55
MIT Energy Initiative Cambridge MA New Vistas in Electrochemical Energy Storage Sept 7, 2016 Prof. Linda Nazar, FRSC Senior Canada Research Chair Electrochemical Energy Materials Laboratory BASF International Scientific Network for Electrochemistry and Batteries DOE, USA Joint Center for Energy Storage Research

New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

MIT Energy Initiative

Cambridge MA

Amiens

New Vistas in Electrochemical Energy

Storage

Sept 7, 2016

Prof. Linda Nazar, FRSC

Senior Canada Research Chair

Electrochemical Energy Materials Laboratory

BASF International Scientific Network for Electrochemistry and Batteries

DOE, USA

Joint Center for Energy Storage Research

Page 2: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Thanks to:

C. Xia, R. Black, R. Fernandes, D. Kundu, X. Liang, X. Sun, P. Bonnick, V. Duffort, B. Adams

Waterloo Institute for Nanotechnology and the

Quantum-Nano Centre

University of Waterloo, Waterloo ON Canada

Page 3: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Introduction: Li-ion

Storing electrons and ions:- Chemical transformation

Li-Sulfur and metal-oxygen batteries-

Storing electrons and ions:- Multivalent intercalation

batteries: Mg and Zn -ion

Conclusions

3

Waterloo Institute for Nanotechnology and the

Quantum-Nano Centre

Agenda :

Page 4: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

4

“Integrated energy storage is an area where technology lags and needs intense development if systems with optimum overall efficiency

gains are to be attained”

Global Energy Assessment: Cambridge Univ Press, 2012

GEA – the first global and interdisciplinary assessment of energy challenges and solutions – identifies 41 pathways to provide sustainable energy for the world by 2050

Page 5: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

New electrochemical energy storage chemistry needed

Energy Storage: A Challenge of the 21st Century

Wind Solar

Exploit renewable energyresources

Electric (+ solar): Kiira Motors

kWh

Enable low cost, high range electric vehicles

Power the world: big computing, small devices

Smart energy delivery

Wh - MWhMWh

Chemicals ElectricityBatteries

Chemical energy to electrical energy and work (downhill, discharge)

Electrical energy back to chemical energy (uphill, charge)

Different energy needsDifferent materials

Different cost point

Page 6: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

6

Progress in Li-ion technology: driven by portable devices

Capacity: Electrons stored per mass

(mAh/g) or volume (mAh/L)

Light weight/dense

Capacity * Voltage = Energy densityWh/kg or Wh/L

Source: Sony (Japan)

2014

Increase in energy density by year for 18650 cellsLimit ~ 280 Wh/kg based on “intercalation”

chemistryProblems: cost, safety

Page 7: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

1990 2005 2015

En

erg

yd

en

sit

y

So

ny

miEV / C0 / Lion

250 Wh/kg,

800Wh/l

20072004

2 MW

Li-ion battery

Future Development

Energy storage perspective: 2x in ED, -2x in cost

So

ny L

iMn

O

Zn-a

ir

Li-SL

i-M-O

me

tal

oxid

es

Zn-io

n

Li-a

ir

LiF

eO

4

Page 8: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

A-

A-

A-

A-

Li+

Li+Li+

Li+

Li+

A-

Li+

A-

Li+Li+Li+

Li+Li+Li+

Li+Li+Li+

Li+Li+Li+

Li+

Li+

A-

A-

I

Li+

Li+

Li-Ion Cell Operation

LiCoO

2

graphite

Capacity (mAh/g)

Vo

ltag

e (V

)

(+) (-)

8/75

Page 9: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

A-

A-

A-

Li+

Li+Li+

Li+

A-

A-

Li+

A-

Li+Li+Li+

Li+Li+Li+

Li+Li+

Li+Li+Li+

Li+

Li+

A-

A-

LiCoO2 Li1-xCoO2 + xLi+ + xe- xLi+ + xe- + C LixC

e-

Li+

Li+Li+

Li+

e- Li+

e-Li+

Li+

(Charge)I

Capacity (mAh/g)

Vo

ltag

e (V

)

cell voltage

(+) (-)

9/75

Li-Ion Cell Operation

Page 10: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

A-

A-

A-

Li+

Li+Li+

Li+

A-

A-

Li+

A-

Li+Li+Li+

Li+Li+Li+

Li+Li+

Li+Li+Li+

Li+

Li+

A-

A-

e-

Li+

Li+Li+

Li+

e- Li+

e-Li+

Li+

(Discharge)

Li1-xCoO2 + xLi+ + xe- LiCoO2 LixC xLi+ + xe- + C

cell voltage

Capacity (mAh/g)

Vo

ltag

e (V

)

(+) (-)

10/75

Li-Ion Cell Operation

Page 11: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Vehicular energy storage: looking to the far future

11

All-solid-state batteries (Li, Na, Li-S, etc) have in common with Lithium-air the requirement of strict control of electrochemical interfaces

(Toyota, MRS Bull 2015)

Page 12: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Dissolution-precipitationStep change

12

+-

e-e-

Li+ conducting

electrolyte

LiCoO2Graphite

charge

dischargeLi+

Li+

+-

e-e-

Li+ conducting

electrolyte

LiCoO2Graphite

charge

dischargeLi+

Li+

Intercalation cell Chemical Transformation cell

16

O

32

S

3

Se

52

Te

84

Po

21

Sc22

Ti23

V24

Cr25

Mn26

Fe27

Co28

Ni29

Cu30

Zn

Transition metal oxides: good e- transport

Ch

alcoge

ns: ligh

t we

ight

Ion intercalation vs chemical transformations

S ↔ Li2S

Page 13: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Li-Oxygen

Lithium-chalcogenide (O2, Sulfur) batteries: similar

≈ 350 Wh/kg

Factor of 7

≈ 200 Wh/kg

0,7Li+ + 0.7e- + Li07MO2 LiMO2

Energy density = 220 Wh/kg

x 3

≈ 1000 Wh/kg

Factor of 3.5

650 Wh/kg possible?

..but limited cycling

Li-Sulfur

2Li+ + 2e- + S Li2S (E°= 2.27 V )

Energy density = 2500 Wh/kg2Li ++ 2e- + O2 Li2O2 (E°= 2.96V)

Energy density = 3500 Wh/kg

Earth abundant

inexpensive

Page 14: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

e- e- e-

(soluble)

S8 (solid) S82- Sn

2- (n: 3 to 6) S22- Li2S

O2 (gas) O2- O2

2- (Li2O2)

S8 + S62- 2S3

-

reactive

(insoluble)

” + O2)

Redox transform electrochemical systems

S2 + 2 Li+/e- ↔ Li2S O2 + 2 Li+/e- ↔ Li2O2Li+ + e- + 2 Li0.5CoO2→ 2 LiCoO2

MW/e- = 196 MW/e- = 23 MW/e- = 23

• Dissolution-crystallization and disproportionation chemistry

2LiO2

1. 14

solids)

Page 15: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

e- e- e-

(soluble)S8

2- S(-0.25)

O2 (gas) O2-

S8 + S62- 2S3

-

reactive

(insoluble)

(Li2O2) + O2)

Redox transform electrochemical systems

Prone to disproportionation reactions

Intermediates in the electrochemical reactions very problematic

• Dissolution-crystallization and disproportionation chemistry

2LiO2

1. 15

Page 16: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Reactive radicals

1. 16

Aging

Page 17: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

17

O2 + 2 Li+/e- ↔ 2 LiO2 → Li2O2 + O2

Li-O2 batteries: a lot of hype, a lot of challenges

● minimal overpotential for oxygen reduction● reactivity of host electrode with Li2O2

nanoporous, stable conductive host● Overcome large overpotential on charge

Positive Electrode

Organic Electrolyte

● electrolyte reacts with superoxide O2.-● O2 solubility, diffusivity

● Li salt solubility

A long term prospectReview of Li-O2: D. Aurbach, B. McCloskey, L.F. Nazar, P. Bruce* Nature Energy (in press, 2016)

Page 18: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

18

But….steps forward in understanding

Discharge: Li+/e- + O2 → LiO2 →

Superoxide formed on surface: dissolution competes with 2nd reduction : dependent on current density and solvation

Favour large aggregates via O2-• transport

L. Nazar et al., JACS 2013; EES (2013); Y. Shao-Horn, JPCL, 2013

Micron-sized Li2O2

Li2-xO2 → O2 + x Li+ + x e-

Charge: Li2O2 → Li2-xO2 + x Li+/e-

M. Wagemaker, Nazar et al., JACS (2015), JPCL 2016

Page 19: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Inherent solution mediation in Na-oxygen cells

O2 + Na+/e- ↔ NaO2

19

Theor: 1600 Wh/kg

Page 20: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

0 1 2 3 4 51.8

2.0

2.2

2.4

0 5 10 15

0

2

4

Water content [ppm]

Ca

pa

cit

y [m

Ah

cm

-2]

Capacity [mAh cm-2]

Ecell [

V]

1111111111

Crystalline NaO2 cubes

High capacity

10 ppm H2O 10 ppm benzoic acid

Na-O2 Battery: phase transfer catalysis, high capacity

1.8

2.0

2.2

2.4

E (V

vs.

Na/

Na+ )

Capacity (mAh cm-2)

Cd

is(m

Ah

cm-2

)

HA + O2•- ⇆ HO2 + A-

HO2 + Na+ → NaO2 + H+

reverse on chargeNegligible capacity

Quasi-amorphous NaO2 films

Surface Mechanism

Sol’n Mechanism

0 ppm H2O

Xia, Nazar et al. Nature Chemistry 2015, 7, 496–501

Page 21: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

0.0 0.1 0.2 0.3 0.4 0.5

2.1

2.2

2.3

2.4

2.5

2.6

E (

V v

s.

Na

/Na

+)

Capacity (mAh/cm2)

b)

0.0 0.1 0.2 0.3 0.4 0.5

2.5

3.0

3.5

4.0

4.5

E (

V v

s.

Li/L

i+)

Capacity (mAh/cm2)

HO2 + Na+ NaO2 + H+

H+ + O2 HO2

H2O2 Li2-xO2 + H+

E° = 2.27 V

E° = 2.96 V

Charge

NaO2 Na+ + O2

O2 O2

Li2O2 2Li+ + O2

Li-O2 echem Na-O2 echem

21

Phase transfer catalysis not possible for Li-O2

superoxide not stable

2H+ + O2 H2O2

Page 22: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

22

Redox Mediators – THE solution on charge (& discharge)

TEMPO- TEMPO+

3.8VJ. Janek et al, JACS, 2015

TTF- TTF+/3.5-3.7VP.G. Bruce et al, Nature Chemistry, 2014

Br-/Br2

D. Aurbach et al, Angew Chemie, 2016

TDPA - TDPA+ - TDPA2+

3.1/3.5 VL. Nazar et al, ACS Central Sci, 2015

Soluble molecules in the electrolyte oxidized at a potential slightly above the equilibrium potential of Li2O2.

Page 23: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

23

A Dual Step Redox Mediator for Li-O2 Cell

RM/RM+ RM/RM2+

TTF 3.5 V 3.7 V

TEMPO 3.8 V

TDPA 3.1 V 3.5 V

Kundu, Nazar et al., ACS Central Science, 2015

quantitative

Requires that the negative Li electrode be passivated

Page 24: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

24

Detrimental reactivity of HO2 with glyme electrolyteCharge

3300 3320 3340 3360 3380

500 ppm 15 min Charge

N= 6.4 G

H= 19.5 G

N= 6.4 G

H= 19.7 G

10 ppm 120 min Charge

“Operando” ESR studies show HO2 generates glyme radicals electrolyte decomposition products

Find electrolytes stable to radical (HO2) hydrogen abstraction

C. Xia, L. Nazar, J. Baugh et al., J. Am Chem. Soc (2016)

Page 25: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

25

Down the Periodic Table

Page 26: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Lit

hiu

m

Sep

ara

tor

Li+

2 Li+

Li+Li2S8

a(Li2S6) + b(Li2S4)

(Li2S)

e-e-

Discharge

—maintain active mass? Li2S

Li2Sx Li2Sx/2

Charge Polysulfide shuttle

internal “short circuit”

2Li + S Li2Sx Li2S theoretical capacity 1675 mAh/g @ 2V

1. 26

The Li-S Battery and the Redox Shuttle

2500 Wh/kg (full cell)500 - 1000 mAh/g today

-> 350 Wh/kg

Lit

hiu

m

cheese milk cheese

Page 27: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Desirable shuttles

1. 27

Page 28: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

The Problem with Carbon

The Crossroads

28

Porous carbons

High electrolyte ratios

Low sulfur loading, low sulfur fractions

“catholyte” – like cells 150 Wh/L

LiPS poorly soluble

“Pb-acid battery”

LiPS very soluble

High donor number solvents, Protected negative electrode – like Li-O2

decreased funding

no large scalecommercialization

All solid state sulfur batteries

solve the problems with multipronged approaches - find ways for dissolution/precipitation to function in low electrolyte and high sulfur loading

Page 29: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Li-S for transportation applications: critical metrics

29

Calculated cell-level energy density and specific energy for a 100 kWhuse, 80 kW and 360 V Li-S battery as a function of the electrolyte vol% in the cathode (50–90%) and excess Li amount in the anode (50–400%).

high current densities (∼7 mA/cm2)high sulfur loading ~ 7 mg/cm2

electrolyte ~1.3 – 1.9 μl/mg

---- Kevin G. Gallagher et al

Challenges:

Gallagher et al., J. Electrochem. Soc., 162 (6) A982-A990 (2015)

Are these goals achievable - how?

Page 30: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

The Problem with Carbon Good interaction with sulfur

No interaction with intermediate lithium polysulfides OR Li2S

The Problem with Porous Carbon

30

Cuisinier, Balasubramanian, Nazar, J. Phys. Chem Lett (2014)

In situ cell: synchrotron (APS)

Page 31: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

31

During discharge: Much lower fraction of polysulfides at all stages (efficient trapping) Li2S precipitates earlier and more progressively

Solid: Ti4O7/SDash: C/S

Ti4O7-polysulfide interaction promotes charge transfer

Operando XANES: Ti4O7/S cathode shows strong interaction

Page 32: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Ti-Ox e- e- e- e-

S8 Li2Sx2-

Ti4O7

e- e-

Solvated Li+

“adsorbed” Li2S

e-

Sulfur reduces and adsorbs on metallic oxide surface → “adsorbed” Li2S

Sulfur reduced and dissolves to form solvated lithium polysulfides→ Li2S isolated from electron wiring

Carbon e- e- e- e-

S8

Solvated Li+

Li2Sx2-

Carbon

“disconnected”Li2S

disproportionationUpon electrochemical reduction (receiving e- and Li+):

• Uniform deposition of Li2S• Suppress polysulfide diffusion/shuttle• Improved capacity retention

Q. Pang, D. Kundu, M. Cuisinier, L. F. Nazar, Nature Comm, 5 : 4759 (2014)

Ti4O7 - surface enhanced electrochemistry

32

Page 33: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

The Problem with Carbon

Surface interactions of LiPS with polar hosts are key

33

Page 34: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

34

Pristine carbon N-doped g-C3N4

First-principle calculations – quantitative study of interactions

ba c

DFT (VASP code) Simulated the adsorption of various numbers (1,2,4) of Li2S2 molecules The substrates span the same basal area

Binding energy average per Li2S2

Example optimized geometries of 2 Li2S2 adsorbed on the substrates

Interaction via a Li-N bondNo specific bonding

Pang, Nazar et al ACS Nano, (2016); Adv. Energ. Mater. (2016)

14.9 mg/cm2 sulfur loading electrolyte/sulfur ratio = 3.5: 1 µl/mg

Page 35: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

S/KB cell

S/MnO2 nanosheetcell

0

hr

0.5

hr

4

hr

8

hr

12

hr

B. Catenation of sulfur to form polythionate complex

A. Formation of thiosulfate via oxidation of LiPS/ reduction of Mn4+:

Polysulfide chemical trapping: surface-active mediators

MnO2 nanosheets – 10 nm thick75 wt % sulfur/ “inorganic graphene”Capacity fade rate = 0.04% per cycle over 2000 cycles

Liang, Nazar et al., Nat. Commun. 6, 5682 (2015)

Page 36: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

36

Electrochemical reactivity of different metal oxides with LiPSs as a function of redox potential vs Li/Li+

Same process occurs for graphene oxide (reduced by LiPS – thiosulfate/ polythionate)

No redoxRedox to

thiosulfateRedox to

thiosulfate & sulfate

0 1 2 3 4 V

V2O5

NiOOH

Co3O4

CoO

Ti4O7

Fe3O4*

MnO2

VO2V2O3

CuO

Cu2O

Fe2O3*

TiO2

NiO

The “Goldilocks” Principle

Nazar, Sommers et al., Adv. Energy Mater. 6, 1501636 (2015)

Page 37: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Interaction between polysulfide and MnO2 or graphene oxide

Li2S4

Li2S4/MnO2

Li2S4/Grapheneoxide

Li2S4/Graphene

At 2.3 V: partial reduction or oxidation

Li-S/MnO2 cell cathodeSB (0)

ST (-1)

Page 38: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Core-shell micron-sized sulfur with an inorganic coating

Liang, Nazar et al., ACS Nano (2015)

𝟔𝑴𝒏𝑶𝟒− + 𝟑𝑺 + 𝑯𝟐𝑶 → 𝟔𝑴𝒏𝑶𝟐 + 𝑺𝑶𝟒

𝟐− + [𝑯(𝑺𝑶𝟒)𝟐]𝟑− + 𝑶𝑯−

X. Liang, L. F. Nazar et al, Angewandte Chemie 2015; Adv. Mater., 2016 on-line

Sustain high sulfur areal loadings

Page 39: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Concept of “sparingly soluble-solvents” for polysulfides

39

Cuisinier, Nazar et al., EES 2015.

Utilize a “non-solvent” electrolyteSolid-solid transformation? Highly limited solution process?

Utilize a sparingly soluble electrolyteOptimum properties for solution-based reactivity?

Controlling preciptn of Li2S – needs a polar metallic host, RMs

S8 Li2S?

Page 40: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Critical Factors for Liquid Electrolyte Cell design

40

Q. Pang, X. Liang, L.F. Nazar, Nature Energy (in press, 2016)

Page 41: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

The Problem with Carbon

41

Electron transfer/ion mass not higher than Li+/e-

but…

Advantage: metal anode (no dendrite formation, i.e., Mg)

- greatly increases energy density compared to carbon in Li-ion cell

Chevrel phases (Mo6S8) first to be studied as cathode*

Mg insertion examined in oxides**

Disadvantage: multivalent cations exhibit (?) low mobility in most high voltage host materials (ie, oxides)

- desolvation penalty for multivalent cations high

- nascent understanding of factors at play

Divalent batteries: intercalation of Mg2+, Zn2+ ions

*D. Aurbach et al., Nature 2000** P. Novak et al, 1997

Page 42: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

“Soft” anions: Mg (de)intercalation in the thiospinel Ti2S4

X. Sun, Z. Rong, G. Ceder, L.F. Nazar et al., Energy Environ Sci (2016); ACS Energy Lett 2016

Mg full cell with thiospinel cathode shows 190 mAh g-1 capacity, twice that of benchmark (2000), and relatively stable capacity retention.

Page 43: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Diffusion energy barriers in Ti2S4 agree with computation

Mg self-diffusion coefficients (60° C) and corresponding energy barriers for Mg diffusion in cubic Ti2S4 calculated in dilute and concentrated limits

DMg (at 333K) ≈ 0.1X DLi at 298 KA.C. James and J.B. Goodenough, Solid State Ionics, 27, 37 (1988).

DMg (at 333K) expt: 530 meV; theory: 550 meV

In collaboration with Berkeley Theory Team: M. Liu, Z. Rong, K. Persson, G. Ceder

Nanomaterials required

Page 44: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

44

Multivalent Intercalation (Aqueous)Advantages

Divalent cation does not require desolvation from solvent shell Screening of divalent cation charge in lattice by solvent – enhanced mobility

Page 45: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

01/05/2016 - Philippe Bourchard

2016 to be a breakout year for stationary energy storage

Page 46: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

3

Why Zn metal ?

Stable in water: high corrosion resistance High abundance, production; non toxic Suitable redox potential (0.76 V vs. SHE) High

volumetric energy density (d: 7.14 g cm-3) Small exchange current for HER on Zn: large

kinetic voltage window ~2.4 V for Zn basedaqueous rechargeable batteries.

Aqueous Batteries ?

Low-cost, safe, easy to manufacture and dispose

Aqueous Zn-ion Batteries >> Safe and environmentally benign alternatives to their aprotic counterparts, can have ultra-high rate capabilities.

Aqueous Zn-ion batteries

Page 47: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

4

Efficient Zn stripping and plating

Highly reversible Zn stripping and deposition

HER2H2O + 2e- → H2 + 2OH-

WE: SS rodCE: Zn disk/metalElectrolyte: 1M ZnSO4-H2O

Zn2+ + 2e- ↔ Zn with ~100 % coulombic efficiency (Qox/Qred)

Rechargeable aqueous Zn-ion batteries: ~2.4 V window

No dendritic growth at pH < 7

Page 48: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

5

Layered Host: Water Assisted Facile Zn2+ Intercalation

a b

c

Host Structure Expanded host structurein electrolyte

Zn2+ intercalatedhost

Zn2+ Zn2+

Page 49: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,
Page 50: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

H2O-slurryH2O-basedbinder

Nanofiber morphology - short diffusion path, easy fab

SEM/TEM images of nanofibers Free-standing electrodes

Page 51: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Sustainable & High-Rate Zn2+ ion Storage

Highly reversible Zn intercalation & stable cycling 1000 cycles: ≥ 80 % capacity retention Energy density (pouch cell): 450 Wh/L Coulombic efficiency: ≥ 99% High rate capability: discharge/charge in 8 min

6

< $70/kWh

D. Kundu, B. Adams, V. Duffort, L.F. Nazar, Nature Energy (2016)

Page 52: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Integrated electrochemical energy storage

EV ↔ GridHome ↔ EV

Storage ↔ Grid

Off-peak capture essential

More important today than at any time in history:

new small & large-scale demands

Na/Zn- ion

Na/Li sulfur

Redox flowLi-ion

Li sulfur/air

52

Grid ↔ Devicesmetal/air

Page 53: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

BASF International Scientific Network for Electrochemistry and Batteries

Prof. M. Wagemaker, TU DelftDr. Mali Balasubramanian, Argonne, USA

Prof. Jurgen Janek, Giessen/KIT

Prof. M. Saiful Islam, Univ BathProf. Gerd Ceder, Berkeley

Prof. J. Baugh, UW

1. 53

Research team and collaborators

NRCan

Page 54: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,

Thank you – we welcome visitors

Waterloo Institute for Nanotechnology and the Quantum-Nano Centre

Page 55: New Vistas in Electrochemical Energy Storage · 2016-09-15 · 3.8V J. Janek et al, JACS, 2015 TTF- TTF+/3.5-3.7V P.G. Bruce et al, Nature Chemistry, 2014 Br-/Br 2 D. Aurbach et al,