and the acceptable core release fraction at roughly 10-7; thus, a fission-product attenuation factor (order of magnitude) of about 1000 is needed between the core and the site boundary [5, 9, 10]. Clearly, even with the best fuel and no additional fuel failures during the accident, fission-product transport will be an important issue.

Fission products released from the fuel can travel to and through the matrix material that holds the fuel particles, the graphite fuel blocks (prismatic), the graphite reflector and structural components, and into the coolant [11–17] (see Fig. 1). They can then travel onto and into metallic components and dust generated within the reactor circuit.

During normal operation, the fission products distribute themselves throughout the reactor circuit, depending on material diffusive and sorptive properties, chemical affinities, temperatures, material and coolant chemical impurities, flows, and mechanical vibrations (see Fig. 2).

Computing the distribution of fission products is a complex problem, and considerable effort has been expended in this area, both in the areas of single-effects data collection and integral testing [18–26]. The resulting distribution and its stability determines the starting point for the accident analysis. There may also be some interest in 14C production and the transport of uranium and plutonium [27–29], although these are not expected to be important accident contributors. The transport area is much less developed in VHTRs than the analogous situation in LWRs; however, the LWR releases are much larger and can be more energetic. Some LWR analytical techniques may be applicable, especially for the transport in the containment [30–31], and some technical modeling problems are comparable (e.g., aerosol/dust retention in complex structures such as the IHX or gas turbine as compared to the secondary side of a steam generator for LWRs).

Three forms of radioactivity are usually categorized in the VHTR (note: past HTGR work will be assumed to be applicable to the VHTR and the qualifier HTGR will be dropped) reactor:

1. Circulating activity that is composed of gases/vapors (iodine, krypton, xenon), any aerosols that may be formed, and dust (mostly carbon with sorbed radionuclides).

2. Surface activity that is composed of radionuclides chemisorbed on steel and graphite, plated-out dust, and chemically combined with oxide films (impurities in the coolant establish the oxygen potential).

3. Activity embedded in solids such as fission products alloyed with metal components and retained on or within the graphite.

Page 18: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

4

Fig. 1. Transport of fission products from fuel to reactor materials.

Fig. 2. Fission-product transport through the reactor circuit.

The first two items are of most concern as circulating activity is the most likely to be expelled during

a pressure boundary break and surface activity may be spalled or lifted off by fluid or mechanical action [32–40]. Material embedded in solids is the least likely to be rapidly released but acts as a dose driver for maintenance because it is difficult to remove (decontaminate).

Historically, a handful of radionuclides have been the dominant drivers in VHTR dose and effluent calculations [41–42, 51]. Table 1 lists these elements and their primary impacts; this is for information only as the situation with the NGNP may or may not be the same.

Page 19: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

5

Table 1. Historically dominant radionuclides in a VHTR

Nuclide Half-life Primary impact 131I 8 days Offsite dose, operations and

maintenance (O&M) dose 137Cs 30 years Offsite dose, O&M dose 110mAg 250 days O&M dose 90Sr 28 years Offsite dose Kr and Xe Hours to years Gaseous effluent 3H 12 years Gaseous effluent

During normal operation, the five sources of circulating radionuclides originating from the core are

[6–8]:

1. uranium contamination of graphite, 2. exposed fuel kernels (fuel particles broken during manufacture), 3. fuel with damaged SiC (metal release), 4. fuel that fails during normal operation (variety of reasons), and 5. activation of core structural materials (fixed but may spall off).

Over many years of operation, these five sources provide fission products and other radionuclides to the various transport mechanisms that spread radionuclides through the reactor circuit. About 10-4 of the core inventory of cesium and 10-6 of the iodine inventory are outside of the fuel particles and deposited either on the fuel, graphite, metal components, or dust [5, 9, 10].

In summary, a number of phenomena drive FPT on both the large and small scale; the fundamental driver is the release from the fuel and uranium contamination during normal operation and its deposition throughout the reactor circuit in a manner that allows some portion of it to be removed from the circuit as the result of a depressurization.

It should be noted at this point that the accident scenarios for the fission-product transport PIRT are actually generated by other PIRT groups as fission-product transport is a consequence of an event rather than an event driver [1–5] (only a massive redistribution of fission products would change the heat-generation profile of the core). The event of primary interest for the gas-turbine designs is a pressure boundary break that allows the high-pressure helium to expel fission products and provides a conduit from the reactor circuit to the confinement. This path has been the subject of the above introduction. For the historical steam cycle, HTGR steam generator failures which allow water into the core have been of major interest as they will open a primary-circuit pressure-relief valve and provide a transport path. The gas turbine or process heat designs are believed to be much less susceptible to this failure mode, and thus it is of much less concern.

For the NGNP, three other paths might be of interest. The first is diffusion from the primary side of an IHX to the secondary side. Currently, this appears to be more of a tritium diffusion issue for normal operation than an accident issue [42–44]. Another path is from the secondary side to the primary side and/or into the confinement. If the IHX were to suffer a major failure that exposed a high-pressure secondary side to the confinement, the confinement atmosphere and heat transfer properties might be drastically changed. This could affect the operation of the reactor cavity cooling system (RCCS) and the (possible) confinement filters. The simultaneous failure of both the primary side and the secondary side of the IHX would add the reactor coolant inventory as well as fission products to the confinement. A third IHX failure mode would be between the primary and secondary sides. In this case the working fluids could mix as well as transfer fission products. Chemical reactions as well as pressure boundary issues could then arise. These three IHX accidents are very application and design specific. While the

Page 20: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

6

basic HTGR design relies on passive safety to handle issues such as coolant flow transients, station blackouts, and seismic events, it is very design specific as to how these issues will affect the IHX circuit and feedback into the reactor system.

Page 21: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

7

3. FISSION PRODUCT TRANSPORT PIRT PROCESS

The PIRT process was outlined in our introductory meeting by the NRC coordinator, Sudhamay Basu. It consists of nine steps, which are discussed below [45–47].

3.1 Step 1—Issues

The VHTR presents some new issues to FPT considerations. Generally, these new aspects are in addition to the more well-known issues relating to the past HTGR designs.

1. Higher-temperature fuel and primary coolant during normal operation leading to higher levels of circulating activity and a higher fraction of the core experiencing elevated temperature.

2. An IHX in place of a gas turbine or steam generator that may malfunction during normal operation, or fail during some accident.

3. The possibility of product contamination with radiation from the primary circuit either during normal operation or an accident.

4. Possibly higher occupational exposures. 5. Possibly new variations of accident scenarios involving the IHX or the process heat sink.

In addition, the VHTR has some well-known fission-product issues, some of which remain only partially resolved:

1. Fission-product contamination of the moderator graphite (for prismatic fuel element versions) and primary coolant during normal operation. This issue contributes to occupational dose and also presents an immediate source (coolant) for release during depressurization events.

2. Fission-product contamination of primary circuit surfaces incurred during normal operation, including the power conversion unit components. Such contamination may be of four types: a. chemisorption on metal surfaces, b. chemical combination with the oxide film of the metal surfaces, c. alloyed in the metal, and d. plated-out dust contaminated with fission products.

3. Transport of fission products into the containment building as a result of various types of accidents involving depressurization. There are a number of separate sub-issues related to fission-product transfer into the containment building: a. Liftoff of plated-out dust particles either by hydrodynamic forces or by vibrational

forces resulting from the break or rapid gas flow. b. Desorption of chemically adsorbed fission products due to the generation of higher

temperatures during the accident (for the particular component) or by change of oxygen potential in the case of water or air ingress.

c. Transport of fission products during the natural convection phase of the depressurization event. This is basically a fluid dynamics issue but is affected by oxidation (air or steam ingress) of the graphite by modifying helium properties (gas mixture).

4. Transport of fission products from the containment or confinement building to the atmosphere. This is also primarily a building leakage problem but depends on the gaseous and suspended aerosol inventory of fission products in the building. In addition, chemical

Page 22: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

8

reactions of fission products in the building may affect their transport. Other chemical reactions could also affect building pressure (e.g., cable fire) and transport. Dust combustion could lead to higher pressures and fission-product liberation.

5. Behavior of the fission-product inventory in the chemical cleanup or fuel handling system during an accident. An overheat event or loss of power may cause release from this system and transport by some pathway into the confinement building or environment.

During an unmitigated air or water ingress accident, four more radionuclide transport issues arise [8, 49, 52]:

1. Chemical reactions (and overall oxygen potential change in the reactor system) with fuel and graphite due to water and/or air.

2. Generation of particulates from matrix and graphite component oxidation and failure. 3. Change of the fission products’ chemical state and the component surface properties which

can affect the ability of components to retain fissions products. 4. Additional fuel failures due to high temperatures and chemical attack.

One issue of immediate transport concern is the amount of dust in the reactor circuit as dust is easily released during a primary boundary breach. Carbon-based dust is generally quite absorptive of fission products and, when combined with its high mobility, leads to an important path from the reactor core to the environment. Sources of dust in the reactor circuit include the following [6]:

1. Abrasion due to the relative movement of fuel pebbles (high) and prismatic blocks (low). 2. Metal corrosion products. 3. Carbon filaments that grow from the gas-phase reaction 2CO6CO2 + C due to coolant

impurities and temperature gradients. 4. Soot from fast neutron damage (reflector graphite). 5. Construction and other debris.

The highest dust quantities are expected in the pebble-bed core (~10–50 kg for a test reactor and perhaps much more for a power reactor) and the lowest in the prismatic core (at least an order of magnitude less) [9, 10]. Dust is significant in at least three areas:

1. Circulating dust is readily available for depressurization release. 2. Plated-out dust can be re-entrained by shearing fluid forces due to flow velocity changes

driven by the pressure boundary break or by the mechanical and acoustical forces generated by the shock of the break or generated by flow-driven vibrations.

3. Dust can have an erosive effect on turbine blades. 4. There has been some speculation on the possibility of dust ignition and explosions [9, 10].

Dust could be a major source of fission-product release for pebble-bed reactors; it is expected to be much less of an issue for the prismatic core reactors [6].

Dust size is a key parameter that may be highly dependent on the system design materials and manufacturing techniques used, so extrapolation of past knowledge to new reactors has to be done with caution. In particular, graphite-component manufacture may be different with different grain structure and different levels of impurities. In addition, the pebble design uses a mixture of binder and graphite for pebble-fabrication, so the pebble generated dust may be more sorptive of fission products.

Page 23: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

9

3.2 Step 2—PIRT Objectives

The major objectives are to identify the safety-relevant phenomena and knowledge base and rank them in an approximately quantitative way. Since the NGNP exists as only a rough concept, it is not possible to take a concrete approach to this process; however, it must be surmised that the NGNP would share much in common with past HTGR designs, and these were used as a reference.

3.3 Step 3—Hardware and Scenarios

3.3.1 Hardware

At the present time, the NGNP is only in the concept stage, and historical analogues as well as PIRT presentations were used to model the hardware and possible scenarios. Tables 2 and 3 are a rough comparison between the direct-cycle prismatic block gas turbine HTGR (GT-MHR) investigated by the DOE and the Fissile Materials Deposition Program over the last decade and the conceptual NGNP. These tables are meant to be only a conceptual starting point and should not be taken as a point-by-point analysis.

Several confinement and containment options have been investigated in the past, with the vented confinement option generally selected as a baseline (with or without filters, depending on designer); see Ref. 54 for the results of a trade study (steam cycle) which assumes high-quality fuel and limited release of plated-out activity. The releases are time separated into a small early release and a larger later release. The early release is assumed to be very small and requires no holdup while the later release is assumed to be modest with little or no driving force. Reference 55 discusses the vented confinement with both ideal and less-than-ideal fuel for the steam-cycle version. It was presumed that this type of analysis would be the starting point for the NGNP design, to be modified later by analysis and test results.

Table 2. Rough comparison between the GT-MHR (DOE version as developed by GA)

and the NGNP for normal operating conditions

Item GT-MHR NGNP

Coolant and primary-loop containment

Lower Same or higher, depending on temperature; higher if pebbles are used (dust).

Maintenance dose Depends on turbine issues; cesium and silver dose

Same if turbine; perhaps less if IHX system.

Contamination of secondary coolant

N/A Issue will probably be tritium.

Confinement vs containment Confinement Probably confinement.

Primary coolant cleanup system Fission gas collection; long-term issue is 85Kr and some contaminated dust (?)

Fission gas collection; long-term issue is 85Kr and perhaps contaminated dust; advanced designs may capture dust.

Fuel handling Special equipment for handling blocks; reactor down during handling

Could be blocks (offline batch refueling) or pebbles (continuous online refueling).

Page 24: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

10

Table 3. Rough comparison between the GT-MHR (DOE version as developed by GA) and the NGNP for design basis accident conditions

Item GT-MHR NGNP

Release to the atmosphere. Designed to avoid public evacuation and sheltering requirements.

About equal unless the IHX or process heat side introduces unusual behavior; higher potential for fuel failure because of higher fuel and reactor outlet temperatures.

Release to the secondary coolant N/A Design specific; IHX breaks could transfer heat-transfer fluid either way and into confinement.

Releases from the cleanup system and/or fuel handling system

Designed to avoid public evacuation and sheltering requirements.

Not clearly established but likely similar except for dust and pebble handling faults; higher fuel failures could increase releases.

At the present time, an important issue is the type of fuel to be used by the reactor. Both prismatic

and pebbles have been used in the past, and both have advantages and disadvantages. The following differences need to be understood however:

1. The pebble-fuel element consists of a 6-cm-diam sphere containing a central region of fuel particles and matrix material (graphite and binder) covered by a fuel-free region (a few mm thick) of matrix material only. The pebble has high mechanical integrity to withstand the drops and movement that are part of the function of the fuel form. The pebbles move continuously through the reactor during operation; as they exit the reactor, they are assessed for burnup and are then either returned to the reactor or sent to spent fuel. The reactor is continuously refueled and does not required downtime for refueling operations. The fuel burnup is modest (~10%) and the fuel-particle packing fraction is low (~10%).

2. The prismatic fuel element consists of many fuel compacts, which are right cylinders composed of fuel particles and matrix material roughly 12 mm in diameter by 50 mm long, inserted into deep holes drilled into graphite hexagonal prisms roughly 300 mm across the flats and 800 mm long and cemented into place. The compacts have relatively high packing fractions (~30–50%) and the fuel has a higher burnup( ~15–25%).

3. The actual fuel kernel to be used is not defined at present but is likely to be either UO2 or a two-phase mixture of UC/UC2 and UO2 known as UCO. The UO2 material has much better characterization but suffers from burnup limitations and a problem known as the amoeba affect, which causes the kernel to migrate within the particle in the presence of temperature gradients; this migration ultimately damages the particle coatings. The prismatic core is believed to require the use of UCO because of this effect and the higher burnup; the pebble core will probably use UO2.

Page 25: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

11

4. The fission-product transport rate from the fuel particle to the coolant may be different for the pebble than for the prismatic block because of differences in temperature and transport path. For the purposes of this PIRT, it will be assumed that the time in operation prior to the accident is long enough that both systems have come to equilibrium with respect to the fission products deposited within the reactor circuit.

5. Air and water ingress accidents will require a separate evaluation of the pebbles and blocks because of the large differences in chemical reactions rates between graphite block and the pebble matrix material.

3.3.2 Accident scenarios

Possible accidents were presented at the February 2007 PIRT meeting which outlined the expected behavior of the concept. The following three areas were discussed by the panel:

1. Normal operation, which, for the purposes of the FPT PIRT, established the fission-product circuit loading and distribution for the accident phase. In addition, it will be input for evaluating the occupational dose.

2. Anticipated transients, which were of less importance to the panel because a break in the pressure circuit boundary is generally necessary for the release of fission products. The transients can change the fission-product distribution within the circuit, however, because temperature changes, flow perturbations, and mechanical vibrations or shocks can result in fission-product movement. They could also cause releases from pressure relief valves. The other issue associated with these transients is the possible redistribution of fission products that increases maintenance dose rates. Finally, minor leaks are a pathway for the release of fission products.

3. Postulated accidents drew the majority of the panel’s attention because a breach in the pressure boundary is necessary to release fission products to the confinement. The accidents of interest involved a vessel or pipe break, a safety valve opening with or without sticking, or leak of some kind.

The following two generic scenarios were selected as the drivers for the accident [48]:

1. the pressurized loss-of-forced circulation (P-LOFC) accident; and 2. the depressurized loss-of-forced circulation (D-LOFC) accidents.

3.3.2.1 The P-LOFC accident

The reference case for P-LOFC is modeled on that for the GT-MHR and assumes a flow coast-down and scram with the passive reactor cavity cooling system (RCCS) operational for the duration of the event. The natural circulation of the pressurized helium coolant within the core tends to make core temperatures more uniform, lowering the peak temperatures, than would otherwise be the case for a depressurized core where the buoyancy forces would not establish significant recirculation flows. The chimney effect in P-LOFC events also tends to make the core (and vessel) temperatures higher near the top. Maximum vessel-head temperatures are typically limited by judiciously placed insulation, and the use of Alloy 800H for the core barrel allows for extra margin in that area. For the reference case, the peak fuel temperature of 1290ºC occurs at 24 h, and the maximum vessel temperature is 509ºC at 72 h (note: the reader should consider these and the following temperatures as representative values to estimate margins and not actual design values). In P-LOFCs, the peak fuel temperature is not a concern (well within the typical nominal limit for TRISO fuel ~1600ºC ); the major concern is more likely to be the maximum vessel temperature and the shift in peak heat load to near the top of the reactor cavity, resulting in the reactor axial distribution of maximum fuel temperature peaking toward the inlet (top of the core).

Page 26: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

12

Depending on the high-temperature capabilities of the vessel steel, some variations in vessel insulation strategies may be needed.

The parameter most likely to affect the P-LOFC outcome, assuming that the RCCS is functioning properly, is the emissivity controlling the radiation heat transfer between the vessel and RCCS (assumed to be 0.8 over the full range of normal-to-accident temperatures). For an assumed (unlikely) 25% decrease in both vessel and RCCS surface effective emissivities, the peak vessel temperature is 37ºC higher. The difference in peak fuel temperature is small (7ºC ), which is typical of the decoupling between the peak fuel and vessel temperature in LOFC events [48].

These temperature changes can cause some fission product redistribution, but the convective flows (weaker than the forced flow) are not expected to drive major fission-product redistribution. The major concern with the P-LOFC is how it may change the distribution of fission products prior to a pressure boundary breach as the event itself does not release fission products. If the P-LOFC results in a pressure-relief-valve opening with or without sticking, a fission-product transport path will be generated. This path is design specific as a filter may be incorporated into the exhaust circuit.

3.3.2.2 The D-LOFC accident

The D-LOFC reference case assumes a rapid depressurization along with a flow coast-down and scram with the passive RCCS operational. It also assumes that the depressurized coolant is helium (no air ingress). This event is also known as a “conduction-heat-up” (or “-cool-down”) accident, since the core effective conductivity is the dominant mechanism for the transfer of afterheat from the fuel to the reactor vessel. In the reference case, the maximum fuel temperature peaks at 1494ºC 53 h into the transient and the maximum vessel temperature (555ºC ) occurs at 81 h. For this case, the peak fuel (and vessel) temperatures occur near the core center rather than near the top as in the P-LOFC case, since the convection effects for atmospheric pressure helium are minimal [48].

There are several parameter variations of interest for this accident, which is generally considered to be the defining accident for determining the reference-case-accident peak fuel temperature. These variations are effective core graphite conductivity (which is a function of irradiation history, temperature, orientation, and whether or not annealing is accounted for), afterheat power versus time after shutdown, and the power-peaking factor distribution in the core after shutdown. If maximum vessel temperatures are of concern, emissivity effects should again be considered.

For variations from the reference case event, the sensitivity of peak fuel temperature for the various assumed parameter changes is as follows:

1. 20% decrease in core conductivity (including annealing effects): a 124°C increase in fuel maximum temperature.

2. 15% increase in afterheat: a 120°C increase in fuel maximum temperature. 3. 20% increase in maximum radial peaking factor: a 30°C increase in fuel maximum

temperature. For the maximum vessel temperatures, again the emissivities figure in most prominently. An

assumed 25% decrease in vessel and RCCS opposing surface emissivities results in an increase in maximum vessel temperature of 54ºC , while the increase in fuel maximum temperature is only 14ºC [48].

This event has a two-part impact on FPT. The first is the initial depressurization which releases fission products from the core by the physical shock of the event, any system vibrations, and the entrainment by the existing flow. This event can be the most important because some conceptual reactor building designs do not include a provision for filtering this rapid high-volume flow. Combustion of dust may add heat and more completely distribute the fission products in the confinement volume. The second

Page 27: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

13

part of interest is after the depressurization and the heat-up of the core and reactor system. The higher temperatures can cause the redistribution of fission products (and perhaps, some limited fuel failure depending on design and design margins); however, the driving force for the release of fission products is only the very weak thermal expansion of the gas. In addition, at this point in the accident, the building filters are expected to be operational in all designs.

The more extreme case of this accident is the significant and continued flow of air into the core, which is only possible with a major reactor building and reactor system fault that establishes a convective air path between the reactor vessel and the environment. In this case, high fuel temperatures are possible, high-fission product release is possible, and a convective path is available for the transport of material out of the building. Three mechanisms are available for the enhancement of fission product releases:

1. The locally increased temperatures due to graphite combustion can drive the movement of the volatile fission products such as cesium and if high enough and increase the amount of failed fuel and subsequent fuel releases.

2. The destruction of the graphite and matrix material releases the trapped fission products, which can then be carried along with the flow as particles, vapors, or aerosols.

3. The increased oxygen potential of the reactor environment may change the chemical forms of the fission products and surfaces they interact with.

Graphite oxidation with core consumption and possible collapse is a complex process which is highly dependent on the particular design, materials, and accident configuration. The key feature is the flow path and the amount of oxidizer available; the free flow of oxidizer must be stopped early in the accident to prevent serious fission-product releases from the core.

A more remote accident scenario is an intact sealed containment with the failure of the RCCS and the subsequent heat-driven decomposition of the nearby concrete, liberating H2O and CO2. These gases could react with the exposed core graphite (due to the pressure boundary failure), generating combustible gases that could pose a burning and thus overpressure hazard to the containment if air was part of the normal containment atmosphere [53].

As was noted above, historical designs and accident scenarios were used as the basis for this exercise; rather than focusing on the actual details of the scenario, the panel focused on the results of the scenarios that would significantly impact the release the fission products:

1. Large and small pressure boundary breaches. These breaks and leaks were assumed to have the potential to release not only the material entrained in the gas during normal operation but also material such as dust and fission products on metal surfaces. The main emphasis was on using normal operating conditions as the starting point and assuming that major fuel failure did not take place during the accident. However, if major fuel failure did take place during the accident, only the fission-product inventory available for release would change in the ranking; this would be supplied by the fuels material group as part of an accident scenario. Thus, this scenario is quite general as long as one has the steady-state fission-product inventory and distribution prior to the accident and is supplied information about additional fuel failures and their timing that may occur. A pressure-relief valve opening also falls into this category, but design-specific issues are more relevant because a specialized filter can be placed after the valve. Chemical attack, air or steam ingress, is also included in this scenario; however, the exact details are important for this situation because the core and fuel will be destroyed if the reactions are allows to run to completion.

2. Releases from the cleanup and hold-up systems. Breaks and leaks in these systems can release fission products to the confinement. These systems are only vaguely defined at the present time, but in addition to the historical inventory of inert gases and perhaps iodine, newer designs may include a facility for handling dust.

Page 28: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

14

It should be noted that spent fuel storage is also a potential area for fission-product release and at the present time is treated like a hold-up system. As the design matures, this area should be broken out as an issue by itself, especially if it has unique subsystems for controlling contamination and releases.

3.3.3 Significant radionuclides

Based on historical information, the important radionuclides were categorized into two groups, public dose drivers and operational and maintenance drivers. Tables 4 and 5 list the significant radionuclides and the characteristics of interest for the two cases. These tables should be understood in the light of the incomplete design.

At the present time, the most significant radionuclide for the contamination of the secondary side is tritium. This should be considered to be quite tentative as very little is known about any secondary circuit; however, tritium is known to permeate metals at high temperatures.

Table 4. Public dose radionuclides

Nuclide Characteristics 131I High inventory; high dose factor; high vapor pressure within HTGR circuit; effectively

diffuses in graphite; adsorbs strongly on metals—weakly on graphite and oxide layers; can react with paint in confinement to form organic iodide.

137Cs High inventory; high dose factor; high mobility in graphite; likely to be in metallic form in reactor circuit, likely to be oxide in confinement; fairly high volatility at reactor circuit temperatures; can adsorb or condense on particles (dust and aerosols).

90Sr Inventory in graphite; high dose factor; low mobility in graphite; likely to be present in dust; probably SrO in confinement.

3H Effluent releases (and potential contamination of hydrogen produced by the NGNP).

Table 5. Operation and maintenance dose radionuclides

Nuclide Characteristics 110mAg Believed to plate-out on turbine and heat exchangers; activation product; high diffusion

through fuel, matrix, and graphite; high energy gamma; may alloy with nickel based alloys; principal form is the metal which may transport as vapor, aerosol, or on dust.

137Cs and 134Cs Believed to plate out on turbine and heat exchangers, but much less so than silver. 90Sr Could be important in a dust collection system. 131I, 132I, and 132Te

Might be important for short-term maintenance issues in heat exchangers.

60Co Activation product of nickel, high-energy gamma, largely fixed, but may circulate in dust.

3.4 Step 4—Evaluation Criteria

Step 4 of the PIRT process involved the selection of figures of merit and determination of the component and phenomenological hierarchies. The following four figures of merit were selected:

1. Level 1 (Regulatory): Dose to control room and offsite location 2. Level 2 (System): Release to confinement/containment

Page 29: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

15

3. Level 3 (Component): Release into primary system 4. Level 4 (Sub-component): Release from graphite in fuel form

These figures of merit were then used as the basis to determine the release from the fuel outward. Four areas of concern implied by the figures of merit are as follows:

1. The inventory of the fission products outside of the fuel (due to defects, contamination, and in-service failures) and fission products that are released due to accident-driven fuel failures (designers assume this to be very small for design base accidents).

2. Total curies released into the confinement, which is composed of the fission products of radiological (dose) interest. These are not clearly identified at present but are expected to be the ones that have been historically identified such as I, Te, Cs, and Sr.

3. Total curies beyond confinement, which is composed of the relevant fission products that penetrate all the boundaries and travel into the environment.

4. Time evolution of the cumulative release(s), which is the history of the release(s) into the confinement and beyond the confinement into the environment.

3.5 Step 5—Knowledge Base

The analysis of FPT must involve all three phenomenological levels; the system level to define the specific scenario, the component level to determine the overall fluid flow and temperatures, and, finally, the local level to determine relevant material properties, chemical interactions, and fission-product mass (and dust) fluxes. The system and component levels may be thought of as setting the fluid flow and thermodynamic environment, while the local level determines the fluxes into and out of the components and surfaces. The knowledge base is detailed in the next section as it is an intrinsic part of evaluating the transport path.

Implicit in the needs of the VHTR FPT are the models to be used for the determination of the fission-product distribution in the core and reactor circuit during normal operating conditions as this is the starting point for the accident. During the accident, similar models will be necessary with the addition of more aggressive dust entrainment models and the chemical reaction models. Models for the FPT might include the following [6, 8, 11–15, 23–44]:

1. Transport models, both simple effective diffusion and more mechanistic, first-principle models, which are needed to model the redistribution from the fuel through the matrix and into the graphite.

2. Sorption models, both Langmuir and empirical, to model the transfer of radionuclidies from the surface of the graphite block or pebble into the coolant.

3. Chemical species, surface state of materials, and coolant chemistry as the sorption on surfaces is very sensitive to the chemical state of both the surface and fission product.

4. Graphite oxidation models for air- or moisture-ingress accidents. 5. Dust abrasion models to determine the dust generation during normal operation. 6. Dust deposition and re-entrainment models that can model the dust distribution in the reactor

circuit both prior to and during the accident. Vibration can result in continuous deposition and re-entrainment in circulating systems; also the shock, vibration, and acoustical noise of a high-pressure pipe break needs to be considered as a transport driver.

Appendix A contains some additional comments on transport modeling and issues that separate the VHTR from the more familiar LWR.

Page 30: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

16

3.6 Steps 6 through 8—Identify Phenomena and Rank

Table 6 details the fission-product pathway from the fuel surface and serves as a foundation for the phenomena identification process. Note that most transport mechanisms are in place during both normal operation and accident conditions; only confinement transport is exclusively accident related.

Tables 7 through 10 are the individual phenomenological breakdown and ranking of the more general items identified in Table 6. Table 7 defines the ranking scale, Table 8 defines the knowledge scale, and Table 9 details the model and code knowledge level (ability to conduct useful and practical computations). All are approximate in nature but serve to provide insight into the general status of the evaluation.

Table 10 is the collective panel ranking of the table with the number of panelists ranking the particular item High, Medium, or Low. Individual ranking are contained in Appendix B, and the overall panel result is discussed in the next section.

After the individual phenomena have been identified and ranked, an assessment of the state of knowledge (SOK) was formulated. In particular, areas requiring additional experiments and models are identified. This includes an overall panel consensus assessment for the scenarios considered. As is the case for ranking the importance of phenomena, a High (H), Medium (M) and Low (L) scale is used to rank the SOK relative to the phenomena in the context shown in Table 9. Again, individual rationales for the assigned SOK rankings are provided in the PIRT entries.

The ranking table applies to all three situations—normal operations, anticipated transients, and postulated accidents—because all three conditions require detailed knowledge of the local parameters of the reactor circuit to compute the physical and chemical balances required. The major differences that could exist among the three conditions are the local flows which could be radically different from normal, the core temperature distribution, and the entrainment of dust, generation of aerosols, and sorption of fission products on graphite and metals. However, for the most part, the same information is needed for each case; there appears to be no computational shortcuts or approximations that allow one to drastically reduce the required data or effort. The only two exceptions are the effort required for the confinement and the failures associated with the IHX. Under normal conditions, the confinement and the secondary side are free of fission products. These two cases are noted in the table.

Page 31: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

17

Tab

le 6

. Fi

ssio

n pr

oduc

t tra

nspo

rt p

athw

ays f

rom

the

fuel

par

ticle

surf

ace

ID

No.

T

rans

port

step

A

ccid

ent/n

orm

al

cond

ition

M

ajor

phe

nom

ena

Aff

ectin

g fa

ctor

s

1 Th

roug

h th

e ca

rbon

mat

rix

surr

ound

ing

the

parti

cle

Bot

h 1.

C

hem

isor

ptio

n on

the

carb

on

mat

rix

2.

Diff

usio

n th

roug

h m

atrix

1.

Fiss

ion-

prod

uct c

hem

ical

stat

e 2.

R

adia

tion

dam

age

3.

Mat

rix d

ensi

ty/q

ualit

y 4.

C

hem

ical

reac

tions

(im

purit

ies a

nd a

ttack

) 5.

Te

mpe

ratu

re

2 A

cros

s the

com

pact

/blo

ck g

ap

(pris

mat

ic) o

r the

car

bon

mat

rix o

f the

peb

ble

fuel

.

Bot

h 1.

V

apor

izat

ion

1.

Isot

herm

s for

mat

rix a

nd g

raph

ite

2.

Che

mic

al fo

rm

3.

Tem

pera

ture

3

Thro

ugh

the

grap

hite

blo

ck

(pris

mat

ic) o

r thr

ough

the

pebb

le o

uter

, unf

uele

d la

yer

Bot

h 1.

D

iffus

ion

thro

ugh

grap

hite

or

mat

rix o

uter

laye

r 2.

C

hem

isor

ptio

n on

gra

phite

1.

Fiss

ion

prod

uct c

hem

ical

stat

e 2.

R

adia

tion

dam

age

3.

Gra

phite

pro

perti

es

4.

Tem

pera

ture

5.

C

hem

ical

reac

tions

(im

purit

ies)

4

From

the

fuel

form

out

er

surf

ace

to th

e co

olan

t B

oth

1.

Vap

oriz

atio

n 2.

A

bras

ion

1.

Isot

herm

s for

gra

phite

and

mat

rix

2.

Rad

iatio

n da

mag

e 3.

C

hem

ical

form

4.

Te

mpe

ratu

re

5.

Gas

-pha

se c

once

ntra

tions

6.

M

ass t

rans

fer c

oeff

icie

nts

7.

Abr

asio

n fa

ctor

s

5 Tr

ansp

ort i

n th

e co

olan

t, ga

s sp

ecie

s, ae

roso

l, or

dus

t B

oth

1.

Che

mis

orpt

ion

of F

Ps o

n du

sts,

and

aero

sols

2.

D

ust d

epos

ition

and

re-s

uspe

nsio

n 3.

A

eros

ol p

hysi

cs

1.

Isot

herm

s for

mat

rix, g

raph

ite, m

etal

s 2.

Su

rfac

e qu

ality

3.

C

hem

ical

form

4.

Te

mpe

ratu

re

5.

Gas

-pha

se c

once

ntra

tions

6.

Fo

rmat

ion

of a

eros

ols

7.

Aer

osol

con

cent

ratio

ns a

nd e

ffec

ts su

ch a

s ag

glom

erat

ion

and

grow

th

8.

Dus

t for

mat

ion

mec

hani

sms a

nd ra

te

9.

Flow

forc

es o

n du

st a

nd a

eros

ols a

nd

vibr

atio

n

Page 32: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

6 (c

ontin

ued)

18

ID

No.

T

rans

port

step

A

ccid

ent/n

orm

al

cond

ition

M

ajor

phe

nom

ena

Aff

ectin

g fa

ctor

s

6 Fr

om c

oola

nt to

reac

tor c

ircui

t co

mpo

nent

s and

pow

er

conv

ersi

on e

quip

men

t

Bot

h 1.

Fi

ssio

n pr

oduc

t che

mis

orpt

ion,

es

peci

ally

on

met

als

2.

Dus

t pla

te-o

ut

1.

Isot

herm

s for

mat

rix, g

raph

ite, m

etal

s, es

peci

ally

for c

esiu

m a

nd si

lver

2.

Su

rfac

e qu

ality

of p

ower

con

vers

ion

equi

pmen

t 3.

C

hem

ical

form

4.

R

eact

ions

with

oxi

de fi

lm a

nd a

lloyi

ng

with

bas

e m

etal

. 5.

Te

mpe

ratu

re

6.

Gas

-pha

se c

once

ntra

tions

7.

Fo

rmat

ion

of a

eros

ols

8.

Aer

osol

con

cent

ratio

ns a

nd e

ffec

ts su

ch a

s ag

glom

erat

ion

and

grow

th

9.

Dus

t for

mat

ion

mec

hani

sms

7 Tr

ansp

ort o

ut o

f the

reac

tor

circ

uit d

urin

g no

rmal

op

erat

ion

(triti

um p

erm

eatio

n,

refu

elin

g)

Nor

mal

1.

Tr

itium

per

mea

tion,

leak

s 1.

Te

mpe

ratu

re

2.

Perm

eatio

n fa

ctor

3.

Pr

imar

y an

d se

cond

ary

cool

ant

conc

entra

tions

4.

Si

ze a

nd n

umbe

r of l

eaks

8

Tran

spor

t out

of t

he re

acto

r ci

rcui

t due

to p

ress

ure

boun

dary

bre

ech,

lift-

off,

vent

ing,

des

orpt

ion,

dus

t, ae

roso

ls

Acc

iden

t (s

ome

varia

tion

of a

de

pres

suriz

atio

n)

1.

Lift-

off o

f dus

ts, a

eros

ols,

mec

hani

cal e

ffec

ts, s

palla

tion

of

surf

ace

laye

rs

2.

Des

orpt

ion

3.

Iner

tial i

mpa

ctio

n 4.

R

e-su

spen

sion

1.

Dus

t re-

entra

inm

ent

2.

Surf

ace

laye

r cra

ckin

g an

d sp

alla

tion

3.

Effe

cts o

f mec

hani

cal v

ibra

tion

and

acou

stic

al n

oise

4.

C

hem

ical

form

5.

Te

mpe

ratu

re

6.

Form

atio

n an

d gr

owth

of a

eros

ols

7.

Aer

osol

s con

cent

ratio

ns

8.

Isot

herm

s on

met

al su

rfac

es

9.

Dus

t com

bust

ion

9 Tr

ansp

ort f

rom

the

conf

inem

ent t

o th

e en

viro

nmen

t

Acc

iden

t 1.

A

eros

ols,

dust

s,

2.

Gas

eous

iodi

ne

3.

Che

mic

al re

actio

n of

iodi

ne w

ith

surf

ace

4.

Leak

age

from

the

conf

inem

ent

build

ing

1.

Dus

t re-

entra

inm

ent

2.

Aer

osol

con

cent

ratio

ns

3.

Che

mic

al fo

rm

4.

Tem

pera

ture

5.

Fi

lter e

ffic

ienc

ies

6.

Rad

iatio

n en

viro

nmen

t 10

R

elea

se fr

om th

e cl

ean-

up

syst

em (a

nd sp

ent f

uel s

tora

ge)

Acc

iden

t 1.

D

esor

ptio

n fr

om c

lean

up sy

stem

co

mpo

nent

s 2.

Li

ft-of

f of d

usts

, aer

osol

s,

1.

Dus

t re-

entra

inm

ent

2.

Surf

ace

laye

r cra

ckin

g an

d sp

alla

tion

3.

Effe

cts o

f mec

hani

cal v

ibra

tion

and

Page 33: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

6 (c

ontin

ued)

19

ID

No.

T

rans

port

step

A

ccid

ent/n

orm

al

cond

ition

M

ajor

phe

nom

ena

Aff

ectin

g fa

ctor

s

mec

hani

cal e

ffec

ts, s

palla

tion

of

surf

ace

laye

rs

acou

stic

al n

oise

4.

C

hem

ical

form

5.

Te

mpe

ratu

re

6.

Form

atio

n of

aer

osol

s 7.

A

eros

ols c

once

ntra

tions

8.

Pr

oper

ties o

f cle

anup

syst

em c

ompo

nent

s. 9.

C

lean

up sy

stem

failu

re m

odes

and

loca

tion

of c

lean

up sy

stem

s 11

Tr

ansp

ort i

ssue

s ass

ocia

ted

with

the

IHX

N

orm

al

Acc

iden

t 1.

Tr

itium

per

mea

tion

2.

IHX

leak

s 3.

IH

X fa

ilure

s

1.

Tem

pera

ture

s 2.

M

ater

ials

3.

Su

rfac

e la

yers

4.

D

esig

n-sp

ecifi

c fa

ilure

mod

es

Page 34: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

20

Table 7. Phenomena importance ranking scale

Rank Definition Application outcomes High (H) Phenomenon has a controlling

impact on the Figure of Merit Experimental simulation and analytical modeling with a high degree of accuracy is critical

Medium (M) Phenomenon has a moderate impact on the Figure of Merit

Experimental simulation and/or analytical modeling with a moderate degree of accuracy

Low (L) Phenomenon has a minimal impact on the Figure of Merit

Modeling must be present to preserve functional dependencies

Table 8. State-of-knowledge (SOK) ranking scale

Rank Definition High (H) Experimental simulation and analytical modeling with a high degree of accuracy is

currently possible Medium (M) Experimental simulation and/or analytical modeling with a moderate degree of

accuracy is currently possible

Low (L) Experimental simulation and/or analytical modeling is currently marginal or not available

Table 9. Status of fission-product modeling ranking scale

Rank Definition

Adequate Existing codes and/or analytic models can be adapted to the problem with minimal effort

Minor mod Deficiencies exist within existing codes and/or analytic models, or modest, measurable effort is required to adapt them to the problem

Major need Useful codes and/or analytic models do not exist for this problem. Requires major development

Page 35: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

21

Tab

le 1

0. O

vera

ll PI

RT

ran

king

Thi

s tab

le g

ener

ally

app

lies t

o al

l cas

es—

norm

al, a

ntic

ipat

ed tr

ansi

ents

, and

acc

iden

ts.

Spec

ific

case

s are

not

ed.

Thi

s tab

le c

onta

ins a

sum

mar

y of

the

indi

vidu

al r

anki

ngs a

nd th

e A

pril

18, 2

007,

con

sens

us R

atio

nale

s.

See

App

endi

x B

for

deta

ils o

n in

divi

dual

ran

king

and

thei

r ad

ditio

n co

mm

ents

on

the

liste

d ra

tiona

les (

“Med

ium

–Hig

h” w

as ta

llied

as “

Med

ium

,” a

nd

“Med

ium

–Low

” w

as ta

llied

as “

Low

.” S

ome

min

or in

terp

olat

ion

was

req

uire

d w

hen

usin

g th

e re

orga

nize

d ta

ble)

. O

vera

ll, th

ere

was

gen

eral

ag

reem

ent w

ith o

nly

one

extr

eme

split

(Hig

hs a

nd L

ows)

—en

try

#49.

N

otes

: *d

enot

es n

eed

for i

nter

face

with

oth

er g

roup

s (m

ater

ials

, tra

nsie

nt sc

enar

ios)

IC

—in

itial

con

ditio

n, th

e re

sult

of lo

ng-te

rm n

orm

al o

pera

tion

Tran

s.—tr

ansi

ent a

nd a

ccid

ent c

ondi

tion

TF—

ther

mal

flui

ds

FP—

fissi

on p

rodu

cts

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P (H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

m

inor

mod

, maj

or

need

)

Cri

tical

initi

al a

nd/o

r bou

ndar

y co

nditi

on

1 D

ecay

hea

t and

tran

sien

t po

wer

leve

l 5–

Hig

h En

ergy

sour

ce d

rivin

g pr

oble

m (I

C a

nd T

rans

.) 5–

*Hig

h B

ound

ary

cond

ition

s ex

pect

ed fr

om T

F PI

RT

Ade

quat

e

2 M

ater

ial/s

truct

ure

prop

ertie

s 5–

Hig

h D

ensi

ty, v

isco

sity

, co

nduc

tivity

, etc

., im

porta

nt p

aram

eter

s in

calc

ulat

ions

(IC

and

Tr

ans.)

5–*M

ed (g

raph

ite):

Hig

h (s

teel

, con

cret

e)

Gra

phite

type

not

se

lect

ed, e

xpec

ted

from

mat

eria

l PI

RT

Min

or m

od (g

raph

ite)

Ade

quat

e (s

teel

, co

ncre

te)

3 G

raph

ite im

purit

y le

vels

4–

Med

ium

1–

Hig

h Im

purit

y re

actio

n w

ith

FP, n

ucle

ar g

raph

ite

expe

cted

to h

ave

low

im

purit

y le

vels

5–*H

igh

Will

be

mea

sure

d,

expe

cted

from

m

ater

ial P

IRT

Ade

quat

e

4 G

raph

ite g

eom

etry

5–

Hig

h C

ore

stru

ctur

e (d

esig

n in

form

atio

n)

1–M

ediu

m

4–H

igh

Wel

l kno

wn

for

IC

Ade

quat

e fo

r IC

M

ajor

Nee

d fo

r air

ingr

ess

Page 36: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

10

(con

tinue

d)

22

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P (H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

m

inor

mod

, maj

or

need

) 5

Ther

mal

-flu

id p

rope

rties

5–

Hig

h Te

mpe

ratu

re, p

ress

ure,

ve

loci

ty c

ompu

tatio

ns

(IC

and

Tra

ns.)

4–*M

ediu

m

1–*H

igh

Wel

l kno

wn

for

heliu

m,

unce

rtain

ty in

co

mpo

sitio

n of

ga

s mix

ture

s m

akes

gas

pr

oper

ty

calc

ulat

ion

mor

e di

ffic

ult,

expe

cted

fr

om T

F PI

RT

Ade

quat

e

6 G

as c

ompo

sitio

n 5–

Hig

h O

xyge

n po

tent

ial a

nd

chem

ical

act

ivity

4–

Med

ium

1–

Low

C

entra

l iss

ue fo

r ch

emic

al re

actio

n m

odel

ing,

FP

spec

iatio

n,

scen

ario

de

pend

ent

Ade

quat

e (d

epre

ssur

izat

ion)

M

ajor

nee

d (a

ir in

gres

s)

7 G

as fl

ow p

ath

prio

r, du

ring

and

post

acc

iden

t 5–

Hig

h In

form

atio

n ne

eded

to

mod

el a

ccid

ent (

IC a

nd

Tran

s.)

5–*S

ame

as T

F gr

oup

Nee

d to

co

ordi

nate

with

ot

her g

roup

s;

expe

cted

from

TF

PIR

T

Sam

e as

TF

grou

p

8 Te

mpe

ratu

re (s

truct

ure

and

gas)

and

pre

ssur

e di

strib

utio

n

5–H

igh

Info

rmat

ion

need

ed to

m

odel

acc

iden

t (IC

and

Tr

ans.)

5–H

igh

Nee

d to

co

ordi

nate

with

ot

her g

roup

s;

expe

cted

from

TF

PIR

T

Sam

e as

TF

grou

p

9 FP

pla

te-o

ut a

nd d

ust

dist

ribut

ion

unde

r nor

mal

op

erat

ion

5–H

igh

Star

ting

cond

ition

s 1–

Low

4–

Med

ium

Th

eory

and

m

odel

s lac

k sp

ecifi

cs

Maj

or n

eed

Page 37: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

10

(con

tinue

d)

23

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P (H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

m

inor

mod

, maj

or

need

) G

raph

ite a

nd c

ore

mat

eria

ls

10

Mat

rix p

erm

eabi

lity,

to

rtuos

ity

1–M

ediu

m

4–H

igh

Nee

ded

for f

irst p

rinci

ple

trans

port

mod

elin

g (I

C

and

Tran

s.)

4–*L

ow

1–*M

ediu

m

FP h

oldu

p as

ba

rrie

r, re

leas

e as

du

st; e

xpec

ted

from

mat

eria

l PI

RT.

Maj

or n

eed

11

FP tr

ansp

ort t

hrou

gh

mat

rix

5–H

igh

Effe

ctiv

e re

leas

e ra

te

coef

ficie

nt (e

mpi

rical

co

nsta

nt) a

s an

alte

rnat

ive

to fi

rst

prin

cipl

es (I

C a

nd

Tran

s.)

5–Lo

w

FP h

oldu

p as

ba

rrie

r, re

leas

e as

du

st; e

xpec

ted

from

mat

eria

l PI

RT

Maj

or n

eed

12

Fuel

blo

ck p

erm

eabi

lity,

to

rtuos

ity

1–M

ediu

m

4–H

igh

Nee

ded

for f

irst p

rinci

ple

trans

port

mod

elin

g (I

C

and

Tran

s.)

5–*M

ediu

m

Dep

ends

on

spec

ific

grap

hite

; ex

pect

ed fr

om

mat

eria

l PIR

T

Maj

or n

eed

13

FP tr

ansp

ort t

hrou

gh fu

el

bloc

k 5–

Hig

h Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t pr

inci

ples

(IC

and

Tr

ans.)

1–*L

ow

4– M

ediu

m

Dep

ends

on

spec

ific

grap

hite

; ex

pect

ed fr

om

mat

eria

l PIR

T

Maj

or n

eed

14

Ther

mal

(Sor

et)

diff

usio

n

5–Lo

w

Ther

mal

gra

dien

ts a

re

not l

arge

out

side

of f

uel

5–Lo

w

Littl

e da

ta

Not

req’

d

15

Bas

al p

lane

diff

usio

n 5–

Low

Po

rosi

ty is

pre

ferr

ed

trans

port

path

way

th

roug

h gr

aphi

te

5–M

ediu

m

Past

wor

k an

d lit

erat

ure

avai

labl

e N

ot re

q’d

Page 38: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

10

(con

tinue

d)

24

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P (H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

m

inor

mod

, maj

or

need

) 16

R

efle

ctor

(in

cont

act

w/fl

ow) p

erm

eabi

lity,

to

rtuos

ity

5–Lo

w

Nee

ded

for f

irst p

rinci

ple

trans

port

mod

elin

g (I

C

and

Tran

s.)

5–*M

ediu

m

Dep

ends

on

spec

ific

grap

hite

; ex

pect

ed fr

om

mat

eria

l PIR

T

Min

or m

od

17

FP tr

ansp

ort t

hrou

gh

refle

ctor

(in

cont

act

w/fl

ow)

5–Lo

w

Effe

ctiv

e re

leas

e ra

te

coef

ficie

nt (e

mpi

rical

co

nsta

nt) a

s an

alte

rnat

ive

to fi

rst

prin

cipl

es (I

C a

nd

Tran

s.)

1–*L

ow

4–*M

ediu

m

Dep

ends

on

spec

ific

grap

hite

; ex

pect

ed fr

om

mat

eria

l PIR

T

Min

or m

od

18

Sorb

tivity

gra

phite

5–

Hig

h C

an d

eter

min

e ho

ldup

an

d re

leas

e of

FP

(IC

and

Tr

ans.)

5–M

ediu

m

His

toric

al d

ata,

ne

ed sp

ecifi

c in

form

atio

n on

gr

aphi

te a

nd

radi

atio

n ef

fect

s

Min

or m

od

19

Flue

nce

effe

ct o

n tra

nspo

rt in

gra

phite

5–

Hig

h In

fluen

ces t

rans

port,

ch

emic

al re

activ

ity

5–M

ediu

m

His

toric

al d

ata,

ne

ed sp

ecifi

c in

form

atio

n on

gr

aphi

te a

nd

radi

atio

n ef

fect

s

Maj

or n

eed

20

C-1

4, C

l-36,

Co-

60

gene

ratio

n an

d in

vent

ory

4–Lo

w

1–M

ediu

m

Rad

iois

otop

e ge

nera

ted

from

impu

ritie

s, m

ight

be

com

e op

erat

iona

l iss

ue

(IC

)

5–M

ediu

m

His

toric

al d

ata,

Pe

ach

Bot

tom

H

TGR

Min

or m

od, s

ensi

tive

to g

raph

ite h

andl

ing

21

Air

atta

ck o

n gr

aphi

te

5–H

igh

Gra

phite

er

osio

n/ox

idat

ion,

Fe/

Cs

cata

lysi

s lib

erat

ing

FPs

(Tra

ns.)

1–Lo

w

4–M

ediu

m

His

toric

al d

ata

Maj

or n

eed

for s

ever

e ac

cide

nts

22

Stea

m a

ttack

on

grap

hite

5–

Hig

h If

cre

dibl

e so

urce

of

wat

er p

rese

nt; d

esig

n de

pend

ent (

Tran

s.)

1–Lo

w

4–M

ediu

m

His

toric

al d

ata

Maj

or n

eed

for s

ever

e ac

cide

nts

Page 39: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

10

(con

tinue

d)

25

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P (H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

m

inor

mod

, maj

or

need

) F

issi

on p

rodu

ct tr

ansp

ort i

n re

acto

r coo

lant

syst

em a

nd c

onfin

emen

t

23

FP sp

ecia

tion

in

carb

onat

ious

mat

eria

l 5–

Hgh

C

hem

ical

form

in

grap

hite

aff

ects

tran

spor

t (I

C a

nd T

rans

.)

5–Lo

w

Unc

erta

in a

nd/o

r in

com

plet

e M

ajor

nee

d

24

FP sp

ecia

tion

durin

g m

ass t

rans

fer

5–H

igh

Che

mic

al c

hang

e ca

n al

ter v

olat

ility

1–

Low

4–

Med

ium

H

isto

rical

dat

a;

need

spec

ific

info

rmat

ion.

Goo

d fo

r met

als,

oxid

es.

Unc

erta

in fo

r ca

rbid

es a

nd

carb

onyl

s.

Maj

or n

eed

25

“Kno

ck-a

long

” 5–

Low

A

lpha

reco

il tra

nspo

rt of

de

posi

ted

parti

cles

on

surf

aces

slow

com

pare

d to

flui

d flo

w tr

ansp

ort

5–M

ediu

m

Stud

ied

in

actin

ide-

bear

ing

parti

cles

Ade

quat

e

26

Dus

t gen

erat

ion

5–H

igh

Vec

tor f

or F

P tra

nspo

rt;

poss

ibili

ty o

f hig

h m

obili

ty

5–M

ediu

m

Lim

ited

expe

rienc

e; la

ck

spec

ific

syst

em

info

rmat

ion

Maj

or n

eed,

impo

rt fr

om o

ther

gro

ups

27

(De)

Abs

orpt

ion

on d

ust

5–H

igh

Prov

ides

cop

ious

surf

ace

area

for F

P ab

sorp

tion

2–

Low

3–

Med

ium

Li

mite

d ex

perie

nce,

lack

sp

ecifi

c de

tails

Maj

or n

eed

28

H-3

gen

erat

ion

and

circ

ulat

ing

cool

ant

inve

ntor

y

4–M

ediu

m

1–H

igh

Rad

iois

otop

e, a

n is

sue

with

ope

ratio

nal r

elea

se.

H-3

pro

duct

ion

from

He-

3 in

coo

lant

, ter

nary

fis

sion

, and

Li-6

in

grap

hite

5–M

ediu

m

His

toric

al d

ata;

Pe

ach

Bot

tom

H

TGR

Min

or m

od

Page 40: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

10

(con

tinue

d)

26

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P (H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

m

inor

mod

, maj

or

need

) 29

A

g-11

0m g

ener

atio

n,

trans

port

5–H

igh

(O&

M)

5–Lo

w (r

elea

se)

Rad

iois

otop

e, si

gnifi

cant

O

&M

dos

e on

coo

l, m

etal

lic c

ompo

nent

s

5–Lo

w

Lim

ited

data

, un

know

n tra

nspo

rt m

echa

nism

Maj

or n

eed

30

Oth

er a

ctiv

atio

n pr

oduc

ts

(e.g

., C

s-13

4, M

n-55

, Fe

-56)

5–Lo

w

Rad

iois

otop

es, p

oten

tial

O&

M d

ose

5–M

ediu

m

Expe

rienc

e,

limite

d in

form

atio

n

Min

or m

od

31

Nuc

leat

ion

5–

Med

ium

U

ncle

ar d

ue to

ext

rem

ely

low

FP

vapo

r co

ncen

tratio

n an

ticip

ated

5–M

ediu

m

His

toric

al d

ata

Maj

or n

eed

32

Aer

osol

gro

wth

1–

Med

ium

4–

Hig

h Lo

w c

once

ntra

tion

grow

th c

an le

ad to

hig

h-sh

ape

fact

ors a

nd

unus

ual s

ize

dist

ribut

ion

5–Lo

w

Reg

ime

has n

ot

been

stud

ied

prev

ious

ly

Maj

or n

eed

33

Surf

ace

roug

hnes

s 5–

Med

ium

A

ffec

ts a

eros

ol

depo

sitio

n 1–

5 m

icro

n pa

rticl

es (I

C a

nd T

rans

.)

5–M

ediu

m

Initi

al in

form

atio

n fr

om

man

ufac

ture

r; ev

olut

ion

of

surf

ace

roug

hnes

s du

ring

oper

atio

n no

t wel

l kno

wn

Min

or m

od

34

Coo

lant

che

mic

al

inte

ract

ion

with

surf

aces

5–

Hig

h C

hang

es o

xyge

n an

d ca

rbon

pot

entia

l whi

ch

can

affe

ct n

atur

e an

d qu

antit

y of

sorb

ed

spec

ies (

IC a

nd T

rans

.)

5–M

ediu

m

Surf

ace

prop

ertie

s ar

e cr

itica

l; ne

ed

allo

y da

ta

Maj

or n

eed

35

FP d

iffus

ivity

, sor

btiv

ity

in n

ongr

aphi

te su

rfac

es

5–H

igh

Det

erm

ines

FP

loca

tion

durin

g op

erat

ion;

act

s as

a tra

p du

ring

trans

ient

(I

C a

nd T

rans

.)

5–Lo

w

Littl

e in

form

atio

n on

mat

eria

ls o

f in

tere

st

Maj

or n

eed

Page 41: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

10

(con

tinue

d)

27

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P (H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

m

inor

mod

, maj

or

need

) 36

A

eros

ol/d

ust d

epos

ition

5–

Hig

h G

ravi

tatio

nal,

iner

tial,

ther

mop

hore

sis,

elec

trost

atic

, diff

usio

nal,

turb

opho

resi

s (Tr

ans.)

5–M

ediu

m

Rea

sona

bly

wel

l-de

velo

ped

theo

ry

of a

eros

ol

depo

sitio

n by

m

ost m

echa

nism

s ex

cept

iner

tial

impa

ct in

com

plex

ge

omet

ries;

ap

plic

abili

ty to

N

GN

P un

clea

r

Min

or m

od

37

Aer

osol

/dus

t bou

nce,

br

eaku

p du

ring

depo

sitio

n

4–M

ediu

m

1–H

igh

Can

mod

ify d

epos

ition

pr

ofile

and

susp

ende

d ae

roso

l dis

tribu

tion

4–Lo

w

1–M

ediu

m

Theo

ry, d

ata,

and

m

odel

s lac

king

M

ajor

nee

d

38

Res

uspe

nsio

n 5–

Hig

h Fl

ow/v

ibra

tion

indu

ced,

sa

ltatio

n; m

echa

nica

l fo

rces

can

rele

ase

FPs

from

pip

e su

rfac

e la

yers

/film

s (Tr

ans.)

4–Lo

w

1–M

ediu

m

Lack

of d

ata

and

mod

els f

or

antic

ipat

ed

cond

ition

s

Maj

or n

eed

39

Con

finem

ent a

eros

ol

phys

ics

5–H

igh

Ana

logo

us to

LW

R

aero

sol b

ehav

ior/p

hysi

cs,

delta

-T, c

hem

istry

; im

porta

nt h

oldu

p m

echa

nism

(Tra

ns.)

5–M

ediu

m

Rea

sona

bly

wel

l-de

velo

ped

theo

ry

of a

eros

ol

beha

vior

; ap

plic

abili

ty to

N

GN

P un

clea

r

Min

or m

od

40

Dus

t dep

ositi

on o

n ve

ssel

and

RC

CS

hard

war

e

5–Lo

w

Not

impo

rtant

for F

P tra

nspo

rt bu

t may

aff

ect

radi

ativ

e he

at tr

ansf

er in

re

acto

r cav

ity

5–Lo

w

Ver

y lim

ited

data

M

ajor

nee

d

Page 42: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

10

(con

tinue

d)

28

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P (H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

m

inor

mod

, maj

or

need

) 41

C

orro

sion

pro

duct

s 5–

Low

Sp

alle

d su

rfac

e fil

ms;

lo

w c

orro

sion

en

viro

nmen

t (I

C a

nd T

rans

.)

5–H

igh

Past

exp

erie

nce

Ade

quat

e

42

Eros

ion

prod

ucts

, no

ncar

bon

5–Lo

w

Low

con

cent

ratio

n of

co

arse

mat

eria

ls (I

C a

nd

Tran

s.)

5–Lo

w

Lack

of d

esig

n in

form

atio

n;

conf

igur

atio

n an

d m

ater

ials

spec

ific

Ade

quat

e

43

Was

h-of

f 5–

Hig

h If

cre

dibl

e so

urce

of

wat

er p

rese

nt; d

esig

n de

pend

ent (

Tran

s.)

5–M

ediu

m

Som

e ex

perim

enta

l dat

a av

aila

ble

Min

or m

od

44

Failu

re m

odes

of

auxi

liary

syst

ems (

e.g.

, ga

s cle

anup

, hol

dup,

re

fuel

ing)

5–M

ediu

m

Pote

ntia

l rel

ease

due

to

failu

re (T

rans

.) 5–

Med

ium

D

esig

n sp

ecifi

c;

have

exp

erie

nce

from

oth

er d

esig

ns

Min

or m

od

45

Rad

ioly

sis e

ffec

ts in

co

nfin

emen

t 5–

Hig

h FP

(e.g

., I,

Ru,

Te)

ch

emis

try, p

aint

ch

emis

try (d

epen

dent

on

conf

inem

ent r

adia

tion

leve

l) (T

rans

.)

5–M

ediu

m

LWR

exp

erie

nce

and

data

M

inor

mod

46

Filtr

atio

n 5–

Hig

h Tr

aditi

onal

pas

sive

ch

arco

al/H

EPA

(Tra

ns.)

5–H

igh

His

toric

al

expe

rienc

e A

dequ

ate

47

Prod

uctio

n/co

mbu

stio

n of

flam

mab

le g

as

5–M

ediu

m

CO

, H2 p

rodu

ctio

n is

sues

, IH

X se

cond

ary-

prim

ary

leak

, pot

entia

l re

susp

ensi

on a

nd

chem

ical

tran

sfor

mat

ion

of F

Ps (T

rans

.)

1–M

ediu

m

4–H

igh

His

toric

al

expe

rienc

e A

dequ

ate

Page 43: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

10

(con

tinue

d)

29

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P (H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

m

inor

mod

, maj

or

need

) 48

C

ombu

stio

n of

dus

t in

conf

inem

ent

5–H

igh

Sour

ce o

f hea

t and

di

strib

utio

n of

FPs

with

in

con

finem

ent

1–Lo

w

4–M

ediu

m

ITER

dat

a M

ajor

nee

d

49

NG

NP-

uniq

ue le

akag

e pa

th b

eyon

d co

nfin

emen

t 5–

Hig

h IH

X to

seco

ndar

y si

te

cont

amin

atio

n; c

ould

be

risk

dom

inan

t (Tr

ans.)

1–Lo

w

4–H

igh

Con

tinge

nt o

n sp

ecifi

c de

sign

kn

owle

dge

Min

or m

od

50

Con

finem

ent l

eaka

ge

path

, rel

ease

rate

thro

ugh

pene

tratio

ns

5–H

igh

Cab

le/p

ipe

pene

tratio

ns,

crac

ks, h

oles

, HV

AC

(T

rans

.)

5–M

ediu

m

Bui

ldin

g le

akag

e ex

perie

nce,

des

ign

spec

ific

Ade

quat

e

51

Cab

le p

yrol

ysis

, fire

5–

Hig

h So

ot g

ener

atio

n an

d ch

ange

s to

iodi

ne

chem

istry

5–M

ediu

m

LWR

exp

erie

nce

Maj

or n

eed

52

Pres

sure

-rel

ief-

valv

e fil

ter

5–Lo

w

Ope

ning

of t

he re

lief

valv

e ge

nera

tes a

tra

nspo

rt pa

th th

at m

ay

be fi

ltere

d; d

epen

ds o

n de

sign

5–H

igh

Air

clea

ning

te

chno

logy

A

dequ

ate

53

Rec

ritic

ality

(slo

w)

5–H

igh

Add

ition

al th

erm

al lo

ad

to fu

el. I

ncre

ases

sour

ce

but n

ot e

xpec

ted

to a

ffec

t tra

nspo

rt pa

th.

5–M

ediu

m

Hea

t loa

d ea

sily

co

mpu

ted

with

ex

istin

g to

ols;

ef

fect

on

fissi

on

prod

ucts

not

co

mpl

etel

y kn

own

Min

or m

od

54

Fuel

-dam

agin

g R

IA

5–H

igh

An

inte

nse

puls

e co

uld

dam

age

fuel

. In

crea

ses

sour

ce b

ut n

ot e

xpec

ted

to a

ffec

t tra

nspo

rt pa

th

5–M

ediu

m

Som

e da

ta e

xist

s, bu

t out

side

of

expe

cted

acc

iden

t en

velo

pe

Min

or m

od

Page 44: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

10

(con

tinue

d)

30

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P (H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

m

inor

mod

, maj

or

need

) 55

A

rgon

act

ivat

ion

in

reac

tor c

avity

5–

Hig

h (n

orm

al

oper

atio

n)

Air

in c

avity

act

ivat

ed b

y ne

utro

n le

akag

e an

d ca

n es

cape

to e

nviro

nmen

t

5–H

igh

Easi

ly c

ompu

ted

with

exi

stin

g to

ols

Ade

quat

e

56

Red

istri

butio

n of

fiss

ion

prod

ucts

due

to c

ontro

l ro

d m

ovem

ent

5–Lo

w

Arti

cula

ted

cont

rol r

od

join

ts c

an c

olle

ct a

nd

redi

strib

ute

fissi

on

prod

ucts

5–Lo

w

Spec

ifics

on

CR

D

hous

ing

and

artic

ulat

ed S

iC

com

posi

te

hous

ing

TBD

Min

or m

od

Page 45: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

31

The crucial information that is required to begin an accident analysis is the initial condition (IC), the situation prior to the accident. It is this situation that will set the basic source term for a depressurization release. Unlike the LWR case, massive fuel failure is not anticipated during the course of the accident (unless unlimited air ingress occurs); any incremental fuel failure is anticipated to occur after the depressurization is complete; thus, the late accident release driver is then reduced because the major driving term, helium pressure, is gone due to the leak or break. The driving terms later in the accident are the weak flows driven by temperature and atmospheric variations. In addition, some designs may filter the later releases, but not all designs may filter the main source of dust and fission-product aerosols during the initial (large volume and short duration) depressurization.

If an air or moisture ingress accident occurs with an unimpeded flow path and is allowed to run to completion, high levels of fuel failure due to high temperatures are possible. In this case, large fission-product releases can occur later in the accident and the convective flows will carry the fission products outside the core.

3.7 Step 9—Document PIRT—Summary

The panel discussions allowed the assembly of the desired ranking table; however, it must be noted that the FPT issue is a consequence of an accident scenario and not the accident driver. Depending on the design of a confinement or containment, the impact of a pressure boundary breach can be minimized if a modest, but not excessively large, fission-product attenuation factor can be introduced into the release path. This exercise has identified a host of material properties, thermofluid states, and physics models that must be collected, defined, and understood to evaluate this attenuation factor.

Table 11 is a condensed version of Table 10, containing only those items with at least one ranking of high importance and one ranking of low knowledge. An expanded rationale column has been added to more completely explain the issues and why they were ranked in this manner. Because of the small allowable releases during a depressurization from this reactor type (due to a vented confinement), dust and aerosol issues are important even though the amounts of fission products involved may be modest (compared to an LWR accident). Also, the mechanical impact of the failure needs to be assessed because it can re-entrain dust as well as generate particles by spalling off internal surface layers. The mechanical shock issue has seen less emphasis in the gas reactor transport literature, and NUREG-0800 specifically calls for the evaluation of “pipe whip” issues.

The reader should be cautioned that merely selecting phenomena based on high importance and low knowledge may not capture the true uncertainty of the situation. This is because a transport path is composed of several serial linkages, each with its own uncertainty. The propagation of a chain of modest uncertainties can lead to a very large uncertainty at the end of a long path, resulting in a situation that is of little regulatory value.

Page 46: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

32

Tab

le 1

1. S

elec

ted

PIR

T it

ems f

rom

Tab

les 1

0 th

at h

ave

at le

ast o

ne h

igh

impo

rtan

ce a

nd lo

w k

now

ledg

e ra

nkin

g

Not

es:

*den

otes

nee

d fo

r int

erfa

ce w

ith o

ther

gro

ups (

mat

eria

ls, t

rans

ient

scen

ario

s)

IC—

initi

al c

ondi

tion,

the

resu

lt of

long

term

nor

mal

ope

ratio

n Tr

ans.—

tran

sien

t and

acc

iden

t con

ditio

n TF

—th

erm

al fl

uids

FP

—fis

sion

pro

duct

s

ID

No.

Is

sue

(phe

nom

ena,

pro

cess

, ge

omet

ry c

ondi

tion)

Im

port

ance

for

NG

NP

(Hig

h, M

ediu

m, L

ow)

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

6 G

as c

ompo

sitio

n 5–

Hig

h 4–

Med

ium

1–

Low

O

xyge

n po

tent

ial a

nd c

hem

ical

act

ivity

are

cen

tral i

ssue

s for

ch

emic

al re

actio

n m

odel

ing

and

FP sp

ecia

tion.

Vol

atili

ty o

f FPs

ca

n de

pend

on

chem

ical

form

and

oxi

dizi

ng c

ondi

tions

will

cau

se

mat

rix a

nd g

raph

ite d

amag

e le

adin

g to

the

rele

ase

of c

onta

ined

FP

s. H

oldu

p of

FPs

on

met

al su

rfac

es c

an d

epen

d on

surf

ace

oxid

atio

n st

ate.

Thi

s is s

cena

rio d

epen

dent

. C

an in

fluen

ce th

e IC

du

e to

gas

impu

ritie

s. M

ost n

eede

d fo

r the

air

ingr

ess a

ccid

ent.

9 FP

Pla

te-o

ut a

nd d

ust

dist

ribut

ion

unde

r nor

mal

op

erat

ion

5–H

igh

1–Lo

w

4–M

ediu

m

The

plat

e-ou

t and

dus

t dis

tribu

tion

form

the

IC fo

r an

acci

dent

. Th

eory

and

mod

els l

ack

spec

ifics

; mus

t be

coup

led

with

flow

and

m

echa

nica

l mod

els a

s hig

h de

posi

tion

area

s sub

ject

ed to

larg

e ch

ange

s in

flow

, tem

pera

ture

, and

mec

hani

cal s

hock

/vib

ratio

n ar

e ca

ndid

ates

for r

e-en

train

men

t dur

ing

an a

ccid

ent.

10

Mat

rix p

erm

eabi

lity,

to

rtuos

ity

1–M

ediu

m

4–H

igh

4–*L

ow

1–*M

ediu

m

Nee

ded

for f

irst p

rinci

ple

trans

port

mod

elin

g (I

C a

nd T

rans

) and

fu

nctio

ns a

s FP

hold

up b

arrie

r for

less

vol

atile

FPs

(bot

h in

fuel

fo

rm a

nd a

s dus

t). S

ome

form

of f

airly

com

preh

ensi

ve m

odel

ov

er th

e co

nditi

ons o

f int

eres

t is n

eede

d. N

ote

that

this

aff

ects

FP

dust

(peb

ble

bed)

mod

elin

g as

wel

l. Se

e ite

m 1

1 be

low

.

Page 47: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

11

(con

tinue

d)

33

ID

No.

Is

sue

(phe

nom

ena,

pro

cess

, ge

omet

ry c

ondi

tion)

Im

port

ance

for

NG

NP

(Hig

h, M

ediu

m, L

ow)

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

11

FP tr

ansp

ort t

hrou

gh m

atrix

5–

Hig

h 5–

Low

O

nce

thro

ugh

the

parti

cle,

the

mat

rix is

the

first

bar

rier (

note

that

pe

bble

s are

larg

ely

mat

rix);

it al

so c

olle

cts F

Ps a

s dus

t. E

ffec

tive

rele

ase

rate

coe

ffic

ient

(em

piric

al c

onst

ant)

as a

n al

tern

ativ

e to

fir

st p

rinci

ples

(IC

and

Tra

ns) m

ay b

e m

ore

tract

able

. M

atrix

ho

ldup

can

be

impo

rtant

for t

he le

ss v

olat

ile F

Ps.

Dus

t in

the

PBM

R m

ay b

e la

rgel

y co

mpo

sed

of m

atrix

, so

this

issu

e w

ill

affe

ct d

ust F

P m

odel

ing

as w

ell.

13

FP tr

ansp

ort t

hrou

gh fu

el

bloc

k 5–

Hig

h 1–

*Low

4–

*Med

ium

G

raph

ite c

an o

ffer

subs

tant

ial a

ttenu

atio

n to

the

trans

port

of F

Ps

and

hold

up

the

less

vol

atile

one

s. E

ffec

tive

rele

ase

rate

co

effic

ient

(em

piric

al c

onst

ant)

as a

n al

tern

ativ

e to

firs

t prin

cipl

es

(IC

and

Tra

ns) m

ay b

e m

ore

tract

able

but

cou

ld b

e hi

ghly

de

pend

ent o

n th

e ty

pe o

f gra

phite

. Im

porta

nt fo

r pris

mat

ic c

ore

beca

use

of th

e se

ries p

ath.

Abs

orpt

ion

in g

raph

ite b

lock

s is

desi

rabl

e to

that

in d

ust b

ecau

se o

f les

s mob

ility

.

21

Air

atta

ck o

n gr

aphi

te

5–H

igh

1–Lo

w

4–M

ediu

m

Gra

phite

ero

sion

/oxi

datio

n ca

n re

leas

e th

e co

ntai

ned

FPs a

nd

chan

ge th

e ch

emic

al fo

rm o

f the

FPs

as w

ell a

s wea

ken

the

core

an

d da

mag

e th

e fu

el.

Issu

es su

ch a

s Fe/

Cs c

atal

ysis

can

cha

nge

pore

stru

ctur

e, le

adin

g to

gre

ater

FP

rele

ase.

Som

e hi

stor

ical

dat

a is

ava

ilabl

e, b

ut th

e ve

ry sm

all a

ccep

tabl

e re

leas

e fr

actio

n m

ay

requ

ire m

ore

deta

il. M

ajor

nee

d fo

r sev

ere

acci

dent

s.

22

Stea

m a

ttack

on

grap

hite

5–

Hig

h 1–

Low

4–

Med

ium

If

cre

dibl

e so

urce

of w

ater

are

pre

sent

, con

tain

ed F

Ps c

an b

e re

leas

ed w

ith p

robl

ems s

imila

r to

abov

e; th

is is

des

ign

depe

nden

t an

d m

uch

less

of a

pro

blem

for a

hel

ium

-onl

y sy

stem

. M

ajor

ne

ed fo

r sev

ere

acci

dent

s.

23

FP sp

ecia

tion

in c

arbo

natio

us

mat

eria

l 5–

Hig

h 5–

Low

Th

e ch

emic

al fo

rm o

f the

FPs

in g

raph

ite a

nd m

atrix

mat

eria

l af

fect

s tra

nspo

rt an

d ho

ld u

p un

der b

oth

IC a

nd a

ccid

ents

. U

ncer

tain

and

/or i

ncom

plet

e in

form

atio

n in

this

are

a. T

he h

ighe

r te

mpe

ratu

res i

n th

e V

HTR

may

influ

ence

this

. M

ajor

nee

d as

ch

emic

al fo

rms s

trong

ly in

fluen

ce tr

ansp

ort.

Page 48: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

11

(con

tinue

d)

34

ID

No.

Is

sue

(phe

nom

ena,

pro

cess

, ge

omet

ry c

ondi

tion)

Im

port

ance

for

NG

NP

(Hig

h, M

ediu

m, L

ow)

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

24

FP sp

ecia

tion

durin

g m

ass

trans

fer

5–H

igh

1–Lo

w

4–M

ediu

m

Che

mic

al c

hang

e ca

n al

ter F

P vo

latil

ity. T

here

is so

me

hist

oric

al

data

, but

spec

ific

data

may

be

need

ed fo

r the

VH

TR.

Ther

e ap

pear

s to

be g

ood

info

rmat

ion

for m

etal

s and

oxi

des.

Unc

erta

in

for c

arbi

des a

nd c

arbo

nyls

. N

eed

to d

eter

min

e th

e im

porta

nce

of

the

issu

e.

27

(De)

Abs

orpt

ion

on d

ust

5–H

igh

2–Lo

w

3–M

ediu

m

Dus

t pro

vide

s cop

ious

surf

ace

area

for F

P ab

sorp

tion,

and

the

high

mob

ility

of d

ust a

llow

s the

tran

spor

t of F

Ps th

roug

hout

the

reac

tor s

yste

m.

Can

be

a m

echa

nism

that

wor

ks in

par

alle

l with

FP

vol

atili

ty fo

r the

dis

tribu

tion

of F

Ps.

Lim

ited

expe

rienc

e; la

ck

spec

ific

deta

ils.

Som

e da

ta fr

om A

VR

.

29

Ag-

110m

gen

erat

ion,

tra

nspo

rt 5–

Hig

h (O

&M

) 5–

Low

(rel

ease

) 5–

Low

B

oth

Ag

(and

Cs)

can

driv

e a

sign

ifica

nt O

&M

dos

e on

pow

er

conv

ersi

on a

nd h

eat e

xcha

nger

equ

ipm

ent.

Lim

ited

data

; un

know

n tra

nspo

rt m

echa

nism

. M

ay a

lloy

with

met

al

com

pone

nts a

nd m

ake

deco

ntam

inat

ion

diff

icul

t. P

ossi

ble

larg

e im

pact

on

mai

nten

ance

shie

ldin

g.

32

Aer

osol

gro

wth

1–

Med

ium

4–

Hig

h 5–

Low

Lo

w a

eros

ol c

once

ntra

tion

and

dry

envi

ronm

ent c

an re

sult

in th

e gr

owth

of p

artic

les w

ith h

igh

shap

es fa

ctor

s and

unu

sual

size

di

strib

utio

n. R

egim

e ha

s not

bee

n st

udie

d pr

evio

usly

, and

resu

lts

need

to b

e de

term

ined

to a

sses

s im

pact

. V

ente

d co

nfin

emen

t m

akes

eve

n m

odes

t aer

osol

con

cent

ratio

ns im

porta

nt.

35

FP d

iffus

ivity

, sor

btiv

ity in

no

ngra

phite

surf

aces

5–

Hig

h 5–

Low

Th

ese

fact

ors d

eter

min

e FP

loca

tion

durin

g no

rmal

ope

ratio

n an

d ac

t as t

raps

dur

ing

trans

ient

con

ditio

ns.

Can

impa

ct O

&M

as w

ell

as a

ccid

ent d

oses

. Pa

st w

ork

has e

xam

ined

som

e m

etal

s, bu

t litt

le

info

rmat

ion

may

be

avai

labl

e fo

r the

mat

eria

ls a

nd te

mpe

ratu

res

of in

tere

st.

Cou

ld b

e se

nsiti

ve to

the

surf

ace

oxid

atio

n st

ate.

M

ajor

nee

d fo

r mod

elin

g th

e re

acto

r circ

uit.

37

Aer

osol

/dus

t bou

nce,

bre

akup

du

ring

depo

sitio

n 4–

Med

ium

1–

Hig

h 4–

Low

1–

Med

ium

A

eros

ol b

ehav

ior c

an m

odify

dep

ositi

on p

rofil

e an

d th

e su

spen

ded

aero

sol d

istri

butio

n—th

eory

, dat

a, a

nd m

odel

s lac

king

. B

ecau

se o

f the

smal

l acc

epta

ble

rele

ases

due

to th

e ve

nted

co

nfin

emen

t opt

ion,

aer

osol

s and

dus

ts ta

ke o

n an

exa

gger

ated

tra

nspo

rt im

porta

nce.

Mec

hani

cal i

ssue

s suc

h as

vib

ratio

n an

d m

echa

nica

l sho

cks n

eed

to b

e ta

ken

into

con

side

ratio

n as

wel

l.

Page 49: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

11

(con

tinue

d)

35

ID

No.

Is

sue

(phe

nom

ena,

pro

cess

, ge

omet

ry c

ondi

tion)

Im

port

ance

for

NG

NP

(Hig

h, M

ediu

m, L

ow)

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

38

Res

uspe

nsio

n 5–

Hig

h 4–

Low

1–

Med

ium

Si

nce

the

actu

al F

P co

nten

t of t

he g

as is

exp

ecte

d to

be

low

, the

FP

s tha

t can

be

rele

ased

from

the

surf

aces

of c

ompo

nent

s be

com

es im

porta

nt.

Past

ana

lysi

s has

ofte

n fo

cuse

d on

flow

-in

duce

d lif

t-off

of o

xide

laye

rs a

nd d

ust,

but m

echa

nica

l- sh

ock-

an

d vi

brat

ion-

indu

ced

lift-o

ff c

an b

e m

ajor

driv

ers a

s wel

l.

NU

REG

-080

0 re

quire

s tha

t pip

e w

hip

issu

es b

e ex

amin

ed.

Mec

hani

cal s

hock

s/fo

rces

/vib

ratio

ns c

an re

leas

e FP

s fro

m p

ipe

surf

ace

laye

rs/fi

lms d

urin

g ac

cide

nts.

Lac

k of

dat

a an

d m

odel

s fo

r ant

icip

ated

con

ditio

ns, e

spec

ially

mec

hani

cally

indu

ced

ones

.

48

Com

bust

ion

of d

ust i

n co

nfin

emen

t 5–

Hig

h 1–

Low

4–

Med

ium

So

urce

of h

eat a

nd d

istri

butio

n of

FPs

with

in c

onfin

emen

t if

cond

ition

s allo

w th

e ox

idat

ion

of th

e du

st.

Res

ults

may

dep

end

on c

ompo

sitio

n—gr

aphi

te o

r mat

rix—

and

the

amou

nt o

f air

in th

e co

nfin

emen

t. S

ome

ITER

dat

a. N

eed

to a

sses

s. B

igge

st im

pact

on

ven

ted

conf

inem

ent.

A m

ore

rem

ote

issu

e is

dam

age

to th

e ve

nts t

hat p

reve

nt la

ter c

losu

re.

49

NG

NP-

uniq

ue le

akag

e pa

th

beyo

nd c

onfin

emen

t 5–

Hig

h 1–

Low

4–

Hig

h IH

X to

seco

ndar

y si

te c

onta

min

atio

n co

uld

be ri

sk d

omin

ant i

n so

me

acci

dent

s. T

his i

s onl

y va

guel

y de

fined

and

hig

hly

cont

inge

nt o

n sp

ecifi

c de

sign

kno

wle

dge.

Wid

e va

riatio

n in

pa

nel r

espo

nse

is d

ue to

the

lack

of d

esig

n de

tails

. Onc

e de

sign

in

form

atio

n is

ava

ilabl

e, ra

nkin

g sh

ould

be

muc

h ea

sier

as i

t is

susp

ecte

d th

at k

now

ledg

e ab

out h

isto

rical

failu

re m

odes

will

ap

ply

to th

e de

sign

. Th

ere

is a

wea

lth o

f exp

erie

nce

with

LW

R

cont

ainm

ent l

eaka

ges i

ssue

s and

gen

eral

hea

t exc

hang

er

oper

atio

n.

Page 50: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

36

The initial fission product contamination of the reactor circuit is of great importance because the most powerful driving term, helium pressure, will provide the driving force for transport of the source term out of the primary circuit during the earliest stages of the accident. If an air ingress accident occurs with an unimpeded flow path, large fission product releases can occur later in the accident.

In addition to the consensus and compiled entries in Table 10, the individual ranking tables (Appendix B) may be of particular interest to the reader.

The PIRT table underwent two iterations with extensive reorganization between meetings; the results shown in the Appendix are the panelists’ changes and additions to the final PIRT table, which was assembled after extensive discussions. The panelists’ thoughts (after several days of additional individual review, noted in red italics) are contrasted with the group consensus of the last meeting.

Generally, convergence is seen on most issues, but different approaches to the specific physics and transport paths shade the answers accordingly. One item of particular interest is the final approach to the ranking process. Two methods are apparent; the identification of the phenomena in either a general or path-dependent way. The general identification method allows one to collect all the items of interest without specifically outlining a transport path within the ranking table, although Table 6 was used as a general guide. This method avoids forcing a specific transport path model on the analyses but may not clearly identify the relative importance of particular phenomena along a specific path.

The path-dependent approach allows the reader to see the importance of the particular phenomena along a path (at the expense of some redundancy in the PIRT entries), but requires the identification of the transport subpaths. These paths were based on historical work because of the lack of a specific NGNP design, but should be relevant unless some truly unique design is proposed. The reader is encouraged to explore each approach to help develop insight that can be applied to a VHTR once a particular design has been developed along with its approach to FP transport needs. Even with these two approaches to the PIRT table layout, the results are very similar.

One item of interest that may not have been clearly identified in the starting PIRT table but was listed in the path-dependent reorganized table is the release of fission products due to normal helium leakage from the reactor system (implied in table item #7 but not individually listed). This table also contains many other (redundant) entries that are related to the original PIRT table entries; this was necessary because of the path structure.

A second issue of importance is the approach to modeling graphite properties. Technically, this issue is beyond the scope of the PIRT as the panel was to focus only on phenomena, but it does impact how one approaches the collection of data for the models. Briefly, one approach is basic physics in nature, and the other is more empirical in nature. The basic physics approach would have the advantage that measured graphite and fission product properties can be related to transport over a wide range of situations, but the physics may be very challenging. The empirical approach offers less theoretical complexity but may be limited by the cost of experiments and the range of accidents that can be covered. In any event, this issue will have to be resolved by a review of the state of the art in graphite and transport theory and will be influenced by the specific safety approaches taken by the designers.

Other table entry comments included variations in nomenclature and the physics of particular phenomena, but these clarifications and comments did not appear to change the ranking in any substantial way.

Finally, one item that was rated as important and may not have been explored in the past was the effect of mechanical shock and vibration on the transport and re-entrainment of dust and spalled-off oxide flakes. A failure of a large pipe would generate large mechanical forces (vibration, shocks, and pipe whip), and the resulting flow can generate a large amount of acoustic energy, both of which can launch dust and small particles into the existing gas flow as well as cause additional failures. Much of the literature is concerned with changes in temperature and flow velocity during an accident, but these

Page 51: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

37

impulsive and vibratory mechanical effects should also be considered, especially if the reactor internal surfaces are formally required to retain fission products during an accident to meet safety requirements.

Page 52: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

38

Page intentionally blank

Page 53: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

39

REFERENCES

1. G. Brinkmann, et al., “Important Viewpoints Proposed for a Safety Approach of HTGR Reactors in Europe—Final Results of the EC-Funded HTR-L Project,” Nuclear Engineering and Design, 236, 463–474 (2006).

2. Y. Makihara, “Development of a Safety Report on Accident Analysis for Nuclear Power Plants With Modular High-Temperature Gas-Cooled Reactors,” Proceedings HTR2006: 3rd International Topical Meeting on High Temperature Reactor Technology, October 1–4, 2006, Johannesburg, South Africa.

3. J. Pirson, “Important Viewpoints Proposed for a Safety Approach of HTGR Reactors in Europe,” 12th International Conference on Emerging Nuclear Energy Systems (ICENES-2005) Brussels, Belgium, August 21–26, 2005.

4. Considerations in the Development of Safety Requirements for Innovative Reactors: Application to Modular High Temperature Gas Cooled Reactors, IAEA-TECDOC-1366, August 2003.

5. R. Moormann, “Source Term Estimation for Small-Sized HTRs: Status and Further Needs, Extracted from German Safety Analyses,” Nuclear Technology, 135, 183–193 (2001).

6. R. P. Wichner, Fission Product Plateout and Liftoff in the MHTGR Primary System: A Review, NUREG/CR-5647.

7. IAEA Specialists Meeting on Fission Product Release and Transport in Gas-Cooled Reactors, Berkeley Nuclear Laboratories, IWGGCR/13, Berkeley, UK, October 22–25, 1985.

8. Fuel Performance and Fission Product Behaviour in Gas Cooled Reactors, IAEA-TECDOC-978, November 1997.

9. R, Moormann, “AVR Experiments Related to Fission Product Transport,” Proceedings HTR2006: 3rd International Topical Meeting on High Temperature Reactor Technology, October 1–4, 2006, Johannesburg, South Africa.

10. R. Moorman, “AVR Experiments Related to Fission Product Transport (Presentation),” Proceedings HTR2006: 3rd International Topical Meeting on High Temperature Reactor Technology, October 1–4, 2006, Johannesburg, South Africa.

11. K. Fukuda, et al., “Migration Behavior of Fission Products in and From Spherical High-Temperature Reactor Fuel Elements,” Nuclear Technology, 69, 368–379 (1985).

12. D. Alberstein, et al., Metallic Fission Product Release from the HTGR Core, GA-A13258, May 1975.

13. K. Verfondern, et al., Fission Product Release and Transport Behaviour, HBK-TN-6/86, December 1986.

14. K. Sawa, et al., “A Study of Plateout Fission Product Behavior During a Large-Scale Pipe Rupture Accident in a High-Temperature Gas-Cooled Reactor,” Nuclear Technology, 106, 265–273 (1994).

15. R. Moorman and K. Hilpert, “Chemical Behavior of Fission Products in Core Heatup Accidents in High-Temperature Gas-Cooled Reactors,” Nuclear Technology, 94, 56–67 (1991).

16. M. Osborne, et al., Iodine Sorption on Low-Chromium Alloy Steel, ORNL/TM-7755, 1982. 17. R. Causey and R. Wichner, “Silver Transport in H-451 Graphite,” presented at the Colloquium on

Transport of Fission Products in Matrix and Graphite, Berlin, 1981. 18. F. Dyer, et al., Distribution of Radionuclides in the Peach Bottom HTGR Primary Circuit During

Core 2 Operation, ORNL-5188, 1977. 19. R. Wichner, et al., Distribution of Fission Products in Peach Bottom HTGR Element F-05-05,

ORNL/TM-6455, 1979.

Page 54: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

40

20. F. Dyer, Distribution of Fission Products in Peach Bottom HTGR Fuel Element F03-01, ORNL/TM-5996, 1978.

21. R. Wichner, et al., Distribution of Fission Products in Peach Bottom HTGR Fuel Element E01-01, ORNL/TM-6353, 1978.

22. Plateout Phenomena in Direct-Cycle High Temperature Gas-Cooled Reactors, EPRI, Palo Alto, Ca, June 2002.

23. D. L. Hanson, “Inpile Loop Tests to Validate Fission Product Transport Codes,” Proceedings HTR2006: 3rd International Topical Meeting on High Temperature Reactor Technology, October 1–4, 2006, Johannesburg, South Africa.

24. J. Engelhard, et al., “Investigation of the Impurities and Fission Products in the AVR Coolant Gas at an Average Hot-Gas Temperature of 950°C,” Nuclear Engineering and Design, 34, 85–92 (1975).

25. N. Iniotakis, et al., “Initial Results of Investigation into Fission Product Deposition in In-Pile Experiments,” Nuclear Engineering and Design, 34, 169–180 (1975).

26. N. Iniotakis, et al., “Plate-Out of Fission Products and Its Effect on Maintenance and Repair,” Nuclear Engineering and Design, 78, 273–284 (1984).

27. R. Wichner and F. Dyer, Carbon-14 Production in the Peach Bottom HTGR Core, ORNL-5597, 1980.

28. O. Tallent, et al., Diffusion of Uranium in H-451 Graphite at 900 to 14001C, ORNL/TM-8205, 1983.

29. O. Tallent, et al., Vapor Pressure of Plutonium Carbide Adsorbed on Graphite, ORNL/TM-9161, 1984.

30. M. Sage, “A Conceptual Study of the Retention of Fission Products from a Delayed Release in the PBMR Building,” Proceedings HTR2006: 3rd International Topical Meeting on High Temperature Reactor Technology, October 1–4, 2006, Johannesburg, South Africa.

31. M.P. Kissane, State-of-the-Art Fission-Product Transport Modelling: How This Is Done for LWRs and a Preliminary View of Potential Difficulties for HTRs, NRC PIRT Meeting, Washington, D.C., February 27–28, 2007.

32. G. Ziskind, et al., “Resuspension of Particulates from Surfaces to Turbulent Flows—Review and Analysis,” Journal of Aerosol Science, 26, 613–644 (1995).

33. E. Hontanon, et al., “The CAESAR Code for Aerosol Resuspension in Turbulent Pipe Flows. Assessment Against the Storm Experiments,” Journal of Aerosol Science, 31, 1061–1076 (2000).

34. G. Ziskind, et al., “Adhesion Moment Model for Estimating Particle Detachment from a Surface,” Journal of Aerosol Science, 28, 623–634 (1997).

35. M. Reeks and D. Hall, “Kinetic Models for Particle Resuspension in Turbulent Flows: Theory and Measurement,” Journal of Aerosol Science, 32, 1–31 (2001).

36. L. Biasi, et al., “Use of a Simple Model for the Interpretation of Experimental Data on Particle Resuspension in Turbulent Flows,” Journal of Aerosol Science, 32, 1175–1200 (2001).

37. G. Ziskind, et al., “Particle Behavior on Surfaces Subjected to External Excitations,” Journal of Aerosol Science, 31, 703–719 (2000).

38. W. Theerachaisupakij, et al., “Effects of Wall Vibration on Particle Deposition and Reentrainment in Aerosol Flow,” Advanced Powder Technology. 13, 287–300 (2002).

39. R. Sandstroem and M. Olsson, “High Intensity Low Frequency Sound Used for Cleaning Purposes,” Journal of Low Frequency Noise and Vibration, 5, 9–13 (1986).

40. H. Masuda and S. Matsusaka, “Particle Deposition and Reentrainment,” in Powder Technology Handbook, edited by Keishi Gotoh, pp. 143–154, Narcek Dekker, Inc., New York, 1997.

Page 55: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

41

41. D. McEachern, “GT-MHR Fuel Performance and Fission Product Transport Technology,” presented at ANS Gas Reactor Technology Course, ANS Winter Meeting, Washington, D.C., November 22, 2002.

42. R. Strehlow and H. Savage, “The Permeation of Hydrogen Isotopes Through Structural Metals at Low Pressures and Through Metals with Oxide File Barriers,” Nuclear Technology, 22, 127–137 (1974).

43. R. Wichner and F. Dyer, Distribution and Transport of Tritium in the Peach Bottom HTGR, ORNL-5497, 1979.

44. B. Gainey, A Review of Tritium Behavior in HTGR Systems, GA-A13461, April 1976 45. S. Basu, NGNP PIRT An Introduction, NRC PIRT Meeting, Washington, D.C., February 27–28,

2007. 46. S. Rubin, NRC Advanced Reactor Research Program, NRC PIRT Meeting, Washington, D,C,,

February 27–28, 2007. 47. P. Robinson, FP Transport PIRT, NRC PIRT Meeting, Washington, D,C,, February 27–28, 2007. 48. S. Ball, Modular HTGR Safety and Accident Characteristics, NRC PIRT Meeting, Washington,

D.C., February 27–28, 2007. 49. TRISO-Coated Particle Fuel Phenomenon Identification and Ranking Tables (PIRTs) for Fission

Product Transport Due to Manufacturing, Operations, and Accidents, NUREG/CR-6844, July 2004. 50. K. C. Rogers, “Key Questions Facing the NRC on the MHTGR,” Energy, 16(1/2), 345–351 (1991). 51. S. B. Inamati, et al., “MHTGR Radio-Nuclide Source Terms for Use in Siting,” Energy, 16(1/2),

425–431 (1991). 52. K. Kugeler, et al., “Aerosol Formation by Graphite Corrosion in Case of Water and Air Ingress to

the Core of a High-Temperature Reactor,” Energy, 16(1/2), 491–499 (1991). 53. P. G. Kroeger, Containment Building Atmosphere Response Due to Reactor Gas Burning Under

Remote Severe Accident Conditions, NUREG/CR-3868 (BNL-NUREG-51793), June 1984. 54. D. A. Dilling, et al., “The Modular High Temperature Gas-Cooled Reactor (MHTGR) Containment

Trade Study,” ASME/IEEE Joint Power Generation Conference, Boston, MA (USA), October 21–25 1990.

55. D. A. Dilling, et al., A Vented Low Pressure Containment Strategy for The Modular High Temperature Gas-Cooled Reactor (MHTGR), GA-A21622, April 1994.

Page 56: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

42

Page intentionally blank

Page 57: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

A-1

APPENDIX A

COMMENTS ON TRANSPORT MODELING

A.1 Brief Discussion of Transport Modeling Through Porous Media

Once fission product vapors have migrated from a fuel particle, or are created from fissioning of “tramp uranium,” transport of these vapors through the porous medium of matrix graphite and other graphite structures becomes a key process leading to release of radionuclides to the more open regions of the reactor coolant system and eventually to the confinement in accident situations. Porous materials that the vapors must transit may be cracked, and such cracks provide parallel and often more efficient routes for transport than the inherent, interconnected porosity of the graphite material. Transport through cracks and the pore structure can be driven by concentration differences, temperature differences, and pressure differences. The resistance to transport is created by the collision of the vapor molecules with each other and with surfaces lining the transport pathway. When molecule-molecule collisions dominate, the diffusion process is classical gas-phase diffusion. When molecular collisions with surfaces dominate, the transport is Knudsen diffusion. Most situations of interest for safety analyses lie within the transition between the molecular diffusion and Knudsen diffusion extremes. For these situations, small changes in the permeability, slip, and tortuosity features of the transport pathway can have significant impacts on the total vapor flux through a porous material.

In the past, it was common to treat vapor transport through a porous material in terms of either an effective diffusivity or an effective permeability measured under particular conditions of temperature, pressure, and gas composition. Such empirical practices work satisfactorily when the range of conditions is narrow and well known. Unfortunately, for accident conditions, a much wider range of conditions, depending on the particular features of the accident initiation and progression, can be anticipated. It is not feasible to develop empirical effective diffusivities for all the conditions and all of the radionuclides of interest. Thus, it may be necessary to take a more fundamental approach to the transport processes if detailed path-dependent calculations are required to analyze a particular event. Fortunately, there have been rather significant advances in the understanding of porous medium transport processes since the last gas-cooled reactors were built. This more advanced understanding of multicomponent mass transport in porous media makes it possible to approach radionuclide transport under accident conditions from a more fundamental point of view.

Essential characterization of the porous medium for the analysis of radionuclide transport includes the following:

1. Porosity, especially interconnected porosity 2. Tortuosity—essentially the actual path length through a porous body relative to the

geometrical distance across the body 3. Poiseulle permeability parameter 4. Knudsen permeability parameter

The initial porosity of a specific graphite will be well known. Indeed, this porosity may well be specified in the course of acquisition of the graphite. Permeability parameters for nuclear graphites have been measured with acceptable accuracy since the late 1950s. Tortuosity is not routinely measured for graphites, though it is routinely measured for catalyst support materials.

Porosity and permeability properties of the graphite can be expected to change during power plant operation and under accident conditions. Certainly, irradiation is expected to cause some initial

Page 58: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

A-2

densification of graphite followed by expansion as atomic and unit cell displacements accumulate in the material. Locations along transport paths where displacements have occurred are high-energy sites, and radionuclide vapors may well absorb preferentially onto these sites. Under conditions where the graphite is exposed to an oxidant and temperatures are sufficiently low that chemical kinetics controls the rate of graphite reaction with the oxidant (typically ~<1200°C), locations of irradiation-induced displacements along transport pathways will be preferred sites for reaction and gasification of the graphite. This removal of material will open the transport pathways. Such changes in the graphite and the ease with which vapors can transport through porous graphite will need to be predicted mechanistically by accident analysis computer codes. Such predictions cannot be made when effective diffusivities and effective permeabilities are used to calculate the vapor transport of radionuclides. Again, a more fundamental approach to vapor mass transport through a porous medium is needed.

A.2 Speciation

Speciation of radionuclides and the diversity of speciation will affect the volatility and the transport of radionuclides. It can be anticipated that the speciation will be determined especially for the gas phase by thermochemical calculations. Thermochemical databases available for the prediction are reasonably well developed for elements and oxides. The database is less well developed but still useful for vapor-phase carbides. Predictions of vapor pressures for solid carbides are always complicated by the tendency for these phases to be nonstoichiometric, which demands modeling of the nonstoichiometry. The intrusion of water raises the possibility of the formation of vapor-phase hydrides and hydroxides. Most of the available thermodynamic data on vapor-phase hydroxides and hydrides for elements of interest have been estimated by analogy to other systems. A class of possible vapor-phase compounds for which there are few data are vapor-phase carbonyls. Stable carbonyls of elements like ruthenium, palladium, and rhodium are fairly well known, but these carbonyls are unlikely to contribute significantly to vaporization or transport of these elements since the polycarbonyls are not especially stable. Of more interest are mono- and di-carbonyls that can accentuate vaporization of otherwise fairly nonvolatile radionuclides. Such species have received some theoretical consideration, but the necessary high CO pressure experiments to demonstrate the contributions of these elements to either release or transport have not been usually done.

A.3 Aerosols

Certainly in the containment and to some extent in the reactor coolant system, radionuclide transport will be predominantly by aerosol transport. Modeling of conventional aerosol has been well developed and validated by the NRC, and routine calculations can be done. By and large these computational tools have been optimized for rather “wet” or highly humid environments. The dry environment typical of many classes of gas reactors will pose a challenge. In such dry environments, water condensation within the interstices of particle agglomerates will not be possible. There will, then, not be a strong surface-tension driving force to convert linear-chain agglomerates into more spherical aerosol particles assumed for the analyses with existing computer codes. Shape factors will have to be introduced into the calculations, and these shape factors will not necessarily be small. Kops and coworkers have reported shape factors as high as 35 for dry aerosols formed from the condensation of high-temperature vapors. Furthermore, the shape factors will vary with particle size—something codes such as MAEROS, used widely for nuclear application, cannot handle.

A more bothersome issue is that of electrostatic charging of aerosols in the dry environment. Aerosol particles can be charged in the dry environment because of gas-phase ions formed in the intense radiation field. Negatively charged ions typically have higher mobilities than do positively charged ions. Consequently aerosol particles are bombarded more often by negatively charged ions and can assume a

Page 59: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

A-3

negative charge. The magnitude of the charge depends on the particle size. Coulombic forces among aerosol particles due to like charges on particles are not addressed in currently available models of aerosol behavior. The electrostatic forces among charged particles are much stronger than the forces that ordinarily drive the agglomeration of aerosol particles to sizes such that they readily deposit by gravitational settling or inertial impaction on structures. What deposition of particles does occur will develop either a surface charge or a mirror image charge that could also produce forces capable of interfering with the deposition of additional particles. Again, current models do not account for such effects that are important only where the radiation field is large.

Page 60: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

A-4

Page intentionally blank

Page 61: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

APPENDIX B

INDIVIDUAL PANELISTS’ RANKING TABLES

Each panelist individually reviewed the last PIRT table and included rankings and comments if they differed from the group consensus. Both the original text and the change are shown so that the reader can understand the rationale for the change.

Page 62: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

Page intentionally blank

Page 63: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-3

Tab

le B

-1.

Indi

vidu

al F

PT P

IRT

Ran

king

Tab

le

Fina

l Ver

sion

Apr

il 18

, 200

7 Pa

nelis

t: D

ana

A. P

ower

s

Cha

nges

in IT

ALI

CS

are

diff

eren

ces f

rom

the

final

gro

up d

iscu

ssio

ns o

n A

pril

18, 2

007

T

his t

able

gen

eral

ly a

pplie

s to

all c

ases

, nor

mal

, ant

icip

ated

tran

sien

ts, a

nd a

ccid

ents

. Sp

ecifi

c ca

ses a

re n

oted

. N

otes

: *

deno

tes n

eed

for i

nter

face

with

oth

er g

roup

s (m

ater

ials

, tra

nsie

nt sc

enar

ios)

IC

—in

itial

con

ditio

n, th

e re

sult

of lo

ng te

rm n

orm

al o

pera

tion

Tran

s.—tr

ansi

ent a

nd a

ccid

ent c

ondi

tion

TF—

ther

mal

flui

ds

FP—

fissi

on p

rodu

cts

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

C

ritic

al in

itial

and

/or b

ound

ary

cond

ition

1

Dec

ay h

eat a

nd

trans

ient

pow

er le

vel

Hig

h En

ergy

sour

ce d

rivin

g pr

oble

m (I

C a

nd T

rans

.) *H

igh

Bou

ndar

y co

nditi

ons

expe

cted

from

TF

PIR

T

Ade

quat

e

2 M

ater

ial/s

truct

ure

pr

oper

ties

Hig

h D

ensi

ty, v

isco

sity

, co

nduc

tivity

, etc

., im

porta

nt p

aram

eter

s in

calc

ulat

ions

(IC

and

Tr

ans.)

*Med

(gra

phite

) H

igh

(ste

el, c

oncr

ete)

G

raph

ite ty

pe n

ot

sele

cted

; exp

ecte

d fr

om m

ater

ial P

IRT

Min

or m

od

(gra

phite

) A

dequ

ate

(ste

el,

conc

rete

)

3 G

raph

ite im

purit

y le

vels

M

ediu

m

Impu

rity

reac

tion

with

FP

, nuc

lear

gra

phite

ex

pect

ed to

hav

e lo

w

impu

rity

leve

ls

*Hig

h W

ill b

e m

easu

red;

ex

pect

ed fr

om m

ater

ial

PIR

T

Ade

quat

e be

caus

e im

puri

ty le

vels

are

ex

pect

ed to

be

quite

lo

w

4 G

raph

ite g

eom

etry

H

igh

Cor

e st

ruct

ure

(des

ign

info

rmat

ion)

H

igh

Wel

l kno

wn

for I

C

Ade

quat

e fo

r IC

M

ajor

nee

d fo

r air

ingr

ess

Page 64: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-1

(con

tinue

d)

B-4

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

5

Ther

mal

-flu

id

prop

ertie

s H

igh

Tem

pera

ture

, pre

ssur

e,

velo

city

com

puta

tions

(I

C a

nd T

rans

.)

*Med

ium

W

ell k

now

n fo

r He,

un

certa

inty

in

com

posi

tion

of g

as

mix

ture

s mak

es g

as

prop

erty

cal

cula

tion

mor

e di

ffic

ult,

expe

cted

from

TF

PIR

T

Ade

quat

e

6 G

as c

ompo

sitio

n H

igh

Oxy

gen

pote

ntia

l and

ch

emic

al a

ctiv

ity; a

lso

carb

on p

oten

tial a

nd

hydr

ogen

pot

entia

l

Med

ium

C

entra

l iss

ue fo

r ch

emic

al re

actio

n m

odel

ing,

FP

spec

iatio

n, sc

enar

io

depe

nden

t

Ade

quat

e (d

epre

ssur

izat

ion)

M

ajor

mee

d (a

ir in

gres

s or w

ater

in

gres

s)

7 G

as fl

ow p

ath

prio

r, du

ring

and

post

ac

cide

nt

Hig

h In

form

atio

n ne

eded

to

mod

el a

ccid

ent (

IC a

nd

Tran

s). T

he fl

ow p

ath

will

be

affe

cted

dur

ing

air i

ngre

ssio

n an

d w

ater

in

gres

sion

acc

iden

ts a

s a

resu

lt of

gra

phite

ox

idat

ion

alon

g th

e flo

w

path

.

*Sam

e as

TF

grou

p N

eed

to c

oord

inat

e w

/ ot

her g

roup

s; rx

pect

ed

from

TF

PIR

T. O

nly

the

initi

al c

ondi

tions

of

the

path

way

s will

co

me

from

ther

mal

flu

ids.

Tran

sfor

mat

ion

of th

e pa

thw

ays a

s a

resu

lt of

long

-term

ch

emic

al e

rosi

on

duri

ng a

n ai

r or w

ater

in

gres

s acc

iden

t will

ha

ve to

be

calc

ulat

ed.

Ther

mal

stre

ss a

nd

crac

king

to fo

rm n

ew

path

way

s nee

ds to

be

cons

ider

ed p

erha

ps b

y th

e m

ater

ials

gro

up.

Sam

e as

TF

grou

p C

alcu

latio

n of

the

open

ing

of p

athw

ays

as a

resu

lt of

ch

emic

al re

actio

ns

can

be c

halle

ngin

g es

peci

ally

if

tem

pera

ture

s are

su

ch th

at g

raph

ite

oxid

atio

n is

affe

cted

by

cat

alys

is.

8 Te

mpe

ratu

re (s

truct

ure

and

gas)

and

Pre

ssur

e di

strib

utio

n

Hig

h In

form

atio

n ne

eded

to

mod

el a

ccid

ent (

IC a

nd

Tran

s)

*Hig

h N

eed

to c

oord

inat

e w

/ ot

her g

roup

s; e

xpec

ted

from

TF

PIR

T

Sam

e as

TF

grou

p

Page 65: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-1

(con

tinue

d)

B-5

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

9

FP P

late

-out

and

dus

t di

strib

utio

n un

der

norm

al o

pera

tion

Hig

h St

artin

g co

nditi

ons

Med

ium

Th

eory

and

mod

els

lack

spec

ifics

M

ajor

nee

d

Gra

phite

and

cor

e m

ater

ials

10

M

atrix

per

mea

bilit

y,

tortu

osity

H

igh

Nee

ded

for f

irst p

rinci

ple

trans

port

mod

elin

g (I

C

and

Tran

s). M

odel

ing

fissi

on p

rodu

ct tr

ansp

ort

on a

mor

e fu

ndam

enta

l ba

sis i

s req

uire

d si

nce

it w

ill n

ot b

e po

ssib

le to

te

st fo

r all

acci

dent

co

nditi

ons a

nd a

ll pa

thw

ays t

hat m

ay a

rise

.

*Low

FP

hol

dup

as b

arrie

r, re

leas

e as

dus

t; ex

pect

ed fr

om m

ater

ial

PIR

T

Maj

or n

eed.

Suc

h in

form

atio

n ha

s be

en p

rovi

ded

for

othe

r nuc

lear

gr

aphi

tes.

Mas

s tr

ansp

ort t

hrou

gh

poro

us m

edia

has

de

velo

ped

subs

tant

ially

sinc

e ea

rly

gas r

eact

ors

wer

e de

sign

ed, s

o m

odel

ing

on a

mor

e fu

ndam

enta

l bas

is is

en

tirel

y fe

asib

le.

11

FP tr

ansp

ort t

hrou

gh

mat

rix

Hig

h Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t pr

inci

ples

(IC

and

Tra

ns)

Low

FP

hol

dup

as b

arrie

r, re

leas

e as

dus

t; ex

pect

ed fr

om m

ater

ial

PIR

T

Maj

or n

eed

12

Fuel

blo

ck

perm

eabi

lity,

to

rtuos

ity

Hig

h N

eede

d fo

r firs

t prin

cipl

e tra

nspo

rt m

odel

ing

(IC

an

d Tr

ans)

. Mod

elin

g fis

sion

pro

duct

tran

spor

t on

a m

ore

fund

amen

tal

basi

s is r

equi

red

sinc

e it

will

not

be

poss

ible

to

test

for a

ll ac

cide

nt

cond

ition

s and

all

path

way

s tha

t may

ari

se.

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Maj

or n

eed.

Suc

h in

form

atio

n ha

s be

en p

rovi

ded

for

othe

r nuc

lear

gr

aphi

tes.

Mas

s tr

ansp

ort t

hrou

gh

poro

us m

edia

has

de

velo

ped

subs

tant

ially

sinc

e ea

rly

gas r

eact

ors

wer

e de

sign

ed, s

o m

odel

ing

on a

mor

e

Page 66: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-1

(con

tinue

d)

B-6

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

fu

ndam

enta

l bas

is is

en

tirel

y fe

asib

le

13

FP tr

ansp

ort t

hrou

gh

fuel

blo

ck

Hig

h Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t pr

inci

ples

(IC

and

Tra

ns)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Maj

or n

eed

14

Ther

mal

(Sor

et)

diff

usio

n

Low

Th

erm

al g

radi

ents

are

no

t lar

ge o

utsi

de o

f fue

l Lo

w

Littl

e da

ta

Not

req’

d

15

Bas

al p

lane

diff

usio

n Lo

w

Poro

sity

is p

refe

rred

tra

nspo

rt pa

thw

ay

thro

ugh

grap

hite

Med

ium

Pa

st w

ork

and

liter

atur

e av

aila

ble

Not

req’

d

16

Ref

lect

or (i

n co

ntac

t w

/flow

) per

mea

bilit

y,

tortu

osity

Low

N

eede

d fo

r firs

t prin

cipl

e tra

nspo

rt m

odel

ing

(IC

an

d Tr

ans)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Min

or m

od

17

FP tr

ansp

ort t

hrou

gh

refle

ctor

(in

cont

act

w/fl

ow)

Low

Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t pr

inci

ples

(IC

and

Tra

ns)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Min

or m

od

18

Sorb

tivity

gra

phite

Hig

h C

an d

eter

min

e ho

ldup

an

d re

leas

e of

FP

(IC

and

Tr

ans.)

Med

ium

H

isto

rical

dat

a; n

eed

spec

ific

info

rmat

ion

on g

raph

ite a

nd

radi

atio

n ef

fect

s

Min

or m

od;

deve

lopm

ent o

f ad

sorp

tion/

deso

rptio

n m

odifi

catio

ns to

a

poro

us m

ediu

m m

ass

tran

spor

t mod

el m

ay

requ

ire

mor

e th

an

min

or e

ffort

. 19

Fl

uenc

e ef

fect

on

trans

port

in g

raph

ite

Hig

h In

fluen

ces t

rans

port,

ch

emic

al re

activ

ity

Med

ium

H

isto

rical

dat

a; n

eed

spec

ific

info

rmat

ion

on g

raph

ite a

nd

radi

atio

n ef

fect

s

Maj

or n

eed

Page 67: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-1

(con

tinue

d)

B-7

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

20

C

-14,

Cl-3

6, C

o-60

ge

nera

tion

and

inve

ntor

y

Low

R

adio

isot

ope

gene

rate

d fr

om im

purit

ies,

mig

ht

beco

me

oper

atio

nal i

ssue

(I

C)

Med

ium

H

isto

rical

dat

a; P

each

B

otto

m H

TGR

M

inor

mod

, se

nsiti

ve to

gra

phite

ha

ndlin

g

21

Air

atta

ck o

n gr

aphi

te

Hig

h G

raph

ite

eros

ion/

oxid

atio

n, F

e/C

s ca

taly

sis l

iber

atin

g FP

s (T

rans

.)

Med

ium

H

isto

rical

dat

a M

ajor

nee

d fo

r se

vere

acc

iden

ts

22

Stea

m a

ttack

on

grap

hite

H

igh

If c

redi

ble

sour

ce o

f w

ater

pre

sent

; des

ign

depe

nden

t (Tr

ans.)

Med

ium

H

isto

rical

dat

a M

ajor

nee

d fo

r se

vere

acc

iden

ts

Fis

sion

pro

duct

tran

spor

t in

reac

tor c

oola

nt sy

stem

and

con

finem

ent

23

FP S

peci

atio

n in

ca

rbon

aceo

us m

ater

ial

Hig

h C

hem

ical

form

in

grap

hite

aff

ects

tran

spor

t (I

C a

nd T

rans

.)

Low

U

ncer

tain

and

/or

inco

mpl

ete

Maj

or n

eed

24

FP S

peci

atio

n du

ring

mas

s tra

nsfe

r H

igh

Che

mic

al fo

rm c

hang

e ca

n al

ter v

olat

ility

M

ediu

m

His

toric

al d

ata,

nee

d sp

ecifi

c in

form

atio

n.

Goo

d fo

r met

als,

oxid

es.

Unc

erta

in fo

r ca

rbid

es a

nd c

arbo

nyls

Maj

or n

eed

25

“Kno

ck-a

long

” Lo

w

Alp

ha re

coil

trans

port

of

depo

site

d pa

rticl

es o

n su

rfac

es sl

ow c

ompa

red

to fl

uid

flow

tran

spor

t; m

ay b

e m

uch

mor

e im

port

ant i

n th

e ev

alua

tion

of th

e ef

fect

iven

ess o

f filt

ers

Med

ium

St

udie

d in

act

inid

e-be

arin

g pa

rticl

es

Ade

quat

e

26

Dus

t gen

erat

ion

Hig

h V

ecto

r for

FP

trans

port,

po

ssib

ility

of h

igh

mob

ility

Med

ium

Li

mite

d ex

perie

nce;

la

ck sp

ecifi

c sy

stem

in

form

atio

n

Maj

or n

eed;

impo

rt fr

om o

ther

gro

ups

27

(De)

Abs

orpt

ion

on

dust

H

igh

Prov

ides

cop

ious

surf

ace

area

for F

P ab

sorp

tion

M

ediu

m

Lim

ited

expe

rienc

e;

lack

spec

ific

deta

ils

Maj

or n

eed;

dus

t su

spen

sion

and

ex

puls

ion

from

the

Page 68: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-1

(con

tinue

d)

B-8

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

re

acto

r coo

lant

sy

stem

dur

ing

a de

pres

suri

zatio

n ev

ent m

ay p

rovi

de

the

equi

vale

nt o

f gap

re

leas

e to

the

cont

ainm

ent i

n ac

cide

nts

28

H-3

gen

erat

ion

and

circ

ulat

ing

cool

ant

inve

ntor

y

Med

ium

R

adio

isot

ope,

an

issu

e w

ith o

pera

tiona

l rel

ease

. H

-3 p

rodu

ctio

n fr

om

He-

3 in

coo

lant

, ter

nary

fis

sion

, and

Li-6

in

grap

hite

Med

ium

H

isto

rical

dat

a, P

each

B

otto

m H

TGR

M

inor

mod

29

Ag-

110m

gen

erat

ion,

tra

nspo

rt H

igh

(O&

M)

Low

(rel

ease

) R

adio

isot

ope,

sign

ifica

nt

O&

M d

ose

on c

ool,

met

allic

com

pone

nts

Low

Li

mite

d da

ta, u

nkno

wn

trans

port

mec

hani

sm

Maj

or n

eed

30

Oth

er a

ctiv

atio

n pr

oduc

ts (e

.g.,

Cs-

134,

M

n-55

, Fe-

56)

Low

R

adio

isot

opes

, pot

entia

l O

&M

dos

e M

ediu

m

Expe

rienc

e, li

mite

d in

form

atio

n M

inor

mod

31

Nuc

leat

ion

M

ediu

m

Unc

lear

due

to e

xtre

mel

y lo

w F

P va

por

conc

entra

tion

antic

ipat

ed

Med

ium

H

isto

rical

dat

a M

ajor

nee

d

32

Aer

osol

gro

wth

H

igh

Low

con

cent

ratio

n

grow

th c

an le

ad to

hig

h sh

ape

fact

ors a

nd

unus

ual s

ize

dist

ribut

ion

Low

R

egim

e ha

s not

bee

n st

udie

d pr

evio

usly

M

ajor

nee

d

33

Surf

ace

roug

hnes

s M

ediu

m

Aff

ects

aer

osol

de

posi

tion

1 to

5 m

icro

n pa

rticl

es (I

C a

nd T

rans

.)

Med

ium

In

itial

info

rmat

ion

from

man

ufac

ture

r; ev

olut

ion

of su

rfac

e ro

ughn

ess d

urin

g op

erat

ion

not w

ell

know

n

Min

or m

od

Page 69: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-1

(con

tinue

d)

B-9

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

34

C

oola

nt c

hem

ical

in

tera

ctio

n w

/ sur

face

s H

igh

Cha

nges

oxy

gen

and

carb

on p

oten

tial w

hich

ca

n af

fect

nat

ure

and

quan

tity

of so

rbed

sp

ecie

s (IC

and

Tra

ns.)

Med

ium

Su

rfac

e pr

oper

ties a

re

criti

cal;

need

allo

y da

ta o

n th

e fo

rmat

ion

of o

xide

and

car

bide

su

rfac

e fil

ms

Maj

or n

eed

35

FP d

iffus

ivity

, so

rbtiv

ity in

no

ngra

phite

surf

aces

Hig

h D

eter

min

es F

P lo

catio

n du

ring

oper

atio

n; a

cts a

s a

trap

durin

g tra

nsie

nt

(IC

and

Tra

ns.)

Low

Li

ttle

info

rmat

ion

on

mat

eria

ls o

f int

eres

t M

ajor

nee

d

36

Aer

osol

/dus

t de

posi

tion

Hig

h G

ravi

tatio

nal,

iner

tial,

ther

mop

hore

sis,

elec

trost

atic

, diff

usio

nal,

turb

opho

resi

s (Tr

ans.)

Med

ium

R

easo

nabl

y w

ell-

deve

lope

d th

eory

of

aero

sol d

epos

ition

by

mos

t mec

hani

sms

exce

pt in

ertia

l im

pact

in

com

plex

ge

omet

ries;

ap

plic

abili

ty to

NG

NP

uncl

ear;

mod

elin

g th

e ef

fect

s of e

lect

rost

atic

ch

argi

ng o

f par

ticle

s is

not

dev

elop

ed. S

ize-

depe

nden

t par

ticle

sh

ape

fact

ors n

eed

to

be m

odel

ed in

so

lutio

ns to

the

aero

sol d

ynam

ic

equa

tion

Min

or m

od

37

Aer

osol

/dus

t bou

nce,

br

eaku

p du

ring

depo

sitio

n

Med

ium

C

an m

odify

dep

ositi

on

prof

ile a

nd su

spen

ded

aero

sol d

istri

butio

n

Low

Th

eory

, dat

a, a

nd

mod

els l

acki

ng

Maj

or n

eed

for

part

icle

s lar

ger t

han

abou

t 1 µ

m.

Page 70: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-1

(con

tinue

d)

B-10

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

38

R

esus

pens

ion

Hig

h Fl

ow/v

ibra

tion

indu

ced,

sa

ltatio

n; m

echa

nica

l fo

rces

can

rele

ase

FPs

from

pip

e su

rfac

e la

yers

/film

s (Tr

ans.)

Low

La

ck o

f dat

a an

d m

odel

s for

ant

icip

ated

co

nditi

ons

Maj

or n

eed

to m

odel

th

e re

susp

ensi

on a

nd

to p

redi

ct th

e sh

ocks

an

d vi

brat

ions

to

equi

pmen

t dur

ing

an

acci

dent

39

C

onfin

emen

t aer

osol

ph

ysic

s H

igh

Ana

logo

us to

LW

R

aero

sol b

ehav

ior/p

hysi

cs,

delta

-T, c

hem

istry

; im

porta

nt h

oldu

p m

echa

nism

(Tra

ns.)

Med

ium

R

easo

nabl

y w

ell-

deve

lope

d th

eory

of

aero

sol b

ehav

ior;

appl

icab

ility

to N

GN

P un

clea

r

Min

or m

od

40

Dus

t dep

ositi

on o

n ve

ssel

and

RC

CS

hard

war

e

Low

N

ot im

porta

nt fo

r FP

trans

port

but m

ay a

ffec

t ra

diat

ive

heat

tran

sfer

in

reac

tor c

avity

Low

V

ery

limite

d da

ta

Maj

or n

eed

41

Cor

rosi

on p

rodu

cts

Low

Sp

alle

d su

rfac

e fil

ms;

lo

w c

orro

sion

en

viro

nmen

t (IC

and

Tr

ans.)

Hig

h Pa

st e

xper

ienc

e A

dequ

ate

42

Eros

ion

prod

ucts

, no

ncar

bon

Low

Lo

w c

once

ntra

tion

of

coar

se m

ater

ials

(IC

and

Tr

ans.)

Low

La

ck o

f des

ign

info

rmat

ion;

co

nfig

urat

ion

and

mat

eria

ls sp

ecifi

c

Ade

quat

e

43

Was

h-of

f H

igh

If c

redi

ble

sour

ce o

f w

ater

pre

sent

; des

ign

depe

nden

t (Tr

ans.)

Med

ium

So

me

expe

rimen

tal

data

ava

ilabl

e M

inor

mod

44

Failu

re m

odes

of

auxi

liary

syst

ems (

e.g.

, ga

s cle

anup

, hol

dup,

re

fuel

ing)

Med

ium

Po

tent

ial r

elea

se d

ue to

fa

ilure

(Tra

ns.)

Med

ium

D

esig

n sp

ecifi

c; h

ave

expe

rienc

e fr

om o

ther

de

sign

s

Min

or m

od

Page 71: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-1

(con

tinue

d)

B-11

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

45

R

adio

lysi

s eff

ects

in

conf

inem

ent

Hig

h FP

(e.g

., I,

Ru,

Te)

ch

emis

try, p

aint

ch

emis

try (d

epen

dent

on

conf

inem

ent r

adia

tion

leve

l) (T

rans

.)

Med

ium

LW

R e

xper

ienc

e an

d da

ta

Min

or m

od

46

Filtr

atio

n H

igh

Trad

ition

al p

assi

ve

char

coal

/HEP

A (T

rans

.) H

igh

His

toric

al e

xper

ienc

e A

dequ

ate;

kno

ck

alon

g ef

fect

may

lim

it ef

fect

iven

ess o

f fil

ters

for a

ctin

ides

if

they

are

rele

ased

fr

om th

e fu

el

47

Prod

uctio

n/co

mbu

stio

n of

flam

mab

le g

as

Med

ium

C

O, H

2 pro

duct

ion

issu

es, I

HX

seco

ndar

y-pr

imar

y le

ak, p

oten

tial

resu

spen

sion

and

ch

emic

al tr

ansf

orm

atio

n of

FPs

. (Tr

ans.)

Hig

h H

isto

rical

exp

erie

nce

Ade

quat

e

48

Com

bust

ion

of d

ust i

n co

nfin

emen

t H

igh

Sour

ce o

f hea

t and

di

strib

utio

n of

FPs

w/in

co

nfin

emen

t

Med

ium

; Low

IT

ER d

ata

Maj

or n

eed

49

NG

NP-

uniq

ue le

akag

e pa

th b

eyon

d co

nfin

emen

t

Hig

h IH

X to

seco

ndar

y si

te

cont

amin

atio

n, c

ould

be

risk-

dom

inan

t (Tr

ans.)

Hig

h C

ontin

gent

on

spec

ific

desi

gn k

now

ledg

e M

inor

mod

50

Con

finem

ent l

eaka

ge

path

, rel

ease

rate

th

roug

h pe

netra

tions

Hig

h C

able

/pip

e pe

netra

tions

, cr

acks

, hol

es, H

VA

C

(Tra

ns.)

Med

ium

B

uild

ing

leak

age

expe

rienc

e, d

esig

n sp

ecifi

c

Ade

quat

e

51

Cab

le p

yrol

ysis

, fire

H

igh

Soot

gen

erat

ion

and

chan

ges t

o io

dine

ch

emis

try

Med

ium

LW

R e

xper

ienc

e M

ajor

nee

d

52

Pres

sure

-rel

ief-

valv

e fil

ter

Low

O

peni

ng o

f the

relie

f va

lve

gene

rate

s a

trans

port

path

that

may

be

filte

red;

dep

ends

on

desi

gn

Hig

h A

ir cl

eani

ng

tech

nolo

gy

Ade

quat

e

Page 72: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-1

(con

tinue

d)

B-12

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

53

R

ecrit

ical

ity (s

low

) H

igh

Add

ition

al th

erm

al lo

ad

to fu

el. I

ncre

ases

sour

ce

but n

ot e

xpec

ted

to a

ffec

t tra

nspo

rt pa

th

Med

ium

H

eat l

oad

easi

ly

com

pute

d w

ith

exis

ting

tool

s; e

ffec

t on

fiss

ion

prod

ucts

not

co

mpl

etel

y kn

own

Min

or m

od

54

Fuel

-dam

agin

g R

IA

Hig

h A

n in

tens

e pu

lse

coul

d da

mag

e fu

el.

Incr

ease

s so

urce

but

not

exp

ecte

d to

aff

ect t

rans

port

path

Med

ium

So

me

data

exi

sts,

but

outs

ide

of e

xpec

ted

acci

dent

env

elop

e

Min

or m

od

55

Arg

on a

ctiv

atio

n in

re

acto

r cav

ity

Hig

h (n

orm

al

oper

atio

n)

Air

in c

avity

act

ivat

ed b

y ne

utro

n le

akag

e an

d ca

n es

cape

to e

nviro

nmen

t

Hig

h Ea

sily

com

pute

d w

ith

exis

ting

tool

s A

dequ

ate

56

Red

istri

butio

n of

fis

sion

pro

duct

s due

to

cont

rol r

od m

ovem

ent

Low

A

rticu

late

d co

ntro

l rod

jo

ints

can

col

lect

and

re

dist

ribut

e fis

sion

pr

oduc

ts

Low

Sp

ecifi

cs o

n C

RD

ho

usin

g an

d ar

ticul

ated

SiC

co

mpo

site

hou

sing

TB

D

Min

or m

od

Page 73: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-13

Tab

le B

-2.

Indi

vidu

al F

PT P

IRT

Ran

king

Tab

le

Fina

l Ver

sion

Apr

il 18

, 200

7 Pa

nelis

t: D

avid

Pet

ti

Cha

nges

in IT

ALI

CS

are

diff

eren

ces f

rom

the

final

gro

up d

iscu

ssio

ns o

n A

pril

18, 2

007

T

his t

able

gen

eral

ly a

pplie

s to

all c

ases

, nor

mal

, ant

icip

ated

tran

sien

ts, a

nd a

ccid

ents

. Sp

ecifi

c ca

ses a

re n

oted

. N

otes

: *

deno

tes n

eed

for i

nter

face

with

oth

er g

roup

s (m

ater

ials

, tra

nsie

nt sc

enar

ios)

IC

—in

itial

con

ditio

n, th

e re

sult

of lo

ng te

rm n

orm

al o

pera

tion

Tran

s.—tr

ansi

ent a

nd a

ccid

ent c

ondi

tion

TF—

ther

mal

flui

ds

FP—

fissi

on p

rodu

cts

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

C

ritic

al in

itial

and

/or b

ound

ary

cond

ition

1

Dec

ay h

eat a

nd

trans

ient

pow

er le

vel

Hig

h En

ergy

sour

ce d

rivin

g pr

oble

m (I

C a

nd T

rans

.) *H

igh

Bou

ndar

y co

nditi

ons

expe

cted

from

TF

PIR

T

Ade

quat

e

2 M

ater

ial/s

truct

ure

pr

oper

ties

Hig

h D

ensi

ty, v

isco

sity

, co

nduc

tivity

, etc

., im

porta

nt p

aram

eter

s in

calc

ulat

ions

(IC

and

Tr

ans.)

*Med

(gra

phite

) H

igh

(ste

el, c

oncr

ete)

G

raph

ite ty

pe n

ot

sele

cted

; exp

ecte

d fr

om m

ater

ial P

IRT

Min

or m

od

(gra

phite

) A

dequ

ate

(ste

el,

conc

rete

)

3 G

raph

ite im

purit

y le

vels

M

ediu

m

Impu

rity

reac

tion

with

FP;

nu

clea

r gra

phite

exp

ecte

d to

hav

e lo

w im

purit

y le

vels

*Hig

h W

ill b

e m

easu

red;

ex

pect

ed fr

om

mat

eria

l PIR

T

Ade

quat

e

4 G

raph

ite g

eom

etry

H

igh

Cor

e st

ruct

ure

(des

ign

info

rmat

ion)

H

igh

Wel

l kno

wn

for I

C

Ade

quat

e fo

r IC

M

ajor

nee

d fo

r air

ingr

ess

Page 74: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-2

(con

tinue

d)

B-14

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

5

Ther

mal

-flu

id

prop

ertie

s H

igh

Tem

pera

ture

, pre

ssur

e,

velo

city

com

puta

tions

(IC

an

d Tr

ans.)

Hig

h W

ell k

now

n fo

r He;

un

certa

inty

in

com

posi

tion

of g

as

mix

ture

s mak

es g

as

prop

erty

cal

cula

tion

mor

e di

ffic

ult;

expe

cted

from

TF

PIR

T

Ade

quat

e

6 G

as c

ompo

sitio

n H

igh

Oxy

gen

pote

ntia

l and

ch

emic

al a

ctiv

ity

Med

ium

C

entra

l iss

ue fo

r ch

emic

al re

actio

n m

odel

ing,

FP

spec

iatio

n, sc

enar

io

depe

nden

t

Ade

quat

e (d

epre

ssur

izat

ion)

M

ajor

nee

d (a

ir in

gres

s)

7 G

as fl

ow p

ath

prio

r, du

ring

and

post

ac

cide

nt

Hig

h In

form

atio

n ne

eded

to

mod

el a

ccid

ent (

IC a

nd

Tran

s)

*Sam

e as

TF

grou

p N

eed

to c

oord

inat

e w

/oth

er g

roup

s;

expe

cted

from

TF

PIR

T

Sam

e as

TF

grou

p

8 Te

mpe

ratu

re (s

truct

ure

and

gas)

and

pre

ssur

e di

strib

utio

n

Hig

h In

form

atio

n ne

eded

to

mod

el a

ccid

ent (

IC a

nd

Tran

s)

Hig

h N

eed

to c

oord

inat

e w

/ oth

er g

roup

s, Ex

pect

ed fr

om T

F PI

RT

Sam

e as

TF

grou

p

9 FP

pla

te-o

ut a

nd d

ust

dist

ribut

ion

unde

r no

rmal

ope

ratio

n

Hig

h St

artin

g co

nditi

ons

Med

ium

Th

eory

and

mod

els

lack

spec

ifics

; m

odes

t un

ders

tand

ing

in

Fort

St.

Vrai

n an

d AV

R

Maj

or n

eed

Gra

phite

and

cor

e m

ater

ials

10

M

atrix

per

mea

bilit

y,

tortu

osity

H

igh

Nee

ded

for f

irst p

rinci

ple

trans

port

mod

elin

g (I

C

and

Tran

s)

*Low

FP

hol

dup

as

barr

ier;

rele

ase

as

dust

; exp

ecte

d fr

om

mat

eria

l PIR

T

Maj

or n

eed

11

FP tr

ansp

ort t

hrou

gh

mat

rix

Hig

h Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

Low

FP

hol

dup

as b

arrie

r, re

leas

e as

dus

t; ne

w

Maj

or n

eed

Page 75: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-2

(con

tinue

d)

B-15

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

co

nsta

nt) a

s an

alte

rnat

ive

to fi

rst p

rinci

ples

(IC

and

Tr

ans)

mat

rix

mat

eria

l re

quir

es

char

acte

riza

tion

Expe

cted

from

m

ater

ial P

IRT

12

Fu

el b

lock

pe

rmea

bilit

y, to

rtuos

ity

Hig

h N

eede

d fo

r firs

t prin

cipl

e tra

nspo

rt m

odel

ing

(IC

an

d Tr

ans)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Maj

or n

eed

13

FP tr

ansp

ort t

hrou

gh

fuel

blo

ck

Hig

h Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t prin

cipl

es (I

C a

nd

Tran

s)

Low

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Maj

or n

eed

14

Ther

mal

(Sor

et)

diff

usio

n

Low

Th

erm

al g

radi

ents

are

not

la

rge

outs

ide

of fu

el

Low

Li

ttle

data

N

ot re

q’d

15

Bas

al p

lane

diff

usio

n Lo

w

Poro

sity

is p

refe

rred

tra

nspo

rt pa

thw

ay th

roug

h gr

aphi

te

Med

ium

Pa

st w

ork

and

liter

atur

e av

aila

ble

Not

req’

d

16

Ref

lect

or (i

n co

ntac

t w

/flow

) per

mea

bilit

y,

tortu

osity

Low

N

eede

d fo

r firs

t prin

cipl

e tra

nspo

rt m

odel

ing

(IC

an

d Tr

ans)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Min

or m

od

17

FP tr

ansp

ort t

hrou

gh

refle

ctor

(in

cont

act

w/fl

ow)

Low

Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t prin

cipl

es (I

C a

nd

Tran

s)

Low

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Min

or m

od

18

Sorb

tivity

gra

phite

H

igh

Can

det

erm

ine

hold

up a

nd

rele

ase

of F

P (I

C a

nd

Tran

s.)

Med

ium

H

isto

rical

dat

a, n

eed

spec

ific

info

rmat

ion

on g

raph

ite a

nd

radi

atio

n ef

fect

s

Min

or m

od

19

Flue

nce

effe

ct o

n tra

nspo

rt in

gra

phite

H

igh

Influ

ence

s tra

nspo

rt,

chem

ical

reac

tivity

M

ediu

m

His

toric

al d

ata,

nee

d sp

ecifi

c in

form

atio

n on

gra

phite

and

ra

diat

ion

effe

cts

Maj

or n

eed

Page 76: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-2

(con

tinue

d)

B-16

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

20

C

-14,

Cl-3

6, C

o-60

ge

nera

tion

and

inve

ntor

y

Low

R

adio

isot

ope

gene

rate

d fr

om im

purit

ies;

mig

ht

beco

me

oper

atio

nal i

ssue

(I

C)

Med

ium

H

isto

rical

dat

a;

Peac

h B

otto

m

HTG

R

Min

or m

od,

sens

itive

to

grap

hite

han

dlin

g

21

Air

atta

ck o

n gr

aphi

te

Hig

h G

raph

ite

eros

ion/

oxid

atio

n; F

e/C

s ca

taly

sis l

iber

atin

g FP

s (T

rans

)

Med

ium

H

isto

rical

dat

a M

ajor

nee

d fo

r se

vere

acc

iden

ts

22

Stea

m a

ttack

on

grap

hite

H

igh

If c

redi

ble

sour

ce o

f wat

er

pres

ent;

desi

gn d

epen

dent

(T

rans

)

Med

ium

H

isto

rical

dat

a M

ajor

nee

d fo

r se

vere

acc

iden

ts

Fis

sion

pro

duct

tran

spor

t in

reac

tor c

oola

nt sy

stem

and

con

finem

ent

23

FP sp

ecia

tion

in

carb

onat

ious

mat

eria

l H

igh

Che

mic

al fo

rm in

gra

phite

af

fect

s tra

nspo

rt (I

C a

nd

Tran

s.)

Low

U

ncer

tain

and

/or

inco

mpl

ete

Maj

or n

eed

24

FP sp

ecia

tion

durin

g m

ass t

rans

fer

Hig

h C

hem

ical

cha

nge

can

alte

r vo

latil

ity

Low

H

isto

rical

dat

a, n

eed

spec

ific

info

rmat

ion.

G

ood

for m

etal

s, ox

ides

. U

ncer

tain

fo

r car

bide

s and

ca

rbon

yls;

low

co

ncen

trat

ions

ex

pect

ed m

ay re

sult

in k

inet

ic is

sues

that

m

ake

spec

iatio

n m

ore

com

plex

Maj

or n

eed

25

“Kno

ck-a

long

” Lo

w

Alp

ha re

coil

trans

port

of

depo

site

d pa

rticl

es o

n su

rfac

es sl

ow c

ompa

red

to

fluid

flow

tran

spor

t. M

ajor

FPs

are

not

alp

ha

emitt

ers

Med

ium

St

udie

d in

act

inid

e-be

arin

g pa

rticl

es

Ade

quat

e

Page 77: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-2

(con

tinue

d)

B-17

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

26

D

ust g

ener

atio

n H

igh

Vec

tor f

or F

P tra

nspo

rt,

poss

ibili

ty o

f hig

h m

obili

ty

Med

ium

Li

mite

d ex

perie

nce;

la

ck sp

ecifi

c sy

stem

in

form

atio

n

Maj

or n

eed,

impo

rt fr

om o

ther

gro

ups

27

(De)

Abs

orpt

ion

on d

ust

Hig

h Pr

ovid

es c

opio

us su

rfac

e ar

ea fo

r FP

abso

rptio

n

Med

ium

Li

mite

d ex

perie

nce;

la

ck sp

ecifi

c de

tails

M

ajor

nee

d

28

H-3

gen

erat

ion

and

circ

ulat

ing

cool

ant

inve

ntor

y

Med

ium

R

adio

isot

ope,

an

issu

e w

ith o

pera

tiona

l rel

ease

. H

-3 p

rodu

ctio

n fr

om H

e-3

in c

oola

nt, t

erna

ry fi

ssio

n,

and

Li-6

in g

raph

ite

Med

ium

H

isto

rical

dat

a;

Peac

h B

otto

m

HTG

R

Min

or m

od

29

Ag-

110m

gen

erat

ion,

tra

nspo

rt H

igh

(O&

M)

Low

(rel

ease

) R

adio

isot

ope,

sign

ifica

nt

O&

M d

ose

on c

ool,

met

allic

com

pone

nts

Low

Li

mite

d da

ta;

unkn

own

trans

port

mec

hani

sm

Maj

or n

eed

30

Oth

er a

ctiv

atio

n pr

oduc

ts (e

.g.,

Cs-

134,

M

n-55

, Fe-

56)

Low

R

adio

isot

opes

, pot

entia

l O

&M

dos

e M

ediu

m

Expe

rienc

e; li

mite

d in

form

atio

n M

inor

mod

31

Nuc

leat

ion

M

ediu

m

Unc

lear

due

to e

xtre

mel

y lo

w F

P va

por

conc

entra

tion

antic

ipat

ed

Med

ium

H

isto

rical

dat

a M

ajor

nee

d

32

Aer

osol

gro

wth

H

igh

Low

con

cent

ratio

n

grow

th c

an le

ad to

hig

h sh

ape

fact

ors a

nd u

nusu

al

size

dis

tribu

tion

Low

R

egim

e ha

s not

bee

n st

udie

d pr

evio

usly

M

ajor

nee

d

33

Surf

ace

roug

hnes

s M

ediu

m

Aff

ects

aer

osol

dep

ositi

on

1 to

5 m

icro

n pa

rticl

es (I

C

and

Tran

s.)

Med

ium

In

itial

info

rmat

ion

from

man

ufac

ture

r; ev

olut

ion

of su

rfac

e ro

ughn

ess d

urin

g op

erat

ion

not w

ell

know

n

Min

or m

od

34

Coo

lant

che

mic

al

inte

ract

ion

w/s

urfa

ces

Hig

h C

hang

es lo

cal o

xyge

n an

d ca

rbon

pot

entia

l whi

ch

can

affe

ct n

atur

e an

d qu

antit

y of

sorb

ed sp

ecie

s (I

C a

nd T

rans

.)

Med

ium

Su

rfac

e pr

oper

ties

are

criti

cal,

need

al

loy

data

Maj

or n

eed

Page 78: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-2

(con

tinue

d)

B-18

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

35

FP

diff

usiv

ity,

sorb

tivity

in

nong

raph

ite su

rfac

es

Hig

h D

eter

min

es F

P lo

catio

n du

ring

oper

atio

n; a

cts a

s a

trap

durin

g tra

nsie

nt (I

C

and

Tran

s.)

Low

Li

ttle

info

rmat

ion

on

mat

eria

ls o

f int

eres

t M

ajor

nee

d

36

Aer

osol

/dus

t dep

ositi

on

Hig

h G

ravi

tatio

nal,

iner

tial,

ther

mop

hore

sis,

elec

trost

atic

, diff

usio

nal,

turb

opho

resi

s (Tr

ans.)

Med

ium

R

easo

nabl

y w

ell-

deve

lope

d th

eory

of

aero

sol d

epos

ition

by

mos

t mec

hani

sms

exce

pt in

ertia

l im

pact

in c

ompl

ex

geom

etrie

s;

appl

icab

ility

to

NG

NP

uncl

ear

Min

or m

od

37

Aer

osol

/dus

t bou

nce,

br

eaku

p du

ring

depo

sitio

n

Med

ium

C

an m

odify

dep

ositi

on

prof

ile a

nd su

spen

ded

aero

sol d

istri

butio

n

Low

Th

eory

, dat

a, a

nd

mod

els l

acki

ng

Maj

or n

eed

38

Res

uspe

nsio

n H

igh

Flow

/vib

ratio

n in

duce

d,

salta

tion;

mec

hani

cal

forc

es c

an re

leas

e FP

s fr

om p

ipe

surf

ace

laye

rs/fi

lms (

Tran

s.)

Low

La

ck o

f dat

a an

d m

odel

s for

an

ticip

ated

co

nditi

ons

Maj

or n

eed

39

Con

finem

ent a

eros

ol

phys

ics

Hig

h A

nalo

gous

to L

WR

ae

roso

l beh

avio

r/phy

sics

, de

lta-T

, che

mis

try;

impo

rtant

hol

dup

mec

hani

sm (T

rans

.)

Med

ium

R

easo

nabl

y w

ell-

deve

lope

d th

eory

of

aero

sol b

ehav

ior;

appl

icab

ility

to

NG

NP

uncl

ear

Min

or m

od

40

Dus

t dep

ositi

on o

n ve

ssel

and

RC

CS

hard

war

e

Low

N

ot im

porta

nt fo

r FP

trans

port

but m

ay a

ffec

t ra

diat

ive

heat

tran

sfer

in

reac

tor c

avity

Low

V

ery

limite

d da

ta

Maj

or n

eed

41

Cor

rosi

on p

rodu

cts

Low

Sp

alle

d su

rfac

e fil

ms;

low

co

rros

ion

envi

ronm

ent (

IC

and

Tran

s.)

Hig

h Pa

st e

xper

ienc

e A

dequ

ate

Page 79: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-2

(con

tinue

d)

B-19

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

42

Er

osio

n pr

oduc

ts,

nonc

arbo

n Lo

w

Low

con

cent

ratio

n of

co

arse

mat

eria

ls (I

C a

nd

Tran

s.)

Low

La

ck o

f des

ign

info

rmat

ion;

co

nfig

urat

ion

and

mat

eria

ls sp

ecifi

c

Ade

quat

e

43

Was

h-of

f H

igh

If c

redi

ble

sour

ce o

f wat

er

pres

ent;

desi

gn d

epen

dent

(T

rans

.)

Med

ium

So

me

expe

rimen

tal

data

ava

ilabl

e M

inor

mod

44

Failu

re m

odes

of

auxi

liary

syst

ems (

e.g.

, ga

s cle

anup

, hol

dup,

re

fuel

ing)

Med

ium

Po

tent

ial r

elea

se d

ue to

fa

ilure

(Tra

ns.)

Med

ium

D

esig

n sp

ecifi

c;

have

exp

erie

nce

from

oth

er d

esig

ns

Min

or m

od

45

Rad

ioly

sis e

ffec

ts in

co

nfin

emen

t H

igh

FP (e

.g.,

I, R

u, T

e)

chem

istry

, pai

nt c

hem

istry

(d

epen

dent

on

conf

inem

ent r

adia

tion

leve

l) (T

rans

.)

Med

ium

LW

R e

xper

ienc

e an

d da

ta

Min

or m

od

46

Filtr

atio

n H

igh

Trad

ition

al p

assi

ve

char

coal

/HEP

A (T

rans

.) H

igh

His

toric

al

expe

rienc

e A

dequ

ate

47

Prod

uctio

n/co

mbu

stio

n of

flam

mab

le g

as

Med

ium

C

O, H

2 pro

duct

ion

issu

es,

IHX

seco

ndar

y-pr

imar

y le

ak, p

oten

tial

resu

spen

sion

and

ch

emic

al tr

ansf

orm

atio

n of

FPs

(Tra

ns.)

Hig

h H

isto

rical

ex

perie

nce

Ade

quat

e

48

Com

bust

ion

of d

ust i

n co

nfin

emen

t H

igh

Sour

ce o

f hea

t and

di

strib

utio

n of

FPs

w/in

co

nfin

emen

t

Med

ium

IT

ER d

ata

Maj

or n

eed

49

NG

NP-

uniq

ue le

akag

e pa

th b

eyon

d co

nfin

emen

t

Hig

h IH

X to

seco

ndar

y si

te

cont

amin

atio

n; c

ould

be

risk

dom

inan

t (Tr

ans.)

Hig

h C

ontin

gent

on

spec

ific

desi

gn

know

ledg

e

Min

or m

od

50

Con

finem

ent l

eaka

ge

path

, rel

ease

rate

th

roug

h pe

netra

tions

Hig

h C

able

/pip

e pe

netra

tions

, cr

acks

, hol

es, H

VA

C

(Tra

ns.)

Med

ium

B

uild

ing

leak

age

expe

rienc

e, d

esig

n sp

ecifi

c

Ade

quat

e

Page 80: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-2

(con

tinue

d)

B-20

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

51

C

able

pyr

olys

is, f

ire

Hig

h So

ot g

ener

atio

n an

d ch

ange

s to

iodi

ne

chem

istry

Med

ium

LW

R e

xper

ienc

e M

ajor

nee

d

52

Pres

sure

relie

f val

ve

filte

r Lo

w

Ope

ning

of t

he re

lief

valv

e ge

nera

tes a

tra

nspo

rt pa

th th

at m

ay b

e fil

tere

d; d

epen

ds o

n de

sign

Hig

h A

ir cl

eani

ng

tech

nolo

gy

Ade

quat

e

53

Rec

ritic

ality

(slo

w)

Hig

h A

dditi

onal

ther

mal

load

to

fuel

. Inc

reas

es so

urce

but

no

t exp

ecte

d to

aff

ect

trans

port

path

Med

ium

H

eat l

oad

easi

ly

com

pute

d w

ith

exis

ting

tool

s; e

ffec

t on

fiss

ion

prod

ucts

no

t com

plet

ely

know

n

Min

or m

od

54

Fuel

-dam

agin

g R

IA

Hig

h A

n in

tens

e pu

lse

coul

d da

mag

e fu

el.

Incr

ease

s so

urce

but

not

exp

ecte

d to

af

fect

tran

spor

t pat

h

Med

ium

So

me

data

exi

sts,

but o

utsi

de o

f ex

pect

ed a

ccid

ent

enve

lope

Min

or m

od

55

Arg

on a

ctiv

atio

n in

re

acto

r cav

ity

Hig

h (n

orm

al

oper

atio

n)

Air

in c

avity

act

ivat

ed b

y ne

utro

n le

akag

e an

d ca

n es

cape

to e

nviro

nmen

t

Hig

h Ea

sily

com

pute

d w

ith e

xist

ing

tool

s A

dequ

ate

56

Red

istri

butio

n of

fiss

ion

prod

ucts

due

to c

ontro

l ro

d m

ovem

ent

Low

A

rticu

late

d co

ntro

l rod

jo

ints

can

col

lect

and

re

dist

ribut

e fis

sion

pr

oduc

ts

Low

Sp

ecifi

cs o

n C

RD

ho

usin

g an

d ar

ticul

ated

SiC

co

mpo

site

hou

sing

TB

D

Min

or m

od

Page 81: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-21

Tab

le B

-3.

Indi

vidu

al F

PT P

IRT

Ran

king

Tab

le

Fina

l Ver

sion

Apr

il 18

, 200

7 Pa

nelis

t: R

ober

t Mor

ris

C

hang

es in

ITA

LIC

S ar

e di

ffer

ence

s fro

m th

e fin

al g

roup

dis

cuss

ions

on

Apr

il 18

, 200

7

Thi

s tab

le g

ener

ally

app

lies t

o al

l cas

es, n

orm

al, a

ntic

ipat

ed tr

ansi

ents

, and

acc

iden

ts.

Spec

ific

case

s are

not

ed.

Not

es:

* de

note

s nee

d fo

r int

erfa

ce w

ith o

ther

gro

ups (

mat

eria

ls, t

rans

ient

scen

ario

s)

IC—

initi

al c

ondi

tion,

the

resu

lt of

long

term

nor

mal

ope

ratio

n Tr

ans.—

tran

sien

t and

acc

iden

t con

ditio

n TF

—th

erm

al fl

uids

FP

—fis

sion

pro

duct

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

C

ritic

al in

itial

and

/or b

ound

ary

cond

ition

1

Dec

ay h

eat a

nd

trans

ient

pow

er le

vel

Hig

h En

ergy

sour

ce d

rivin

g pr

oble

m (I

C a

nd T

rans

.) *H

igh

Bou

ndar

y co

nditi

ons

expe

cted

from

TF

PIR

T

Ade

quat

e

2 M

ater

ial/s

truct

ure

pr

oper

ties

Hig

h D

ensi

ty, v

isco

sity

, co

nduc

tivity

, etc

., im

porta

nt p

aram

eter

s in

calc

ulat

ions

(IC

and

Tr

ans.)

*Med

(gra

phite

) H

igh

(ste

el, c

oncr

ete)

G

raph

ite ty

pe n

ot

sele

cted

, exp

ecte

d fr

om m

ater

ial P

IRT

Min

or m

od

(gra

phite

) A

dequ

ate

(ste

el,

conc

rete

)

3 G

raph

ite im

purit

y le

vels

M

ediu

m

Impu

rity

reac

tion

with

FP

; nuc

lear

gra

phite

ex

pect

ed to

hav

e lo

w

impu

rity

leve

ls

*Hig

h W

ill b

e m

easu

red;

ex

pect

ed fr

om m

ater

ial

PIR

T

Ade

quat

e

4 G

raph

ite g

eom

etry

H

igh

Cor

e st

ruct

ure

(des

ign

info

rmat

ion)

H

igh

Wel

l kno

wn

for I

C

Ade

quat

e fo

r IC

M

ajor

nee

d fo

r air

ingr

ess

Page 82: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-3

(con

tinue

d)

B-22

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

5

Ther

mal

-flu

id

prop

ertie

s H

igh

Tem

pera

ture

, pre

ssur

e,

velo

city

com

puta

tions

(I

C a

nd T

rans

.)

*Med

ium

W

ell k

now

n fo

r He,

un

certa

inty

in

com

posi

tion

of g

as

mix

ture

s mak

es g

as

prop

erty

cal

cula

tion

mor

e di

ffic

ult,

expe

cted

from

TF

PIR

T

Ade

quat

e

6 G

as c

ompo

sitio

n H

igh

Oxy

gen

pote

ntia

l and

ch

emic

al a

ctiv

ity

Med

ium

C

entra

l iss

ue fo

r ch

emic

al re

actio

n m

odel

ing,

FP

spec

iatio

n, sc

enar

io

depe

nden

t

Ade

quat

e (d

epre

ssur

izat

ion)

M

ajor

nee

d (a

ir in

gres

s)

7 G

as fl

ow p

ath

prio

r, du

ring,

and

pos

t ac

cide

nt

Hig

h In

form

atio

n ne

eded

to

mod

el a

ccid

ent (

IC a

nd

Tran

s)

*Sam

e as

TF

grou

p N

eed

to c

oord

inat

e w

/ ot

her g

roup

s; e

xpec

ted

from

TF

PIR

T

Sam

e as

TF

grou

p

8 Te

mpe

ratu

re (s

truct

ure

and

gas)

and

pre

ssur

e di

strib

utio

n

Hig

h In

form

atio

n ne

eded

to

mod

el a

ccid

ent (

IC a

nd

Tran

s)

Hig

h N

eed

to c

oord

inat

e w

/ ot

her g

roup

s; e

xpec

ted

from

TF

PIR

T

Sam

e as

TF

grou

p

9 FP

pla

te-o

ut a

nd d

ust

dist

ribut

ion

unde

r no

rmal

ope

ratio

n

Hig

h St

artin

g co

nditi

ons

Med

ium

Th

eory

and

mod

els

lack

spec

ifics

M

ajor

nee

d

Gra

phite

and

cor

e m

ater

ials

10

M

atrix

per

mea

bilit

y,

tortu

osity

H

igh

Nee

ded

for f

irst p

rinci

ple

trans

port

mod

elin

g (I

C

and

Tran

s)

*Low

FP

hol

dup

as b

arrie

r; re

leas

e as

dus

t; ex

pect

ed fr

om m

ater

ial

PIR

T

Maj

or n

eed

11

FP tr

ansp

ort t

hrou

gh

mat

rix

Hig

h Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t pr

inci

ples

(IC

and

Tra

ns)

Low

FP

hol

dup

as b

arrie

r; re

leas

e as

dus

t; ex

pect

ed fr

om m

ater

ial

PIR

T

Maj

or n

eed

Page 83: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-3

(con

tinue

d)

B-23

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

12

Fu

el b

lock

pe

rmea

bilit

y, to

rtuos

ity

Hig

h N

eede

d fo

r firs

t prin

cipl

e tra

nspo

rt m

odel

ing

(IC

an

d Tr

ans)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Maj

or n

eed

13

FP tr

ansp

ort t

hrou

gh

fuel

blo

ck

Hig

h Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t pr

inci

ples

(IC

and

Tra

ns)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Maj

or n

eed

14

Ther

mal

(Sor

et)

diff

usio

n

Low

Th

erm

al g

radi

ents

are

not

la

rge

outs

ide

of fu

el

Low

Li

ttle

dat

a N

ot re

q’d

15

Bas

al p

lane

diff

usio

n Lo

w

Poro

sity

is p

refe

rred

tra

nspo

rt pa

thw

ay

thro

ugh

grap

hite

Med

ium

Pa

st w

ork

and

liter

atur

e av

aila

ble

Not

req’

d

16

Ref

lect

or (i

n co

ntac

t w

/flow

) per

mea

bilit

y,

tortu

osity

Low

N

eede

d fo

r firs

t prin

cipl

e tra

nspo

rt m

odel

ing

(IC

an

d Tr

ans)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Min

or m

od

17

FP tr

ansp

ort t

hrou

gh

refle

ctor

(in

cont

act

w/fl

ow)

Low

Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t pr

inci

ples

(IC

and

Tra

ns)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

mat

eria

l PIR

T

Min

or m

od

18

Sorb

tivity

gra

phite

H

igh

Can

det

erm

ine

hold

up

and

rele

ase

of F

P (I

C a

nd

Tran

s.)

Med

ium

H

isto

rical

dat

a; n

eed

spec

ific

info

rmat

ion

on g

raph

ite a

nd

radi

atio

n ef

fect

s

Min

or m

od

19

Flue

nce

effe

ct o

n tra

nspo

rt in

gra

phite

H

igh

Influ

ence

s tra

nspo

rt,

chem

ical

reac

tivity

M

ediu

m

His

toric

al d

ata;

nee

d sp

ecifi

c in

form

atio

n on

gra

phite

and

ra

diat

ion

effe

cts

Maj

or n

eed

20

C-1

4, C

l-36,

Co-

60

gene

ratio

n an

d in

vent

ory

Low

R

adio

isot

ope

gene

rate

d fr

om im

purit

ies;

mig

ht

beco

me

oper

atio

nal i

ssue

(I

C)

Med

ium

H

isto

rical

dat

a; P

each

B

otto

m H

TGR

M

inor

mod

, se

nsiti

ve to

gr

aphi

te h

andl

ing

Page 84: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-3

(con

tinue

d)

B-24

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

21

A

ir at

tack

on

grap

hite

H

igh

Gra

phite

er

osio

n/ox

idat

ion;

Fe/

Cs

cata

lysi

s lib

erat

ing

FPs

(Tra

ns)

Med

ium

H

isto

rical

dat

a M

ajor

nee

d fo

r se

vere

acc

iden

ts

22

Stea

m a

ttack

on

grap

hite

H

igh

If c

redi

ble

sour

ce o

f w

ater

pre

sent

; des

ign

depe

nden

t (Tr

ans)

Med

ium

H

isto

rical

dat

a M

ajor

nee

d fo

r se

vere

acc

iden

ts

Fis

sion

pro

duct

tran

spor

t in

reac

tor c

oola

nt sy

stem

and

con

finem

ent

23

FP sp

ecia

tion

in

carb

onat

ious

mat

eria

l H

igh

Che

mic

al fo

rm in

gr

aphi

te a

ffec

ts tr

ansp

ort

(IC

and

Tra

ns.)

Low

U

ncer

tain

and

/or

inco

mpl

ete

Maj

or n

eed

24

FP sp

ecia

tion

durin

g m

ass t

rans

fer

Hig

h C

hem

ical

cha

nge

can

alte

r vol

atili

ty

Med

ium

H

isto

rical

dat

a; n

eed

spec

ific

info

rmat

ion;

go

od fo

r met

als,

oxid

es; u

ncer

tain

for

carb

ides

and

car

bony

ls

Maj

or n

eed

25

“Kno

ck-a

long

” Lo

w

Alp

ha re

coil

trans

port

of

depo

site

d pa

rticl

es o

n su

rfac

es sl

ow c

ompa

red

to fl

uid

flow

tran

spor

t

Med

ium

St

udie

d in

act

inid

e-be

arin

g pa

rticl

es

Ade

quat

e

26

Dus

t gen

erat

ion

Hig

h V

ecto

r for

FP

trans

port,

po

ssib

ility

of h

igh

mob

ility

.

Med

ium

Li

mite

d ex

perie

nce;

la

ck sp

ecifi

c sy

stem

in

form

atio

n

Maj

or n

eed,

impo

rt fr

om o

ther

gro

ups

27

(De)

Abs

orpt

ion

on d

ust

Hig

h Pr

ovid

es c

opio

us su

rfac

e ar

ea fo

r FP

abso

rptio

n

Med

ium

Li

mite

d ex

perie

nce;

la

ck sp

ecifi

c de

tails

M

ajor

nee

d

28

H-3

gen

erat

ion

and

circ

ulat

ing

cool

ant

inve

ntor

y

Med

ium

R

adio

isot

ope,

an

issu

e w

ith o

pera

tiona

l rel

ease

. H

-3 p

rodu

ctio

n fr

om H

e-3

in c

oola

nt, t

erna

ry

fissi

on, a

nd L

i-6 in

gr

aphi

te

Med

ium

H

isto

rical

dat

a, P

each

B

otto

m H

TGR

M

inor

mod

29

Ag-

110m

gen

erat

ion,

tra

nspo

rt H

igh

(O&

M)

Low

(rel

ease

) R

adio

isot

ope,

sign

ifica

nt

O&

M d

ose

on c

ool,

met

allic

com

pone

nts

Low

Li

mite

d da

ta, u

nkno

wn

trans

port

mec

hani

sm

Maj

or n

eed

Page 85: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-3

(con

tinue

d)

B-25

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

30

O

ther

act

ivat

ion

prod

ucts

(e.g

., C

s-13

4,

Mn-

55, F

e-56

)

Low

R

adio

isot

opes

, pot

entia

l O

&M

dos

e M

ediu

m

Expe

rienc

e, li

mite

d in

form

atio

n M

inor

mod

31

Nuc

leat

ion

M

ediu

m

Unc

lear

due

to e

xtre

mel

y lo

w F

P va

por

conc

entra

tion

antic

ipat

ed

Med

ium

H

isto

rical

dat

a M

ajor

nee

d

32

Aer

osol

gro

wth

H

igh

Low

con

cent

ratio

n

grow

th c

an le

ad to

hig

h sh

ape

fact

ors a

nd

unus

ual s

ize

dist

ribut

ion

Low

R

egim

e ha

s not

bee

n st

udie

d pr

evio

usly

M

ajor

nee

d

33

Surf

ace

roug

hnes

s M

ediu

m

Aff

ects

aer

osol

de

posi

tion

1 to

5 m

icro

n pa

rticl

es (I

C a

nd T

rans

.)

Med

ium

In

itial

info

rmat

ion

from

man

ufac

ture

r; ev

olut

ion

of su

rfac

e ro

ughn

ess d

urin

g op

erat

ion

not w

ell

know

n

Min

or m

od

34

Coo

lant

che

mic

al

inte

ract

ion

w/s

urfa

ces

Hig

h C

hang

es o

xyge

n an

d ca

rbon

pot

entia

l, w

hich

ca

n af

fect

nat

ure

and

quan

tity

of so

rbed

sp

ecie

s (IC

and

Tra

ns.)

Med

ium

Su

rfac

e pr

oper

ties a

re

criti

cal;

need

allo

y da

ta

Maj

or n

eed

35

FP d

iffus

ivity

, so

rbtiv

ity in

no

ngra

phite

surf

aces

Hig

h D

eter

min

es F

P lo

catio

n du

ring

oper

atio

n; a

cts a

s a

trap

durin

g tra

nsie

nt

(IC

and

Tra

ns.)

Low

Li

ttle

info

rmat

ion

on

mat

eria

ls o

f int

eres

t M

ajor

nee

d

36

Aer

osol

/dus

t dep

ositi

on

Hig

h G

ravi

tatio

nal,

iner

tial,

ther

mop

hore

sis,

elec

trost

atic

, diff

usio

nal,

turb

opho

resi

s (Tr

ans.)

Med

ium

R

easo

nabl

y w

ell-

deve

lope

d th

eory

of

aero

sol d

epos

ition

by

mos

t mec

hani

sms

exce

pt in

ertia

l im

pact

in

com

plex

ge

omet

ries;

ap

plic

abili

ty to

NG

NP

uncl

ear

Min

or m

od

Page 86: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-3

(con

tinue

d)

B-26

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

37

A

eros

ol/d

ust b

ounc

e,

brea

kup

durin

g de

posi

tion

Med

ium

C

an m

odify

dep

ositi

on

prof

ile a

nd su

spen

ded

aero

sol d

istri

butio

n

Low

Th

eory

, dat

a, a

nd

mod

els l

acki

ng

Maj

or n

eed

38

Res

uspe

nsio

n H

igh

Flow

/vib

ratio

n in

duce

d,

salta

tion;

mec

hani

cal

forc

es c

an re

leas

e FP

s fr

om p

ipe

surf

ace

laye

rs/fi

lms (

Tran

s.)

Low

La

ck o

f dat

a an

d m

odel

s for

ant

icip

ated

co

nditi

ons

Maj

or n

eed

39

Con

finem

ent a

eros

ol

phys

ics

Hig

h A

nalo

gous

to L

WR

ae

roso

l beh

avio

r/phy

sics

, de

lta-T

, che

mis

try;

impo

rtant

hol

dup

mec

hani

sm (T

rans

.)

Med

ium

R

easo

nabl

y w

ell-

deve

lope

d th

eory

of

aero

sol b

ehav

ior;

appl

icab

ility

to N

GN

P un

clea

r

Min

or m

od

40

Dus

t dep

ositi

on o

n ve

ssel

and

RC

CS

hard

war

e

Low

N

ot im

porta

nt fo

r FP

trans

port

but m

ay a

ffec

t ra

diat

ive

heat

tran

sfer

in

reac

tor c

avity

Low

V

ery

limite

d da

ta

Maj

or n

eed

41

Cor

rosi

on p

rodu

cts

Low

Sp

alle

d su

rfac

e fil

ms;

lo

w c

orro

sion

en

viro

nmen

t (IC

and

Tr

ans.)

Hig

h Pa

st e

xper

ienc

e A

dequ

ate

42

Eros

ion

prod

ucts

, no

ncar

bon

Low

Lo

w c

once

ntra

tion

of

coar

se m

ater

ials

(IC

and

Tr

ans.)

Low

La

ck o

f des

ign

info

rmat

ion;

co

nfig

urat

ion

and

mat

eria

ls sp

ecifi

c

Ade

quat

e

43

Was

h-of

f H

igh

If c

redi

ble

sour

ce o

f w

ater

pre

sent

; des

ign

depe

nden

t (Tr

ans.)

Med

ium

So

me

expe

rimen

tal

data

ava

ilabl

e M

inor

mod

44

Failu

re m

odes

of

auxi

liary

syst

ems (

e.g.

, ga

s cle

anup

, hol

dup,

re

fuel

ing)

Med

ium

Po

tent

ial r

elea

se d

ue to

fa

ilure

(Tra

ns.)

Med

ium

D

esig

n sp

ecifi

c; h

ave

expe

rienc

e fr

om o

ther

de

sign

s

Min

or m

od

Page 87: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-3

(con

tinue

d)

B-27

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

45

R

adio

lysi

s eff

ects

in

conf

inem

ent

Hig

h FP

(e.g

., I,

Ru,

Te)

ch

emis

try, p

aint

ch

emis

try (d

epen

dent

on

conf

inem

ent r

adia

tion

leve

l) (T

rans

.)

Med

ium

LW

R e

xper

ienc

e an

d da

ta

Min

or m

od

46

Filtr

atio

n H

igh

Trad

ition

al p

assi

ve

char

coal

/HEP

A (T

rans

.) H

igh

His

toric

al e

xper

ienc

e A

dequ

ate

47

Prod

uctio

n/co

mbu

stio

n of

flam

mab

le g

as

Med

ium

C

O, H

2 pro

duct

ion

issu

es, I

HX

seco

ndar

y-pr

imar

y le

ak, p

oten

tial

resu

spen

sion

and

ch

emic

al tr

ansf

orm

atio

n of

FPs

. (Tr

ans.)

Hig

h H

isto

rical

exp

erie

nce

Ade

quat

e

48

Com

bust

ion

of d

ust i

n co

nfin

emen

t H

igh

Sour

ce o

f hea

t and

di

strib

utio

n of

FPs

w/in

co

nfin

emen

t

Med

ium

IT

ER d

ata

Maj

or n

eed

49

NG

NP-

uniq

ue le

akag

e pa

th b

eyon

d co

nfin

emen

t

Hig

h IH

X to

seco

ndar

y si

te

cont

amin

atio

n, c

ould

be

risk-

dom

inan

t (Tr

ans.)

Hig

h C

ontin

gent

on

spec

ific

desi

gn k

now

ledg

e M

inor

mod

50

Con

finem

ent l

eaka

ge

path

, rel

ease

rate

th

roug

h pe

netra

tions

Hig

h C

able

/pip

e pe

netra

tions

, cr

acks

, hol

es, H

VA

C

(Tra

ns.)

Med

ium

B

uild

ing

leak

age

expe

rienc

e, d

esig

n sp

ecifi

c

Ade

quat

e

51

Cab

le p

yrol

ysis

, fire

H

igh

Soot

gen

erat

ion

and

chan

ges t

o io

dine

ch

emis

try

Med

ium

LW

R e

xper

ienc

e M

ajor

nee

d

52

Pres

sure

-rel

ief-

valv

e fil

ter

Low

O

peni

ng o

f the

relie

f va

lve

gene

rate

s a

trans

port

path

that

may

be

filte

red;

dep

ends

on

desi

gn

Hig

h A

ir cl

eani

ng

tech

nolo

gy

Ade

quat

e

Page 88: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-3

(con

tinue

d)

B-28

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

53

R

ecrit

ical

ity (s

low

) H

igh

Add

ition

al th

erm

al lo

ad

to fu

el; i

ncre

ases

sour

ce

but n

ot e

xpec

ted

to a

ffec

t tra

nspo

rt pa

th

Med

ium

H

eat l

oad

easi

ly

com

pute

d w

ith

exis

ting

tool

s; e

ffec

t on

fiss

ion

prod

ucts

not

co

mpl

etel

y kn

own

Min

or m

od

54

Fuel

-dam

agin

g R

IA

Hig

h A

n in

tens

e pu

lse

coul

d da

mag

e fu

el; i

ncre

ases

so

urce

but

not

exp

ecte

d to

aff

ect t

rans

port

path

Med

ium

So

me

data

exi

sts,

but

outs

ide

of e

xpec

ted

acci

dent

env

elop

e

Min

or m

od

55

Arg

on a

ctiv

atio

n in

re

acto

r cav

ity

Hig

h (n

orm

al

oper

atio

n)

Air

in c

avity

act

ivat

ed b

y ne

utro

n le

akag

e an

d ca

n es

cape

to e

nviro

nmen

t

Hig

h Ea

sily

com

pute

d w

ith

exis

ting

tool

s A

dequ

ate

56

Red

istri

butio

n of

fiss

ion

prod

ucts

due

to c

ontro

l ro

d m

ovem

ent

Low

A

rticu

late

d co

ntro

l rod

jo

ints

can

col

lect

and

re

dist

ribut

e fis

sion

pr

oduc

ts

Low

Sp

ecifi

cs o

n C

RD

ho

usin

g an

d ar

ticul

ated

SiC

co

mpo

site

hou

sing

TB

D

Min

or m

od

Page 89: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-29

T

able

B-4

. In

divi

dual

FPT

PIR

T R

anki

ng T

able

Fi

nal V

ersi

on A

pril

18, 2

007

Pane

list:

Mar

tin K

issa

ne

C

hang

es in

ITA

LIC

S ar

e di

ffer

ence

s fro

m th

e fin

al g

roup

dis

cuss

ions

on

Apr

il 18

, 200

7

Thi

s tab

le g

ener

ally

app

lies t

o al

l cas

es, n

orm

al, a

ntic

ipat

ed tr

ansi

ents

, and

acc

iden

ts.

Spec

ific

case

s are

not

ed.

Not

es:

* de

note

s nee

d fo

r int

erfa

ce w

ith o

ther

gro

ups (

mat

eria

ls, t

rans

ient

scen

ario

s)

IC—

initi

al c

ondi

tion,

the

resu

lt of

long

term

nor

mal

ope

ratio

n Tr

ans.—

tran

sien

t and

acc

iden

t con

ditio

n TF

—th

erm

al fl

uids

FP

—fis

sion

pro

duct

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

C

ritic

al in

itial

and

/or b

ound

ary

cond

ition

1

Dec

ay h

eat a

nd

trans

ient

pow

er le

vel

Hig

h En

ergy

sour

ce d

rivin

g pr

oble

m (I

C a

nd T

rans

.) *H

igh

Bou

ndar

y co

nditi

ons

expe

cted

from

TF

PIR

T A

dequ

ate

2 M

ater

ial/s

truct

ure

prop

ertie

s H

igh

Den

sity

, vis

cosi

ty,

cond

uctiv

ity, e

tc.,

impo

rtant

par

amet

ers i

n ca

lcul

atio

ns (I

C a

nd

Tran

s.)

*Med

(gra

phite

) H

igh

(ste

el, c

oncr

ete)

G

raph

ite ty

pe n

ot

sele

cted

, exp

ecte

d fr

om

mat

eria

l PIR

T

Min

or m

od

(gra

phite

) A

dequ

ate

(ste

el,

conc

rete

)

3 G

raph

ite im

purit

y le

vels

H

igh

Impu

rity

reac

tion

with

FP;

nu

clea

r gra

phite

exp

ecte

d to

hav

e lo

w im

purit

y le

vels

*Hig

h W

ill b

e m

easu

red,

ex

pect

ed fr

om m

ater

ial

PIR

T

Ade

quat

e

4 G

raph

ite g

eom

etry

H

igh

Cor

e st

ruct

ure

(des

ign

info

rmat

ion)

H

igh

Wel

l kno

wn

for I

C

Ade

quat

e fo

r IC

. M

ajor

nee

d fo

r air

ingr

ess

Page 90: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-4

(con

tinue

d)

B-30

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

5

Ther

mal

-flu

id

prop

ertie

s H

igh

Tem

pera

ture

, pre

ssur

e,

velo

city

com

puta

tions

(IC

an

d Tr

ans.)

*Med

ium

W

ell k

now

n fo

r hel

ium

; un

certa

inty

in

com

posi

tion

of g

as

mix

ture

s mak

es g

as

prop

erty

cal

cula

tion

mor

e di

ffic

ult,

expe

cted

fr

om T

F PI

RT

Ade

quat

e

6 G

as c

ompo

sitio

n H

igh

Oxy

gen

pote

ntia

l and

ch

emic

al a

ctiv

ity

Med

ium

C

entra

l iss

ue fo

r ch

emic

al re

actio

n m

odel

ing,

FP

spec

iatio

n, sc

enar

io

depe

nden

t

Ade

quat

e (d

epre

ssur

izat

ion)

M

ajor

nee

d (a

ir in

gres

s)

7 G

as fl

ow p

ath

prio

r, du

ring,

and

pos

t ac

cide

nt

Hig

h In

form

atio

n ne

eded

to

mod

el a

ccid

ent (

IC a

nd

Tran

s)

*Sam

e as

TF

grou

p N

eed

to c

oord

inat

e w

/ ot

her g

roup

s; e

xpec

ted

from

TF

PIR

T

Sam

e as

TF

grou

p

8 Te

mpe

ratu

re

(stru

ctur

e an

d ga

s)

and

pres

sure

di

strib

utio

n

Hig

h In

form

atio

n ne

eded

to

mod

el a

ccid

ent (

IC a

nd

Tran

s)

Hig

h N

eed

to c

oord

inat

e w

/ ot

her g

roup

s; e

xpec

ted

from

TF

PIR

T

Sam

e as

TF

grou

p

9 FP

Pla

te-o

ut a

nd

dust

dis

tribu

tion

unde

r nor

mal

op

erat

ion

Hig

h St

artin

g co

nditi

ons

Med

ium

Th

eory

and

mod

els l

ack

spec

ifics

M

ajor

nee

d

Gra

phite

and

cor

e m

ater

ials

10

M

atrix

per

mea

bilit

y,

tortu

osity

H

igh

Nee

ded

for f

irst p

rinci

ple

trans

port

mod

elin

g (I

C a

nd

Tran

s)

*Low

FP

hol

dup

as b

arrie

r, re

leas

e as

dus

t; ex

pect

ed fr

om m

ater

ial

PIR

T

Maj

or n

eed

11

FP tr

ansp

ort t

hrou

gh

mat

rix

Hig

h Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t prin

cipl

es (I

C a

nd

Tran

s)

Low

FP

hol

dup

as b

arrie

r, re

leas

e as

dus

t; ex

pect

ed fr

om m

ater

ial

PIR

T

Maj

or n

eed

Page 91: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-4

(con

tinue

d)

B-31

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

12

Fu

el b

lock

pe

rmea

bilit

y,

tortu

osity

Hig

h N

eede

d fo

r firs

t prin

cipl

e tra

nspo

rt m

odel

ing

(IC

and

Tr

ans)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

m

ater

ial P

IRT

Maj

or n

eed

13

FP tr

ansp

ort t

hrou

gh

fuel

blo

ck

Hig

h Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t prin

cipl

es (I

C a

nd

Tran

s)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

m

ater

ial P

IRT

Maj

or n

eed

14

Ther

mal

(Sor

et)

diff

usio

n

Low

Th

erm

al g

radi

ents

are

not

la

rge

outs

ide

of fu

el

Low

Li

ttle

dat

a N

ot re

q’d

15

Bas

al p

lane

di

ffus

ion

Low

Po

rosi

ty is

pre

ferr

ed

trans

port

path

way

thro

ugh

grap

hite

Med

ium

Pa

st w

ork

and

liter

atur

e av

aila

ble

Not

req’

d

16

Ref

lect

or (i

n co

ntac

t w

/flow

) pe

rmea

bilit

y,

tortu

osity

Low

N

eede

d fo

r firs

t prin

cipl

e tra

nspo

rt m

odel

ing

(IC

and

Tr

ans)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

m

ater

ial P

IRT

Min

or m

od

17

FP tr

ansp

ort t

hrou

gh

refle

ctor

(in

cont

act

w/fl

ow)

Low

Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t prin

cipl

es (I

C a

nd

Tran

s)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te; e

xpec

ted

from

m

ater

ial P

IRT

Min

or m

od

18

Sorb

tivity

gra

phite

H

igh

Can

det

erm

ine

hold

up a

nd

rele

ase

of F

P (I

C a

nd

Tran

s.)

Med

ium

H

isto

rical

dat

a; n

eed

spec

ific

info

rmat

ion

on

grap

hite

and

radi

atio

n ef

fect

s

Min

or M

od

19

Flue

nce

effe

ct o

n tra

nspo

rt in

gra

phite

H

igh

Influ

ence

s tra

nspo

rt,

chem

ical

reac

tivity

M

ediu

m

His

toric

al d

ata;

nee

d sp

ecifi

c in

form

atio

n on

gr

aphi

te a

nd ra

diat

ion

effe

cts

Maj

or n

eed

20

C-1

4, C

l-36,

Co-

60

gene

ratio

n an

d in

vent

ory

Low

R

adio

isot

ope

gene

rate

d fr

om im

purit

ies,

mig

ht

beco

me

oper

atio

nal i

ssue

(I

C)

Med

ium

H

isto

rical

dat

a; P

each

B

otto

m H

TGR

M

inor

mod

, se

nsiti

ve to

gr

aphi

te h

andl

ing

Page 92: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-4

(con

tinue

d)

B-32

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

21

A

ir at

tack

on

grap

hite

H

igh

Gra

phite

ero

sion

/oxi

datio

n;

Fe/C

s cat

alys

is li

bera

ting

FPs (

Tran

s)

Med

ium

H

isto

rical

dat

a M

ajor

nee

d fo

r se

vere

acc

iden

ts

22

Stea

m a

ttack

on

grap

hite

H

igh

If c

redi

ble

sour

ce o

f wat

er

pres

ent;

desi

gn d

epen

dent

(T

rans

)

Med

ium

H

isto

rical

dat

a M

ajor

nee

d fo

r se

vere

acc

iden

ts

Fis

sion

pro

duct

tran

spor

t in

reac

tor c

oola

nt sy

stem

and

con

finem

ent

23

FP sp

ecia

tion

in

carb

onac

eous

m

ater

ial

Hig

h C

hem

ical

form

in g

raph

ite

affe

cts t

rans

port

(IC

and

Tr

ans.)

Low

U

ncer

tain

and

/or

inco

mpl

ete;

spec

ific

impu

rity

effe

cts n

eed

to

be d

eter

min

ed

Maj

or n

eed

24

FP sp

ecia

tion

durin

g m

ass t

rans

fer

Hig

h C

hem

ical

cha

nge

can

alte

r vo

latil

ity

Med

ium

H

isto

rical

dat

a, n

eed

spec

ific

info

rmat

ion.

G

ood

for m

etal

s, ox

ides

. U

ncer

tain

for

carb

ides

and

car

bony

ls

Maj

or n

eed

25

“Kno

ck-a

long

” Lo

w

Alp

ha re

coil

trans

port

of

depo

site

d pa

rticl

es o

n su

rfac

es; s

low

com

pare

d to

flu

id fl

ow tr

ansp

ort

Med

ium

St

udie

d in

act

inid

e-be

arin

g pa

rticl

es

Ade

quat

e

26

Dus

t gen

erat

ion

Hig

h V

ecto

r for

FP

trans

port;

po

ssib

ility

of h

igh

mob

ility

M

ediu

m

Lim

ited

expe

rienc

e;

lack

spec

ific

syst

em

info

rmat

ion

Maj

or n

eed;

impo

rt fr

om o

ther

gro

ups

27

(De)

Abs

orpt

ion

on

dust

H

igh

Prov

ides

cop

ious

surf

ace

area

for F

P ab

sorp

tion

Low

Li

mite

d ex

perie

nce;

la

ck sp

ecifi

c de

tails

M

ajor

nee

d

28

H-3

gen

erat

ion

and

circ

ulat

ing

cool

ant

inve

ntor

y

Med

ium

R

adio

isot

ope,

an

issu

e w

ith

oper

atio

nal r

elea

se. H

-3

prod

uctio

n fr

om H

e-3

in

cool

ant,

tern

ary

fissi

on,

and

Li-6

in g

raph

ite

Med

ium

H

isto

rical

dat

a; P

each

B

otto

m H

TGR

M

inor

mod

29

Ag-

110m

ge

nera

tion,

tran

spor

t H

igh

(O&

M)

Low

(rel

ease

) R

adio

isot

ope;

sign

ifica

nt

O&

M d

ose

on c

ool;

met

allic

com

pone

nts

Low

Li

mite

d da

ta; u

nkno

wn

trans

port

mec

hani

sm

Maj

or n

eed

Page 93: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-4

(con

tinue

d)

B-33

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

30

O

ther

act

ivat

ion

prod

ucts

(e.g

., C

s-13

4, M

n-55

, Fe-

56)

Low

R

adio

isot

opes

; pot

entia

l O

&M

dos

e M

ediu

m

Expe

rienc

e; li

mite

d in

form

atio

n M

inor

mod

31

Nuc

leat

ion

M

ediu

m

Unc

lear

due

to e

xtre

mel

y lo

w F

P va

por c

once

ntra

tion

antic

ipat

ed

Med

ium

H

isto

rical

dat

a M

ajor

nee

d

32

Aer

osol

gro

wth

M

ediu

m

Low

con

cent

ratio

n g

row

th

can

lead

to h

igh

shap

e fa

ctor

s and

unu

sual

size

di

strib

utio

n; b

asic

dus

t ch

arac

teri

stic

s (kn

own)

w

ill h

ave

a m

ajor

influ

ence

Low

R

egim

e ha

s not

bee

n st

udie

d pr

evio

usly

M

ajor

nee

d

33

Surf

ace

roug

hnes

s M

ediu

m

Aff

ects

aer

osol

dep

ositi

on

1-5

mic

ron

parti

cles

(IC

an

d Tr

ans.)

Med

ium

In

itial

info

rmat

ion

from

m

anuf

actu

rer;

evol

utio

n of

surf

ace

roug

hnes

s du

ring

oper

atio

n no

t w

ell k

now

n

Min

or m

od

34

Coo

lant

che

mic

al

inte

ract

ion

w/

surf

aces

Hig

h C

hang

es o

xyge

n an

d ca

rbon

pot

entia

l whi

ch c

an

affe

ct n

atur

e an

d qu

antit

y of

sorb

ed sp

ecie

s (IC

and

Tr

ans.)

Med

ium

Su

rfac

e pr

oper

ties a

re

criti

cal,

need

allo

y da

ta

Maj

or n

eed

35

FP d

iffus

ivity

; so

rbtiv

ity in

no

ngra

phite

surf

aces

Hig

h D

eter

min

es F

P lo

catio

n du

ring

oper

atio

n; a

cts a

s a

trap

durin

g tra

nsie

nt (I

C

and

Tran

s.)

Low

Li

ttle

info

rmat

ion

on

mat

eria

ls o

f int

eres

t M

ajor

nee

d

36

Aer

osol

/dus

t de

posi

tion

Hig

h G

ravi

tatio

nal,

iner

tial,

ther

mop

hore

sis,

elec

trost

atic

, diff

usio

nal,

turb

opho

resi

s (Tr

ans.)

Med

ium

R

easo

nabl

y w

ell-

deve

lope

d th

eory

of

aero

sol d

epos

ition

by

mos

t mec

hani

sms

exce

pt in

ertia

l im

pact

in

com

plex

geo

met

ries;

ap

plic

abili

ty to

NG

NP

uncl

ear

Min

or m

od; m

ajor

ne

ed w

ith re

spec

t to

com

pone

nts s

uch

as tu

rbin

e an

d IH

X

Page 94: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-4

(con

tinue

d)

B-34

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

37

A

eros

ol/d

ust

boun

ce, b

reak

up

durin

g de

posi

tion

Med

ium

C

an m

odify

dep

ositi

on

prof

ile a

nd su

spen

ded

aero

sol d

istri

butio

n

Low

Th

eory

, dat

a, a

nd

mod

els l

acki

ng

Maj

or n

eed

38

Res

uspe

nsio

n H

igh

Flow

/vib

ratio

n in

duce

d,

salta

tion;

mec

hani

cal

forc

es c

an re

leas

e FP

s fro

m

pipe

surf

ace

laye

rs/fi

lms

(Tra

ns.)

Low

La

ck o

f dat

a an

d m

odel

s for

ant

icip

ated

co

nditi

ons

Maj

or n

eed

39

Con

finem

ent a

eros

ol

phys

ics

Hig

h A

nalo

gous

to L

WR

aer

osol

be

havi

or/p

hysi

cs, d

elta

-T,

chem

istry

; im

porta

nt

hold

up m

echa

nism

(Tra

ns.)

Med

ium

R

easo

nabl

y w

ell-

deve

lope

d th

eory

of

aero

sol b

ehav

ior;

appl

icab

ility

to N

GN

P un

clea

r

Min

or m

od

40

Dus

t dep

ositi

on o

n ve

ssel

and

RC

CS

hard

war

e

Low

N

ot im

porta

nt fo

r FP

trans

port;

but

may

aff

ect

radi

ativ

e he

at tr

ansf

er in

re

acto

r cav

ity

Low

V

ery

limite

d da

ta

Maj

or n

eed

41

Cor

rosi

on p

rodu

cts

Low

Sp

alle

d su

rfac

e fil

ms;

low

co

rros

ion

envi

ronm

ent (

IC

and

Tran

s.)

Hig

h Pa

st e

xper

ienc

e A

dequ

ate

42

Eros

ion

prod

ucts

, no

ncar

bon

Low

Lo

w c

once

ntra

tion

of

coar

se m

ater

ials

(IC

and

Tr

ans.)

Low

La

ck o

f des

ign

info

rmat

ion;

co

nfig

urat

ion

and

mat

eria

ls sp

ecifi

c

Ade

quat

e

43

Was

h-of

f H

igh

If c

redi

ble

sour

ce o

f wat

er

pres

ent;

desi

gn d

epen

dent

(T

rans

.)

Med

ium

So

me

expe

rimen

tal d

ata

avai

labl

e M

inor

mod

44

Failu

re m

odes

of

auxi

liary

syst

ems

(e.g

., ga

s cle

anup

, ho

ldup

, ref

uelin

g)

Med

ium

Po

tent

ial r

elea

se d

ue to

fa

ilure

(Tra

ns.)

Med

ium

D

esig

n sp

ecifi

c; h

ave

expe

rienc

e fr

om o

ther

de

sign

s

Min

or m

od

Page 95: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-4

(con

tinue

d)

B-35

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

45

R

adio

lysi

s eff

ects

in

conf

inem

ent

Hig

h FP

(e.g

., I,

Ru,

Te)

ch

emis

try, p

aint

che

mis

try

(dep

ende

nt o

n co

nfin

emen

t ra

diat

ion

leve

l) (T

rans

.)

Med

ium

LW

R e

xper

ienc

e an

d da

ta

Min

or m

od

46

Filtr

atio

n H

igh

Trad

ition

al p

assi

ve

char

coal

/HEP

A (T

rans

.) H

igh

His

toric

al e

xper

ienc

e A

dequ

ate

47

Prod

uctio

n/co

mbu

sti

on o

f fla

mm

able

gas

M

ediu

m

CO

, H2 p

rodu

ctio

n is

sues

, IH

X se

cond

ary-

prim

ary

leak

, pot

entia

l res

uspe

nsio

n an

d ch

emic

al

trans

form

atio

n of

FPs

(T

rans

.)

Hig

h H

isto

rical

exp

erie

nce

Ade

quat

e

48

Com

bust

ion

of d

ust

in c

onfin

emen

t H

igh

Sour

ce o

f hea

t and

di

strib

utio

n of

FPs

w/in

co

nfin

emen

t

Med

ium

IT

ER d

ata

Maj

or n

eed

49

NG

NP-

uniq

ue

leak

age

path

bey

ond

conf

inem

ent

Hig

h IH

X to

seco

ndar

y si

te

cont

amin

atio

n; c

ould

be

risk

dom

inan

t (Tr

ans.)

Hig

h C

ontin

gent

on

spec

ific

desi

gn k

now

ledg

e M

inor

mod

50

Con

finem

ent

leak

age

path

; rel

ease

ra

te th

roug

h pe

netra

tions

Hig

h C

able

/pip

e pe

netra

tions

, cr

acks

, hol

es, H

VA

C

(Tra

ns.)

Med

ium

B

uild

ing

leak

age

expe

rienc

e, d

esig

n sp

ecifi

c

Ade

quat

e

51

Cab

le p

yrol

ysis

, fire

H

igh

Soot

gen

erat

ion

and

chan

ges t

o io

dine

ch

emis

try

Med

ium

LW

R e

xper

ienc

e M

ajor

nee

d

52

Pres

sure

relie

f-va

lve-

filte

r Lo

w

Ope

ning

of t

he re

lief v

alve

ge

nera

tes a

tran

spor

t pat

h th

at m

ay b

e fil

tere

d;

depe

nds o

n de

sign

.

Hig

h A

ir cl

eani

ng te

chno

logy

A

dequ

ate

53

Rec

ritic

ality

(slo

w)

Hig

h A

dditi

onal

ther

mal

load

to

fuel

; inc

reas

es so

urce

but

no

t exp

ecte

d to

aff

ect

trans

port

path

Med

ium

H

eat l

oad

easi

ly

com

pute

d w

ith e

xist

ing

tool

s; e

ffec

t on

fissi

on

prod

ucts

not

com

plet

ely

know

n

Min

or m

od

Page 96: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

T

able

B-4

(con

tinue

d)

B-36

ID

No.

Issu

e (p

heno

men

a,

proc

ess,

geom

etry

co

nditi

on)

Impo

rtan

ce fo

r N

GN

P(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

54

Fu

el-d

amag

ing

RIA

H

igh

An

inte

nse

puls

e co

uld

dam

age

fuel

; inc

reas

es

sour

ce b

ut n

ot e

xpec

ted

to

affe

ct tr

ansp

ort p

ath

Med

ium

So

me

data

exi

sts b

ut

outs

ide

of e

xpec

ted

acci

dent

env

elop

e

Min

or m

od

55

Arg

on a

ctiv

atio

n in

re

acto

r cav

ity

Hig

h (n

orm

al

oper

atio

n)

Air

in c

avity

act

ivat

ed b

y ne

utro

n le

akag

e an

d ca

n es

cape

to e

nviro

nmen

t

Hig

h Ea

sily

com

pute

d w

ith

exis

ting

tool

s A

dequ

ate

56

Red

istri

butio

n of

fis

sion

pro

duct

s due

to

con

trol r

od

mov

emen

t

Low

A

rticu

late

d co

ntro

l rod

jo

ints

can

col

lect

and

re

dist

ribut

e fis

sion

pr

oduc

ts

Low

Sp

ecifi

cs o

n C

RD

ho

usin

g an

d ar

ticul

ated

Si

C c

ompo

site

hou

sing

TB

D

Min

or m

od

Page 97: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-37

Table B-5. Individual PIRT Ranking Table Panelist: Robert Wichner

April 23, 2007 OUTLINE PART A: GENERAL ISSUES PART B: FP TRANSPORT/HOLDUP IN CARBON MATRIX AND GRAPHITE PART C: FP EMISSION FROM GRAPHITE/MATRIX SURFACE PART D: FP TRANSPORT/BEHAVIOR IN COOLANT PART E: FP DEPOSITION/SORPTION ON PRIMARY SYSTEM SURFACES PART F: RELEASES FROM THE PRIMARY SYSTEM—NORMAL OPERATION PART G: RELEASES FROM THE PRIMARY SYSTEM—ACCIDENT CONDITIONS

G.1 POWER VERSION AND GENERAL ISSUES G.2 PROCESS HEAT VERSION

PART H: RELEASES FROM THE CONFINEMENT

Page 98: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-38

Page intentionally blank

Page 99: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-39

Part

A:

Gen

eral

issu

es a

ffec

ting

FP tr

ansp

ort

Issu

es:

Inpu

t fro

m o

ther

PIR

T ar

eas

● Pr

oduc

tion

of a

ctiv

atio

n pr

oduc

ts

● M

ater

ial p

rope

rties

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

1

Dec

ay h

eat &

tran

sien

t po

wer

leve

l

Not

dir

ect i

nput

to F

P tr

ansp

ort;

subs

umed

in

item

-8

Hig

h En

ergy

sour

ce d

rivin

g pr

oble

m (I

C a

nd T

rans

.) *H

igh

Bou

ndar

y co

nditi

ons

expe

cted

from

TF

PIR

T A

dequ

ate

2 M

ater

ial/s

truct

ure

pr

oper

ties

Too

gene

ral.

Spec

ific

prop

ertie

s cite

d in

Pa

rts B

, D a

nd G

.

Hig

h D

ensi

ty, v

isco

sity

, co

nduc

tivity

, etc

., im

porta

nt p

aram

eter

s in

calc

ulat

ions

(IC

and

Tr

ans.)

*Med

(gra

phite

) H

igh

(ste

el, c

oncr

ete)

G

raph

ite ty

pe n

ot

sele

cted

, exp

ecte

d fr

om

mat

eria

l PIR

T

Min

or M

od

(gra

phite

) A

dequ

ate

(ste

el,

conc

rete

)

4 G

raph

ite g

eom

etry

To

o ge

nera

l, an

d ba

sic

Hig

h C

ore

stru

ctur

e (d

esig

n in

form

atio

n)

Hig

h W

ell k

now

n fo

r IC

A

dequ

ate

for I

C

Maj

or N

eed

for a

ir in

gres

s 5

Ther

mal

-flu

id

prop

ertie

s, Tr

ansf

erre

d to

item

6,

Part

D, a

nd it

em 1

25,

Part

H.1

Hig

h Te

mpe

ratu

re, p

ress

ure,

ve

loci

ty c

ompu

tatio

ns

(IC

and

Tra

ns.)

*Med

ium

W

ell k

now

n fo

r He.

U

ncer

tain

ty in

co

mpo

sitio

n of

gas

m

ixtu

res m

akes

gas

pr

oper

ty c

alcu

latio

n m

ore

diff

icul

t, ex

pect

ed

from

TF

PIR

T

Ade

quat

e

8 Te

mpe

ratu

re (s

truct

ure

and

gas)

and

pre

ssur

e di

strib

utio

n

Hig

h In

form

atio

n ne

eded

to

mod

el a

ccid

ent (

IC a

nd

Tran

s)

Hig

h N

eed

to c

oord

inat

e w

/ ot

her g

roup

s; e

xpec

ted

from

TF

PIR

T

Sam

e as

TF

grou

p

20

C-1

4, C

l-36,

Co-

60

Low

M

ediu

m

Rad

iois

otop

e ge

nera

ted

from

impu

ritie

s, m

ight

be

com

e op

erat

iona

l is

sue.

C-1

4 m

ay b

ecom

e a

publ

ic is

sue

Med

ium

H

isto

rical

dat

a; P

each

B

otto

m H

TGR

M

inor

mod

, se

nsiti

ve to

gr

aphi

te h

andl

ing

Page 100: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

Pa

rt A

(con

tinue

d)

B-40

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

29

A

g-11

0m g

ener

atio

n,

trans

port,

and

in

vent

ory

dist

ribu

tion

Hig

h (O

&M

) Lo

w (r

elea

se)

Rad

iois

otop

e; si

gnifi

cant

O

&M

dos

e on

coo

l; m

etal

lic c

ompo

nent

s

Low

Li

mite

d da

ta, u

nkno

wn

trans

port

mec

hani

sm

Maj

or n

eed

30

Oth

er a

ctiv

atio

n pr

oduc

ts (e

.g. C

s-13

4,

Mn-

55, F

e-56

)

Low

R

adio

isot

opes

; pot

entia

l O

&M

dos

e M

ediu

m

Expe

rienc

e, li

mite

d in

form

atio

n M

inor

mod

33

Surf

ace

roug

hnes

s M

ediu

m

Aff

ects

aer

osol

de

posi

tion

1 to

5 m

icro

n pa

rticl

es (I

C a

nd T

rans

.)

Med

ium

In

itial

info

rmat

ion

from

m

anuf

actu

rer;

evol

utio

n of

surf

ace

roug

hnes

s du

ring

oper

atio

n no

t w

ell k

now

n

Min

or m

od

53

Rec

ritic

ality

(slo

w)

Hig

h A

dditi

onal

ther

mal

load

to

fuel

. Inc

reas

es so

urce

bu

t not

exp

ecte

d to

aff

ect

trans

port

path

.

Med

ium

H

eat l

oad

easi

ly

com

pute

d w

ith e

xist

ing

tool

s; e

ffec

t on

fissi

on

prod

ucts

not

com

plet

ely

know

n

Min

or m

od

54

Fuel

-dam

agin

g R

IA

Hig

h A

n in

tens

e pu

lse

coul

d da

mag

e fu

el.

Incr

ease

s so

urce

but

not

exp

ecte

d to

aff

ect t

rans

port

path

.

Med

ium

So

me

data

exi

sts,

but

outs

ide

of e

xpec

ted

acci

dent

env

elop

e

Min

or m

od

100

Cs-

134,

Cs-

136

prod

uctio

n M

ediu

m

Affe

cts m

aint

enan

ce d

ose

Hig

h Pr

oduc

tion

met

hod

know

n M

inor

Mod

101

H-3

, pro

duct

ion

from

al

l sou

rces

, inv

ento

ry

dist

ribu

tion

Hig

h C

an d

iffus

e ac

ross

IHX

boun

dary

. M

ediu

m

Dat

a on

ear

lier

mat

eria

ls a

vaila

ble

Min

or m

od

Page 101: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-41

Part

B:

Tra

nspo

rt h

oldu

p in

car

bon

mat

rix

and

grap

hite

[Ter

min

olog

y: P

BM

R c

arbo

n is

term

ed “

mat

rix”

in b

oth

the

fuel

led

and

unfu

eled

zon

es.

Pris

mat

ic fu

el “

mat

rix”

refe

rs to

the

com

pact

; gra

phite

to th

e bl

ock.

] Is

sues

: ●

FP tr

ansp

ort r

ates

● FP

Inve

ntor

y in

mat

rix/g

raph

ite

FP B

ehav

ior d

urin

g ac

cide

nts

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

3

Gra

phite

impu

rity

leve

ls

Med

ium

Im

purit

y re

actio

n w

ith F

P,

nucl

ear g

raph

ite e

xpec

ted

to h

ave

low

impu

rity

leve

ls

*Hig

h W

ill b

e m

easu

red;

ex

pect

ed fr

om

mat

eria

l PIR

T

Ade

quat

e

10

Mat

rix p

erm

eabi

lity,

to

rtuos

ity

Tort

uosi

ty is

a d

eriv

ed

quan

tity,

not

dir

ectly

us

able

Hig

h M

ediu

m

Nee

ded

for f

irst p

rinci

ple

trans

port

mod

elin

g (I

C

and

Tran

s)

Nee

ded

to d

eter

min

e pe

rmea

tion

flow

due

to _

P ac

ross

mat

rix;

som

e FP

s m

ay b

e so

tran

spor

ted

Low

M

ediu

m

FP h

oldu

p as

ba

rrie

r; re

leas

e as

du

st; e

xpec

ted

from

m

ater

ial P

IRT

Maj

or n

eed

11

FP tr

ansp

ort t

hrou

gh

mat

rix

Hig

h Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t prin

cipl

es (I

C a

nd

Tran

s)

Requ

ired

to a

sses

s FP

hold

up a

nd tr

ansp

ort i

n m

atri

x

Low

FP

hol

dup

as

barr

ier,

rele

ase

as

dust

, Exp

ecte

d fr

om m

ater

ial

PIR

T. O

ne o

r tw

o co

nsta

nt e

mpi

rica

l m

odel

nee

ds to

be

deve

lope

d.

Radi

atio

n ef

fect

m

ay b

e si

gnifi

cant

.

Maj

or n

eed

Page 102: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

Pa

rt B

(con

tinue

d)

B-42

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

12

Fu

el b

lock

pe

rmea

bilit

y, to

rtuos

ity

Tort

uosi

ty is

a d

eriv

ed

quan

tity,

not

dir

ectly

us

able

Hig

h M

ediu

m

Nee

ded

for f

irst p

rinci

ple

trans

port

mod

elin

g (I

C

and

Tran

s)

Nee

ded

for d

eter

min

ing

perm

eatio

n flo

w d

ue to

a

ΔP a

cros

s gra

phite

web

; so

me

FPs m

ay b

e so

tr

ansp

orte

d

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te;

expe

cted

from

m

ater

ial P

IRT

Maj

or n

eed

Min

or m

od;

perm

eatio

n fo

r a

give

n ΔP

is

pred

icta

ble

from

a

wel

l-kno

wn

corr

elat

ion.

13

FP tr

ansp

ort t

hrou

gh

fuel

blo

ck

Hig

h Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t prin

cipl

es (I

C a

nd

Tran

s)

Requ

ired

to a

sses

s FP

hold

up a

nd tr

ansp

ort i

n gr

aphi

te; s

igni

fican

t tr

ansp

ort f

acto

r

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te;

Expe

cted

from

m

ater

ial P

IRT

affe

cted

by

radi

atio

n le

vel a

nd

fluen

ce; d

epen

ds

on F

P sp

ecie

s in

grap

hite

; req

uire

s te

st d

ata,

som

e of

w

hich

is a

vaila

ble

Maj

or n

eed

14

Ther

mal

(Sor

et)

diff

usio

n

Low

Th

erm

al g

radi

ents

are

not

la

rge

outs

ide

of fu

el

Low

Li

ttle

dat

a N

ot re

q’d

15

Bas

al p

lane

diff

usio

n Lo

w

Poro

sity

is p

refe

rred

tra

nspo

rt pa

thw

ay th

roug

h gr

aphi

te

Med

ium

Pa

st w

ork

and

liter

atur

e av

aila

ble

Not

req’

d

16

Ref

lect

or (i

n co

ntac

t w

/flow

) per

mea

bilit

y;

tortu

osity

to

rtuo

sity

is n

ot d

irec

tly

usab

le

Low

N

eede

d fo

r firs

t prin

cipl

e tra

nspo

rt m

odel

ing

(IC

an

d Tr

ans)

. Req

uire

d to

de

term

ine

perm

eatio

n flo

w d

ue to

an

appl

ied ΔP

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te;

expe

cted

from

m

ater

ial P

IRT

Min

or m

od

17

FP tr

ansp

ort t

hrou

gh

refle

ctor

(in

cont

act

w/fl

ow)

Low

Ef

fect

ive

rele

ase

rate

co

effic

ient

(em

piric

al

cons

tant

) as a

n al

tern

ativ

e to

firs

t prin

cipl

es (I

C a

nd

Tran

s)

*Med

ium

D

epen

ds o

n sp

ecifi

c gr

aphi

te;

expe

cted

from

m

ater

ial P

IRT

Min

or m

od

Page 103: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

Pa

rt B

(con

tinue

d)

B-43

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

18

So

rbtiv

ity o

f gr

aphi

te

(i.e.

, che

mis

orpt

ion

of

FPs i

n m

atri

x an

d gr

aphi

te)

Hig

h C

an d

eter

min

e af

fect

ho

ldup

and

rele

ase

of F

P (I

C a

nd T

rans

.)

Med

ium

H

isto

rical

dat

a;

need

spec

ific

info

rmat

ion

on

grap

hite

and

ra

diat

ion

effe

cts

Min

or m

od

19

Flue

nce

effe

ct o

n tra

nspo

rt in

gra

phite

H

igh

Influ

ence

s tra

nspo

rt;

chem

ical

reac

tivity

M

ediu

m

His

toric

al d

ata;

ne

ed sp

ecifi

c in

form

atio

n on

gr

aphi

te a

nd

radi

atio

n ef

fect

s

Maj

or n

eed

23

FP sp

ecia

tion

in

carb

onac

eous

mat

eria

l in

mat

rix

and

grap

hite

Hig

h C

hem

ical

form

in g

raph

ite

affe

cts t

rans

port

Low

U

ncer

tain

and

/or

inco

mpl

ete

Maj

or n

eed

26

Dus

t gen

erat

ion

in

mat

rix a

nd g

raph

ite b

y ab

rasi

on a

nd o

ther

m

echa

nism

s

Hig

h D

estin

atio

n fo

r FP

via

sorp

tion

Med

ium

So

me

data

for

pebb

le fu

els;

less

fo

r pris

mat

ic

Min

or m

od

102

Inte

rnal

surf

ace

area

of

mat

rix

and

grap

hite

M

ediu

m

Para

met

er a

ffect

s in

terp

reta

tion

of tr

ansp

ort

rate

Med

ium

W

ill b

e sp

ecifi

ed

and/

or m

easu

red

Min

or m

od

103

Inve

ntor

y of

FPs

in

mat

rix

and

grap

hite

H

igh

Initi

al c

ondi

tion

for

acci

dent

ass

essm

ent.

Med

ium

M

ay b

e es

timat

ed

from

pro

duct

ion,

tr

ansp

ort a

nd

sorp

tion

data

Min

or m

od

104

Impu

rity

leve

ls in

m

atri

x an

d gr

aphi

te

Low

Af

fect

s sor

ptio

n an

d ox

idat

ion

rate

s M

ediu

m

To b

e gi

ven

by te

ch

spec

s Ad

equa

te

105

Che

mic

al a

nd p

hysi

cal

inte

ract

ion

of F

Ps w

ith

grap

hite

Med

ium

Ai

ds u

nder

stan

ding

of

tran

spor

t Lo

w

Kno

wn

for s

ome

FPs;

not

kno

wn

for

man

y

Min

or m

od

Page 104: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-44

Part

C:

Em

issi

on fr

om fu

el e

lem

ent s

urfa

ce

Issu

es:

● V

olat

ility

of F

P sp

ecie

s on

grap

hite

/mat

rix su

rfac

e

● M

ass t

rans

fer r

ate

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

24

FP sp

ecia

tion

durin

g m

ass

trans

fer

Hig

h C

hem

ical

cha

nge

can

alte

r vol

atili

ty

Med

ium

H

isto

rical

dat

a; n

eed

spec

ific

info

rmat

ion;

go

od fo

r met

als,

oxid

es;

unce

rtain

for c

arbi

des

and

carb

onyl

s

Maj

or n

eed

25

“Kno

ck-a

long

” Lo

w

Alp

ha re

coil

trans

port

of d

epos

ited

parti

cles

on

surf

aces

; slo

w

com

pare

d to

flui

d flo

w

trans

port

Med

ium

St

udie

d in

act

inid

e-be

arin

g pa

rticl

es

Ade

quat

e

106

Vola

tility

of F

Ps o

n gr

aphi

te a

nd m

atri

x su

rfac

es

Hig

h K

ey fa

ctor

in m

ass

tran

spor

t Lo

w

FP sp

ecie

s usu

ally

not

w

ell-k

now

n M

inor

mod

107

FP re

mov

al w

ith d

ust

Med

ium

U

neva

luat

ed tr

ansp

ort

step

Lo

w

No

know

n da

ta

Min

or m

od

108

Mas

s tra

nsfe

r rat

e fr

om

mat

rix

and

grap

hite

to

cool

ant

Hig

h D

efin

es g

raph

ite to

co

olan

t tra

nsfe

r rat

e M

ediu

m

May

be

estim

ated

, if F

P sp

ecie

s are

kno

wn

Min

or m

od

Page 105: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-45

Part

D:

FP tr

ansp

ort i

n th

e co

olan

t, no

rmal

ope

ratio

n

Issu

es:

● FP

spec

iatio

n in

coo

lant

● O

xyge

n po

tent

ial

FP a

ssoc

iatio

n w

ith d

ust

Nuc

leat

ion

of lo

w v

olat

ile F

Ps

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kn

owle

dge

(Hig

h, M

ed, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

6

Gas

com

posi

tion

durin

g no

rmal

ope

ratio

n H

igh

Oxy

gen

pote

ntia

l and

ch

emic

al a

ctiv

ity. T

here

is

also

a n

eed

to k

now

the

He-

3 le

vel f

or a

sses

sing

H-3

pr

oduc

tion

in th

e co

olan

t.

Med

ium

Lo

w

Cen

tral i

ssue

for

chem

ical

reac

tion

mod

elin

g; F

P sp

ecia

tion;

scen

ario

de

pend

ent,

no

t kno

wn

for n

orm

al

oper

atio

n

Ade

quat

e (d

epre

ssur

izat

ion)

Maj

or n

eed

(air

ingr

ess)

27

(De)

Abs

orpt

ion

on d

ust

Adso

rptio

n H

igh

Prov

ides

cop

ious

surf

ace

area

fo

r FP

abso

rptio

n ad

sorp

tion

Med

ium

Lo

w

Lim

ited

expe

rienc

e;

lack

spec

ific

deta

ils;

little

or n

o da

ta

Maj

or n

eed

28

H-3

gen

erat

ion

in th

e co

olan

t and

circ

ulat

ing

cool

ant i

nven

tory

Med

ium

H

igh

Cri

tical

issu

e fo

r pro

cess

he

at v

ersi

ons;

radi

oiso

tope

, an

issu

e w

ith o

pera

tiona

l re

leas

e; H

-3 p

rodu

ctio

n fr

om

He-

3 in

coo

lant

; (al

so te

rnar

y fis

sion

, and

Li-6

in g

raph

ite)

Med

ium

H

isto

rical

dat

a; P

each

B

otto

m H

TGR

; may

be

det

erm

ined

from

ne

utro

n flu

x an

d H

e-3

leve

l

Min

or m

od

31

Nuc

leat

ion

M

ediu

m

Unc

lear

due

to e

xtre

mel

y lo

w

FP v

apor

con

cent

ratio

n an

ticip

ated

. An

impo

rtan

t fa

ctor

in d

epos

ition

and

lifto

ff

Med

ium

H

isto

rical

dat

a U

ncle

ar d

ue to

ex

trem

ely

low

FP

vapo

r con

cent

ratio

n

Maj

or n

eed

32

Aer

osol

gro

wth

H

igh

Low

con

cent

ratio

n gr

owth

ca

n le

ad to

hig

h sh

ape

fact

ors

and

unus

ual s

ize

dist

ribut

ion

Low

R

egim

e ha

s not

bee

n st

udie

d pr

evio

usly

M

ajor

nee

d

55

Arg

on a

ctiv

atio

n in

re

acto

r cav

ity

Hig

h (n

orm

al

oper

atio

n)

Air

in c

avity

act

ivat

ed b

y ne

utro

n le

akag

e an

d ca

n es

cape

to e

nviro

nmen

t

Hig

h Ea

sily

com

pute

d w

ith

exis

ting

tool

s A

dequ

ate

Page 106: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

Pa

rt D

(con

tinue

d)

B-46

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kn

owle

dge

(Hig

h, M

ed, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

11

0 FP

spec

iatio

n in

the

cool

ant

Hig

h Af

fect

s dep

ositi

on a

nd

sorp

tion

Med

ium

C

an b

e ap

prox

imat

ed

if co

nditi

ons a

re

spec

ified

Min

or m

od

111

Ag-1

10m

and

Cs-

137

tran

spor

t in

the

cool

ant

Hig

h Im

port

ant s

peci

al c

ases

of

item

110

Lo

w

Dep

ends

on

cool

ant

envi

ronm

ent

Maj

or n

eed

120

FP in

vent

ory

in th

e co

olan

t cle

anup

syst

em

Med

ium

Sh

ould

be

eval

uate

d fo

r po

ssib

le in

volv

emen

t in

acci

dent

rele

ases

Low

N

ot y

et a

naly

zed

Min

or m

od

Page 107: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-47

Part

E:

Dep

ositi

on so

rptio

n on

pri

mar

y sy

stem

surf

aces

—no

rmal

ope

ratio

n

Issu

es:

● A

eros

ol a

nd d

ust d

epos

ition

● C

hem

isor

ptio

n on

met

allic

surf

aces

● C

hem

ical

reac

tion

with

surf

aces

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

9

FP p

late

-out

and

dus

t di

strib

utio

n un

der n

orm

al

oper

atio

n.

FP p

late

-out

is a

n am

bigu

ous

term

that

can

app

ly to

eith

er

chem

ical

ads

orpt

ion

or d

ust

depo

sitio

n; it

shou

ld b

e av

oide

d

Hig

h In

itial

con

ditio

n fo

r ac

cide

nt

Med

ium

Lo

w

Theo

ry a

nd m

odel

s la

ck sp

ecifi

cs;

enor

mou

s err

or b

ands

in

dus

t dep

ositi

on d

ata;

di

sagr

eem

ents

in

pred

ictiv

e m

odel

s

Maj

or n

eed

34

Coo

lant

che

mic

al in

tera

ctio

n w

/ sur

face

s H

igh

Cha

nges

oxy

gen

and

carb

on p

oten

tial w

hich

ca

n af

fect

nat

ure

and

quan

tity

of so

rbed

sp

ecie

s (IC

and

Tra

ns.)

Affe

cts d

epos

ition

and

lif

toff

pred

ictio

ns;

affe

cts

deco

ntam

inat

ion

met

hods

Med

ium

Su

rfac

e pr

oper

ties a

re

criti

cal;

need

allo

y da

ta; i

nter

actio

ns

depe

nd o

n co

olan

t ox

ygen

pot

entia

l, an

d co

olan

t im

puri

ties

Maj

or N

eed

35

FP d

iffus

ivity

, sor

btiv

ity in

no

ngra

phite

surf

aces

; ch

emic

al so

rptiv

ity sh

ould

be

emph

asiz

ed

Hig

h D

eter

min

es A

ffect

s FP

loca

tion

durin

g op

erat

ion;

act

s as a

tra

p du

ring

trans

ient

(I

C a

nd T

rans

.)

Low

Li

ttle

info

rmat

ion

on

mat

eria

ls o

f int

eres

t; af

fect

s of r

adia

tion

on

sorp

tivity

are

si

gnifi

cant

and

in

suffi

cien

tly k

now

n

Maj

or N

eed

36

Aer

osol

/dus

t dep

ositi

on

(Clo

sely

rela

ted

to it

em 9

) H

igh

Gra

vita

tiona

l, in

ertia

l, th

erm

opho

resi

s, el

ectro

stat

ic,

diff

usio

nal,

turb

opho

resi

s (Tr

ans.)

Med

ium

R

easo

nabl

y w

ell-

deve

lope

d th

eory

of

aero

sol d

epos

ition

by

mos

t mec

hani

sms

exce

pt in

ertia

l im

pact

Min

or m

od

Page 108: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

Pa

rt E

(con

tinue

d)

B-48

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

N

o gr

avita

tiona

l se

ttlin

g in

the

prim

ary

syst

em; t

urbo

phor

esis

is

a n

ew o

ne o

n m

e

in c

ompl

ex g

eom

etrie

s;

Enor

mou

s err

or b

ands

fo

r pri

mar

y lo

op

cond

ition

s;

“rea

sona

bly

wel

l-de

velo

ped”

may

refe

r to

con

finem

ent

App

licab

ility

to N

GN

P un

clea

r 37

A

eros

ol/d

ust b

ounc

e, b

reak

up

durin

g de

posi

tion

Det

ails

subs

umed

in

depo

sitio

n co

rrel

atio

n.

Med

ium

C

an m

odify

dep

ositi

on

prof

ile a

nd su

spen

ded

aero

sol d

istri

butio

n

Low

Th

eory

, dat

a, a

nd

mod

els l

acki

ng

Maj

or N

eed

40

Dus

t dep

ositi

on o

n ve

ssel

and

R

CC

S ha

rdw

are

Low

N

ot im

porta

nt fo

r FP

trans

port

but m

ay

affe

ct ra

diat

ive

heat

tra

nsfe

r in

reac

tor

cavi

ty

Low

V

ery

limite

d da

ta

Maj

or n

eed

41

Cor

rosi

on p

rodu

cts

Low

Sp

alle

d su

rfac

e fil

ms;

lo

w c

orro

sion

en

viro

nmen

t (IC

and

Tr

ans.)

Hig

h Pa

st e

xper

ienc

e A

dequ

ate

42

Eros

ion

prod

ucts

, non

carb

on

Low

Lo

w c

once

ntra

tion

of

coar

se m

ater

ials

(IC

an

d Tr

ans.)

Low

La

ck o

f des

ign

info

rmat

ion;

co

nfig

urat

ion

and

mat

eria

ls sp

ecifi

c

Ade

quat

e

113

Sorp

tion

and

dust

dep

ositi

on

on tu

rbin

e su

rfac

es

Hig

h Im

port

ant s

peci

al

case

; affe

cts t

urbi

ne

life

and

mai

nten

ance

pr

oced

ures

; spe

cial

ca

se o

f dep

ositi

on a

nd

sorp

tion

Low

Ex

trem

e co

nditi

ons;

be

yond

usu

al

corr

elat

ions

Maj

or n

eed

Page 109: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-49

Part

F:

Rel

ease

s fro

m th

e pr

imar

y sy

stem

—no

rmal

ope

ratio

n

Issu

es:

● R

elea

se m

odes

(lea

kage

, ref

uelin

g)

Diff

usio

n in

to th

e IH

X

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

11

5 D

iffus

ion

of H

-3 th

roug

h th

e IH

X

Hig

h Im

port

ant f

or p

roce

ss

heat

con

cept

s M

ediu

m

Som

e da

ta o

n ot

her

met

als;

nee

d to

im

prov

e er

ror b

and

Min

or m

od

116

Prod

uct c

onta

min

atio

n, o

ther

th

an H

-3

Hig

h Im

port

ant f

or p

roce

ss

heat

con

cept

s M

ediu

m

Une

xplo

red

area

; ef

fect

of s

mal

l lea

ks

in th

e IH

X

Min

or m

od

117

Con

tam

inat

ion

of th

e H

e co

olan

t by

the

seco

ndar

y flu

id

Hig

h Po

ssib

le e

ffect

on

the

reac

tor;

inve

stm

ent

ques

tion

Med

ium

U

nexp

lore

d ar

ea;

effe

ct o

f sm

all l

eaks

in

the

IHX

Min

or m

od

118

He

(con

tain

ing

FPs)

leak

age

into

the

seco

ndar

y sy

stem

M

ediu

m

Doe

s not

app

ear t

o be

a

seri

ous i

ssue

M

ediu

m

Une

xplo

red

area

M

inor

mod

119

He

(con

tain

ing

FPs)

leak

age

into

the

conf

inem

ent

Med

ium

Le

akag

e m

odes

und

er

norm

al o

pera

tion

shou

ld b

e id

entif

ied

Med

ium

U

nexp

lore

d ar

ea (?

) M

inor

mod

Page 110: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-50

Part

G:

Fact

ors a

ffec

ting

rele

ases

from

the

prim

ary

syst

em—

acci

dent

con

ditio

ns

G.1

Gen

eral

issu

es a

nd p

ower

ver

sion

G

.2 P

roce

ss h

eat v

ersi

on

Is

sues

: ●

Rel

ease

s due

to D

-LO

FC

Rel

ease

s due

to P

-LO

FC w

ith v

entin

g

Part

G.1

—G

ener

al is

sues

and

pow

er c

onve

rsio

n

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

7

Gas

flow

pat

h pr

ior,

durin

g an

d po

st a

ccid

ent (

also

ap

plie

s to

Part

F)

Hig

h In

form

atio

n ne

eded

to

mod

el a

ccid

ent (

IC a

nd

Tran

s)

*Sam

e as

TF

grou

p N

eed

to c

oord

inat

e w

/ ot

her g

roup

s; e

xpec

ted

from

TF

PIR

T

Sam

e as

TF

grou

p

21

Air

atta

ck o

n gr

aphi

te a

nd it

s af

fect

on

FP re

leas

e H

igh

Gra

phite

ero

sion

/ ox

idat

ion;

Fe/

Cs

cata

lysi

s lib

erat

ing

FPs

(Tra

ns)

Med

ium

Lo

w

His

toric

al d

ata

Ther

e ar

e no

dat

a on

th

e ef

fect

of a

ir

oxid

atio

n on

rete

ntio

n of

FPs

in g

raph

ite

Maj

or n

eed

for

seve

re a

ccid

ents

22

Stea

m a

ttack

on

grap

hite

and

its

affe

ct o

n FP

rele

ase

Hig

h G

raph

ite e

rosi

on a

nd

oxid

atio

n; F

e/C

s ca

taly

sis l

iber

atin

g FP

s (tr

ans)

Med

ium

Lo

w

His

toric

al d

ata

Ther

e ar

e no

dat

a on

th

e ef

fect

of a

ir

oxid

atio

n on

rete

ntio

n of

FPs

in g

raph

ite

Maj

or n

eed

for

seve

re a

ccid

ents

43

Was

hoff

H

igh

If c

redi

ble

sour

ce o

f w

ater

is p

rese

nt; d

esig

n de

pend

ent

Med

ium

So

me

expe

rimen

tal

data

ava

ilabl

e M

inor

mod

44

Failu

re m

odes

of a

uxili

ary

syst

ems (

e.g.

, gas

cle

anup

, ho

ldup

, ref

uelin

g) a

nd F

P re

leas

e fr

om th

e ga

s cle

anup

sy

stem

Med

ium

H

igh

Pote

ntia

l rel

ease

due

to

failu

re; p

ossi

ble

dire

ct

path

to th

e at

mos

pher

e fr

om g

as c

lean

up

syst

em fa

ilure

(Tra

ns.)

Med

ium

D

esig

n sp

ecifi

c; h

ave

expe

rienc

e fr

om o

ther

de

sign

s but

no

expe

rienc

e fo

r gas

cl

eanu

p sy

stem

failu

re

Min

or m

od

Page 111: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

Pa

rt G

(con

tinue

d)

B-51

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

52

Pr

essu

re re

lief v

alve

filte

r Lo

w

Ope

ning

of t

he re

lief

valv

e ge

nera

tes a

tra

nspo

rt pa

th th

at m

ay

be fi

ltere

d; d

epen

ds o

n de

sign

Hig

h A

ir cl

eani

ng

tech

nolo

gy

Ade

quat

e

47

Prod

uctio

n/co

mbu

stio

n of

fla

mm

able

gas

M

ediu

m

Hig

h C

O, H

2 pro

duct

ion

issu

es; I

HX

seco

ndar

y-pr

imar

y le

ak; p

oten

tial

resu

spen

sion

and

ch

emic

al tr

ansf

orm

atio

n of

FPs

. (Tr

ans.)

dur

ing

air i

ngre

ss e

vent

Hig

h M

ediu

m

His

toric

al e

xper

ienc

e;

inad

equa

te d

ata

on

CO

, H2,

CO

2 pr

oduc

tion

durin

g ai

r in

gres

s

Ade

quat

e

56

Red

istri

butio

n of

fiss

ion

prod

ucts

due

to c

ontro

l rod

m

ovem

ent

Low

A

rticu

late

d co

ntro

l rod

jo

ints

can

col

lect

and

re

dist

ribut

e fis

sion

pr

oduc

ts

Low

Sp

ecifi

cs o

n C

RD

ho

usin

g an

d ar

ticul

ated

SiC

co

mpo

site

hou

sing

TB

D

Min

or m

od

112

Che

mic

al d

esor

ptio

n fr

om

met

al su

rfac

es u

nder

ac

cide

nt c

ondi

tions

, due

to

depr

essu

riza

tion

and/

or

heat

up

Hig

h Im

port

ant r

elea

se

sour

ce

Low

Re

quir

e hi

gh

tem

pera

ture

dat

a an

d da

ta u

nder

acc

iden

t en

viro

nmen

ts

Maj

or n

eed

114

Che

mic

al d

esor

ptio

n of

FPs

un

der a

ccid

ent c

ondi

tions

fr

om g

raph

ite a

nd m

atri

x (P

BMR)

, due

to v

entin

g an

d he

atup

Hig

h D

esor

ptio

n fr

om

grap

hite

or m

atri

x (P

BMR)

may

be

sign

ifica

nt in

put t

o so

urce

term

Low

Af

fect

s of i

mpo

sitio

n of

acc

iden

t con

ditio

ns

on g

raph

ite u

nkno

wn

Min

or m

od.

109

Gas

com

posi

tion

duri

ng

acci

dent

s H

igh

Intr

usio

n of

O2 a

nd N

2 du

ring

D-L

OFC

and

C

O a

nd C

O2 g

ener

atio

n af

fect

s spe

ciat

ion,

gas

pr

oper

ties,

and

prod

uctio

n of

flam

mab

le

gase

s

Low

Re

quir

es in

put f

rom

ac

cide

nt fl

ow a

naly

sis

Maj

or n

eed

Page 112: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

Pa

rt G

(con

tinue

d)

B-52

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

12

1 D

ust a

nd a

eros

ol li

ftoff

from

m

etal

surf

aces

due

to

depr

essu

riza

tion

flow

s and

vi

brat

ion

Hig

h Im

port

ant s

ourc

e of

re

leas

e Lo

w

1. A

ffect

of v

ibra

tion

unkn

own

2. L

iftof

f cor

rela

tions

fo

r de

pres

suri

zatio

n flo

ws u

ncer

tain

3.

Affe

ct o

f rel

ief

valv

e ve

ntin

g sh

ould

be

exam

ined

Maj

or n

eed

122

Affe

ct o

f air

ingr

ess o

n de

sorp

tion

from

met

al

surf

aces

Hig

h Im

port

ant f

or a

ir

ingr

ess c

ase

Low

Fe

w d

ata

Min

or m

od

125

Affe

ct o

f air

ingr

ess o

n co

olan

t pro

pert

ies

Hig

h La

rge

chan

ge p

ossi

ble

in v

isco

sity

and

ther

mal

di

ffusi

vity

; affe

cts R

e an

d Pr

mod

uli a

nd

ther

efor

e he

at a

nd m

ass

tran

sfer

coe

ffici

ent.

Med

ium

Th

eory

on

affe

ct o

f C

O, C

O2,

O2,

N2 o

n vi

scos

ity a

nd th

erm

al

diffu

sivi

ty o

f He

is n

ot

wel

l est

ablis

hed

Maj

or m

od

126

Spal

latio

n fr

om m

etal

su

rfac

es d

urin

g ac

cide

nts

Med

ium

Po

ssib

le so

urce

of d

ust

on w

hich

FPs

may

ad

sorb

Low

N

o da

ta fo

r acc

iden

t co

nditi

ons a

nd

rele

vant

mat

eria

ls

Min

or m

od

Page 113: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

Pa

rt G

(con

tinue

d)

B-53

Part

G.2

—Pr

oces

s hea

t ver

sion

ID N

o.

Phen

omen

a Im

port

ance

(H

igh,

Med

ium

, Low

) R

atio

nale

L

evel

of k

now

ledg

e (H

igh,

Med

ium

, Low

) R

atio

nale

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

12

7 IH

X fa

ilure

mod

es u

nder

D

-LO

FC o

r exc

essi

ve

acci

dent

tem

pera

ture

s

Hig

h [R

equi

res i

nput

from

the

Proc

ess H

eat o

r Hig

h Te

mpe

ratu

re M

ater

ials

Pa

nel]

[Low

] N

ot y

et st

udie

d

128

Affe

cts o

f sec

onda

ry fl

uid

on th

e re

leas

e of

FPs

from

m

etal

and

gra

phite

su

rfac

es

Hig

h Af

fect

s FP

rele

ase

Low

N

ot y

et st

udie

d M

ajor

mod

129

FP c

onta

min

atio

n of

the

seco

ndar

y sy

stem

due

to

IHX

failu

re

Hig

h Im

port

ant c

onsi

dera

tion

for p

roce

ss h

eat

conc

epts

Low

N

ot y

et st

udie

d M

ajor

mod

130

Af

fect

of I

HX

failu

re o

n th

e re

acto

r sys

tem

, che

mic

al

effe

cts

Hig

h In

vest

men

t ris

k co

nsid

erat

ion

Low

N

ot y

et st

udie

d M

ajor

mod

Page 114: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-54

Part

H:

Rel

ease

s fro

m th

e co

nfin

emen

t

Issu

es:

● Ph

ysic

al/c

hem

ical

aff

ects

of a

ccid

ents

on

conf

inem

ent

Leak

age

rate

● Po

ssib

le fi

ltrat

ion

or c

lean

up sy

stem

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

39

C

onfin

emen

t aer

osol

ph

ysic

s dy

nam

ics (

i.e.,

aggl

omer

atio

n an

d de

posi

tion)

Hig

h A

nalo

gous

to L

WR

aer

osol

be

havi

or/p

hysi

cs, d

elta

-T,

chem

istry

; im

porta

nt h

oldu

p m

echa

nism

Med

ium

R

easo

nabl

e w

ell-

deve

lope

d th

eory

of

aero

sol b

ehav

ior;

appl

icab

ility

to N

GN

P un

clea

r

Min

or m

od

45

Rad

ioly

sis e

ffec

ts in

co

nfin

emen

t H

igh

FP (e

.g.,

I, R

u, T

e) c

hem

istry

, pa

int c

hem

istry

(dep

ende

nt

on c

onfin

emen

t rad

iatio

n le

vel)

(Tra

ns.)

Med

ium

LW

R e

xper

ienc

e an

d da

ta

Min

or m

od

46

Filtr

atio

n H

igh

Trad

ition

al p

assi

ve

char

coal

/HEP

A (T

rans

.) H

igh

His

toric

al e

xper

ienc

e A

dequ

ate

48

Com

bust

ion

of g

raph

ite

dust

in c

onfin

emen

t H

igh

Sour

ce o

f hea

t and

di

strib

utio

n of

FPs

w/in

co

nfin

emen

t

Med

ium

IT

ER d

ata

Maj

or n

eed

49

NG

NP-

uniq

ue le

akag

e pa

th b

eyon

d co

nfin

emen

t

Hig

h IH

X to

seco

ndar

y si

te

cont

amin

atio

n; c

ould

be

risk

dom

inan

t (Tr

ans.)

Hig

h Lo

w

Con

tinge

nt o

n sp

ecifi

c de

sign

kno

wle

dge

Min

or m

od

50

Con

finem

ent l

eaka

ge

path

, rel

ease

rate

th

roug

h pe

netra

tions

Hig

h C

able

/pip

e pe

netra

tions

, cr

acks

, hol

es, H

VA

C (T

rans

.) M

ediu

m

Bui

ldin

g le

akag

e ex

perie

nce,

des

ign

spec

ific

Ade

quat

e

51

Cab

le p

yrol

ysis

, fire

H

igh

Soot

gen

erat

ion

and

chan

ges

to io

dine

che

mis

try

Med

ium

LW

R e

xper

ienc

e M

ajor

nee

d

132

FP sp

ecia

tion

in th

e co

nfin

emen

t H

igh

Affe

cts d

epos

ition

rate

M

ediu

m

Unc

erta

in k

inet

ics a

t lo

w te

mpe

ratu

re

Min

or m

od

133

Che

mic

al in

tera

ctio

n of

FP

s with

con

finem

ent

surf

aces

Hig

h Af

fect

s FP

atte

nuat

ion

by

conf

inem

ent

Med

ium

U

ncer

tain

kin

etic

s at

low

tem

pera

ture

M

inor

mod

Page 115: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

Pa

rt H

(con

tinue

d)

B-55

ID

No.

Ph

enom

ena

Impo

rtan

ce

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Lev

el o

f kno

wle

dge

(Hig

h, M

ediu

m, L

ow)

Rat

iona

le

Stat

us o

f FP

mod

elin

g (a

dequ

ate,

min

or

mod

, maj

or n

eed)

13

4 Fl

amm

able

gas

ent

ry

into

the

conf

inem

ent

and

poss

ible

co

mbu

stio

n

Hig

h Im

port

ant c

onsi

dera

tion

Med

ium

D

efin

ed b

y ac

cide

nt

sequ

ence

M

ajor

nee

d

Page 116: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

B-56

Page intentionally blank

Page 117: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3

INTERNAL DISTRIBUTION

1. S. J. Ball, 3500, MS-6010 2. T. D. Burchell, 4508, MS-6088 3. W. R. Corwin, 4500S, MS-6161 4. L. B. Dockery, 5700, MS-6165 5. S. E. Fisher, 5300, MS-6050 6. C. W. Forsberg, 5700, MS-6165 7. J. C. Gehin, 5700, MS-6172 8. S. R. Greene, 5700, MS-6162 9. D. T. Ingersoll, 5700, MS-6162

10. G. T. Mays, 5700, MS-6165 11. R. N. Morris, 3525, MS-6295 12. C. V. Parks, 5700, MS-6170 13. J.-P. Renier, 5700, MS-6172 14. J. E. Rushton, 5700, MS-6152 15. J. J. Simpson, 5700, MS-6162 16. S. Zinkle, 4500S, MS-6132 17. ORNL Office of Technical Information

and Classification

EXTERNAL DISTRIBUTION

18. S. Bahadur, Office of Nuclear Regulatory Research, MS-9 F39, U.S. Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852-2738

19. R. Ballinger, Massachusetts Institute of Technology, 185 Albany Street, NW22-117, Cambridge, MA 02139

20. J. A. Barr, Office of Nuclear Regulatory Research, MS-T10 K8, U.S. Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852-2738

21. S. Basu, Office of Nuclear Regulatory Research, MS-10 K8, U.S. Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852-2738

22. R. Bratton, NGNP Graphite Qualification Lead, Idaho National Laboratory, P. O. Box 1625, MS-3710, Idaho Falls, ID 83415-3710

23. G. Brinkmann, AREVA, Framatome ANP GMBH/NGPS3, Freyeslebenstrasse 1, Erlangen, Germany

24. D. E. Carlson, Office of Nuclear Regulatory Research, MS-T10 K8, U.S. Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852-2738

25. P. Cochran, Office of Nuclear Regulatory Research, MS-T10 K8, U.S. Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852-2738

26. T. L. Cook, NE-33/Germantown Building, U.S. Department of Energy, 1000 Independence Ave., S.W., Washington, DC. 20585-1290

27. M. Corradini, University of Wisconsin, 1500 Engineering Dr., Madison WI 53706 28. F. Eltawila, Office of Nuclear Regulatory Research, MS-10 E32, U.S. Nuclear Regulatory

Commission, 11545 Rockville Pike, Rockville, MD 20852-2738 29. M. A. Feltus, NE-33/Germantown Building, U.S. Department of Energy, 1000 Independence Ave.,

S.W., Washington, DC. 20585-1290 30. D. Forsyth, Office of Nuclear Regulatory Research, MS-T10 K8, U.S. Nuclear Regulatory

Commission, 11545 Rockville Pike, Rockville, MD 20852-2738 31. R. Gauntt, Sandia National Laboratories, P.O. Box 5800, MS-0748, Albuquerque NM, 87185-0748 32. M. Gavrilas, Office of Nuclear Regulatory Research, MS-10 K8, U.S. Nuclear Regulatory

Commission, 11545 Rockville Pike, Rockville, MD 20852-2738 33. G. E. Gears, NE-31/Germantown Building, U.S. Department of Energy, 1000 Independence Ave.,

S.W., Washington, DC. 20585-1290 34. G. Geffraye, CEA Grenoble DEN/DER/SSTH, 17 rue des Martyrs, 38054 Grenoble Cedex 9,

France

Page 118: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

35. M. B. Gorensek, Computational and Statistical Science Department, Savannah River National Laboratory, 773-42A, Room 136, Aiken, SC 29808

36. Y. A. Hassan, Department of Nuclear Engineering, Texas A&M University, Zachry 129, MS-3133, College Station, TX 77843-3133

37. J. S. Herring, Advanced Nuclear Energy, Idaho National Laboratory, P.O. Box 1625, MS-3860, Idaho Falls, ID 83415-3860

38. M. R. Holbrook, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 39. N. H. Hudson, Office of Nuclear Regulatory Research, MS-T10 K8, U.S. Nuclear Regulatory

Commission, 11545 Rockville Pike, Rockville, MD 20852-2738 40. A. B. Hull, Office of Nuclear Regulatory Research, MS-T10 M5, U.S. Nuclear Regulatory

Commission, 11545 Rockville Pike, Rockville, MD 20852-2738 41. M. R. Johnson, Office of Nuclear Regulatory Research, MS-10 F12, U.S. Nuclear Regulatory

Commission, 11545 Rockville Pike, Rockville, MD 20852-2738 42. J. R. Jolicoeur, Office of Nuclear Regulatory Research, MS-T10 K8, U.S. Nuclear Regulatory

Commission, 11545 Rockville Pike, Rockville, MD 20852-2738 43. M. P. Kissane, IRSN/DPAM/SEMIC, Cadarache—bat 702, BP3, 13115 St-Paul-lez-Durance,

France 44. C. Kling, Westinghouse, 1344 Beulah Rd., Pittsburgh, PA 15235 45. R. Lee, Office of Nuclear Regulatory Research, MS-T10 K8, U.S. Nuclear Regulatory

Commission, 11545 Rockville Pike, Rockville, MD 20852-2738 46. C. H. Lui, Office Nuclear Regulatory Research, MS-10 K8, U.S. Nuclear Regulatory Commission,

11545 Rockville Pike, Rockville, MD 20852-2738 47. S. Majumdar, Nuclear Engineering Division, Argonne National Laboratory, Building 212,

Argonne, IL 60439 48. B. Marsden, Professor of Nuclear Graphite Technology, Pariser Building, Nuclear Graphite

Research Group, School of Mechanical Aerospace and Civil Engineering, The University of Manchester, P.O. Box 88, Manchester, M60 1QD, England, UK

49. D. N. Miotla, NE-3/Germantown Building, U.S. Department of Energy, 1000 Independence Ave., S.W., Washington, DC. 20585-1290

50. M. Mitchell, PBMR, 1279 Mike Crawford Avenue, Centurion, 0046, South Africa 51. D. L. Moses (ORNL consultant), 130 Clemson Drive, Oak Ridge, Tennessee 37830-7664 52. T. J. O’Connor, NE-33/Germantown Building, U.S. Department of Energy, 1000 Independence

Ave., S.W., Washington, DC. 20585-1290 53. L. Parme, General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 54. S. R. Penfield, Technology Insights, 9 Overlook Lane, Carthage, TN 37030 55. D. A. Petti, Laboratory Fellow, Idaho National Laboratory, R&D Technical Director Next

Generation Nuclear Plant, Deputy Director Fusion Virtual Laboratory for Technology (VLT), P.O. Box 1625, Idaho Falls, ID 83415-3860

56. P. Pickard, Sandia National Laboratories, P. O. Box 5800, MS-1136, Albuquerque, NM 87185-1136

57. D. A. Powers, Nuclear and Risk Technologies Center, Sandia National Laboratories, MS-0736, P.O. Box 5800, Albuquerque, NM 87185-0736

58. P. G. Robinson, PBMR, 1279 Mike Crawford Avenue, Centurion, 0046, South Africa 59. S. Rubin, Office of Nuclear Regulatory Research, MS-T10 K8, U.S. Nuclear Regulatory

Commission, 11545 Rockville Pike, Rockville, MD 20852-2738 60. R. R. Schultz, RELAP5-3D Program Manager, Idaho National Laboratory, P.O. Box 1625,

2525 Fremont, Idaho Falls, ID 83415-3890 61. F. Sharokhi, AREVA, Framatome ANP, 3315 Old Forest Road, P O Box 10935. Lynchburg, VA

24506

Page 119: Next Generation Nuclear Plant Phenomena Identification … · NUREG/CR-6944, Vol. 3 ORNL/TM-2007/147, Vol. 3 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables

62. B. W. Sheron, Office of Nuclear Regulatory Research, MS-10 F12, U.S. Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852-2738

63. M. Srinivasan, Office of Nuclear Regulatory Research, MS-T10 M05, U.S. Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852-2738

64. J. L. Uhle, Office of Nuclear Regulatory Research, MS-10 M5, U.S. Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852-2738

65. K. Weaver, Idaho National Laboratory, P.O. Box 1625, MS-3850, Idaho Falls, ID 83415-3850 66. T. Y. C. Wei, Nuclear Engineering Division, Building 208, Argonne National Laboratory,

9700 S. Cass Ave., Argonne, IL 60439 67. R. P. Wichner (ORNL consultant), 104 Burgess Lane, Oak Ridge, TN 37830 68. W. Windes, Idaho National Laboratory, P.O. Box 1625, 2525 Fremont, Idaho Falls, ID 83415 69. S. A. Wright, Sandia National Laboratories, P. O. Box 5800, MS-1146, Albuquerque, NM

87185-1146