70
New properties of Sasaki projections Jeannine Gabri¨ els*, Stephen Gagola III** and Mirko Navara* * Czech Technical University in Prague ** School of Mathematics, Johannesburg TACL 2015, Ischia (Italy) Jeannine Gabri¨ els*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

New properties of Sasaki projections

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara*

* Czech Technical University in Prague** School of Mathematics, Johannesburg

TACL 2015, Ischia (Italy)

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 2: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Outline

What is quantum logic?

What is an orthomodular lattice (OML)?

What are commuting elements and what are their properties?

Sasaki and his projection

Some “known” properties of the Sasaki projection

Our results

Conclusion

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 3: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Outline

What is quantum logic?

What is an orthomodular lattice (OML)?

What are commuting elements and what are their properties?

Sasaki and his projection

Some “known” properties of the Sasaki projection

Our results

Conclusion

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 4: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Outline

What is quantum logic?

What is an orthomodular lattice (OML)?

What are commuting elements and what are their properties?

Sasaki and his projection

Some “known” properties of the Sasaki projection

Our results

Conclusion

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 5: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Outline

What is quantum logic?

What is an orthomodular lattice (OML)?

What are commuting elements and what are their properties?

Sasaki and his projection

Some “known” properties of the Sasaki projection

Our results

Conclusion

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 6: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Outline

What is quantum logic?

What is an orthomodular lattice (OML)?

What are commuting elements and what are their properties?

Sasaki and his projection

Some “known” properties of the Sasaki projection

Our results

Conclusion

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 7: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Outline

What is quantum logic?

What is an orthomodular lattice (OML)?

What are commuting elements and what are their properties?

Sasaki and his projection

Some “known” properties of the Sasaki projection

Our results

Conclusion

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 8: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Outline

What is quantum logic?

What is an orthomodular lattice (OML)?

What are commuting elements and what are their properties?

Sasaki and his projection

Some “known” properties of the Sasaki projection

Our results

Conclusion

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 9: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What is quantum logic?

1936Garrett Birkhoff and John von Neumann: The logic ofquantum mechanics. Annals of Mathematics, 37 (1936),823–843.

The structure of the lattice of projection operators P(H) on aHilbert space H.

The lattice of closed subspaces of a separable infinitedimensional Hilbert space.

Quantum logic can be characterised as the logical structurebased on orthomodular lattices.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 10: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What is quantum logic?

1936Garrett Birkhoff and John von Neumann: The logic ofquantum mechanics. Annals of Mathematics, 37 (1936),823–843.

The structure of the lattice of projection operators P(H) on aHilbert space H.

The lattice of closed subspaces of a separable infinitedimensional Hilbert space.

Quantum logic can be characterised as the logical structurebased on orthomodular lattices.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 11: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What is quantum logic?

1936Garrett Birkhoff and John von Neumann: The logic ofquantum mechanics. Annals of Mathematics, 37 (1936),823–843.

The structure of the lattice of projection operators P(H) on aHilbert space H.

The lattice of closed subspaces of a separable infinitedimensional Hilbert space.

Quantum logic can be characterised as the logical structurebased on orthomodular lattices.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 12: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What is quantum logic?

1936Garrett Birkhoff and John von Neumann: The logic ofquantum mechanics. Annals of Mathematics, 37 (1936),823–843.

The structure of the lattice of projection operators P(H) on aHilbert space H.

The lattice of closed subspaces of a separable infinitedimensional Hilbert space.

Quantum logic can be characterised as the logical structurebased on orthomodular lattices.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 13: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What is an orthomodular lattice?Orthocomplementation

Definition

An orthocomplementation on a bounded partially ordered set P isa unary operation with the properties

x ′ is the lattice–theoretical complement of x :

x ∧ x ′ = 0x ∨ x ′ = 1

′ is order reversing: x 6 y ⇒ y ′ 6 x ′

′ is an involution: x ′′ = x

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 14: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What is an orthomodular lattice?Orthomodular Lattices

Definition

An orthomodular lattice L is a lattice with anorthocomplementation in which the orthomodular law

x 6 y ⇒ y = x ∨ (x ′ ∧ y)

holds.

Recall:The lattice of closed subspaces of a separable infinite dimensionalHilbert space P(H)

is not distributive

is modular in case H has a finite dimension,

x 6 z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z .

is orthomodular in case of an infinite dimension.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 15: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What is an orthomodular lattice?Orthomodular Lattices

Definition

An orthomodular lattice L is a lattice with anorthocomplementation in which the orthomodular law

x 6 y ⇒ y = x ∨ (x ′ ∧ y)

holds.

Recall:The lattice of closed subspaces of a separable infinite dimensionalHilbert space P(H)

is not distributive

is modular in case H has a finite dimension,

x 6 z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z .

is orthomodular in case of an infinite dimension.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 16: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What is an orthomodular lattice?Orthomodular Lattices

Definition

An orthomodular lattice L is a lattice with anorthocomplementation in which the orthomodular law

x 6 y ⇒ y = x ∨ (x ′ ∧ y)

holds.

Recall:The lattice of closed subspaces of a separable infinite dimensionalHilbert space P(H)

is not distributive

is modular in case H has a finite dimension,

x 6 z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z .

is orthomodular in case of an infinite dimension.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 17: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What is an orthomodular lattice?Orthomodular Lattices

Definition

An orthomodular lattice L is a lattice with anorthocomplementation in which the orthomodular law

x 6 y ⇒ y = x ∨ (x ′ ∧ y)

holds.

Recall:The lattice of closed subspaces of a separable infinite dimensionalHilbert space P(H)

is not distributive

is modular in case H has a finite dimension,

x 6 z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z .

is orthomodular in case of an infinite dimension.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 18: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What is an orthomodular lattice?Orthomodular Lattices

Definition

An orthomodular lattice L is a lattice with anorthocomplementation in which the orthomodular law

x 6 y ⇒ y = x ∨ (x ′ ∧ y)

holds.

Recall:The lattice of closed subspaces of a separable infinite dimensionalHilbert space P(H)

is not distributive

is modular in case H has a finite dimension,

x 6 z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z .

is orthomodular in case of an infinite dimension.Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 19: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What are commuting elements?

Definition

Let L be an OML and x , y ∈ L, we say x commutes with y andwrite x C y if

x = (x ∧ y) ∨ (x ∧ y ′)

this relation is reflexive and symmetric.

transitive if and only if L is a Boolean algebra, in this case anypair of elements commutes.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 20: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What are commuting elements?

Definition

Let L be an OML and x , y ∈ L, we say x commutes with y andwrite x C y if

x = (x ∧ y) ∨ (x ∧ y ′)

this relation is reflexive and symmetric.

transitive if and only if L is a Boolean algebra, in this case anypair of elements commutes.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 21: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What are commuting elements?

Definition

Let L be an OML and x , y ∈ L, we say x commutes with y andwrite x C y if

x = (x ∧ y) ∨ (x ∧ y ′)

this relation is reflexive and symmetric.

transitive if and only if L is a Boolean algebra, in this case anypair of elements commutes.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 22: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

What are commuting elements?

Definition

Let L be an OML and x , y ∈ L, we say x commutes with y andwrite x C y if

x = (x ∧ y) ∨ (x ∧ y ′)

this relation is reflexive and symmetric.

transitive if and only if L is a Boolean algebra, in this case anypair of elements commutes.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 23: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some properties of the commuting relation

Lemma

Let L be an ortholattice and x , y ∈ L. If either x 6 y or x 6 y ′

then x and y commute.

Lemma

x C y ⇔ x ∧ (x ′ ∨ y) = x ∧ y

Proposition

In any orthomodular lattice, if x commutes with y and with z,then x commutes with y ′, with y ∨ z and with y ∧ z, as well aswith any (ortho–)lattice polynomial in variables y and z.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 24: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some properties of the commuting relation

Lemma

Let L be an ortholattice and x , y ∈ L. If either x 6 y or x 6 y ′

then x and y commute.

Lemma

x C y ⇔ x ∧ (x ′ ∨ y) = x ∧ y

Proposition

In any orthomodular lattice, if x commutes with y and with z,then x commutes with y ′, with y ∨ z and with y ∧ z, as well aswith any (ortho–)lattice polynomial in variables y and z.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 25: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some properties of the commuting relation

Lemma

Let L be an ortholattice and x , y ∈ L. If either x 6 y or x 6 y ′

then x and y commute.

Lemma

x C y ⇔ x ∧ (x ′ ∨ y) = x ∧ y

Proposition

In any orthomodular lattice, if x commutes with y and with z,then x commutes with y ′, with y ∨ z and with y ∧ z, as well aswith any (ortho–)lattice polynomial in variables y and z.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 26: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some properties of the commuting relation

Lemma

Let L be an ortholattice and x , y ∈ L. If either x 6 y or x 6 y ′

then x and y commute.

Lemma

x C y ⇔ x ∧ (x ′ ∨ y) = x ∧ y

Proposition

In any orthomodular lattice, if x commutes with y and with z,then x commutes with y ′, with y ∨ z and with y ∧ z, as well aswith any (ortho–)lattice polynomial in variables y and z.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 27: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Sasaki and his projection

Definition

Let p be an element of the orthomodular lattice L and let ϕp amapping

ϕp : L → La 7→ p ∧ (p′ ∨ a)

then ϕp is called the Sasaki Projection of a into [0, p] ⊆ L.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 28: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Sasaki and his projection

Definition

Let p be an element of the orthomodular lattice L and let ϕp amapping

ϕp : L → La 7→ p ∧ (p′ ∨ a)

then ϕp is called the Sasaki Projection of a into [0, p] ⊆ L.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 29: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some “known” properties

L is an OML ⇔ ϕp(q) = q ∀q 6 p

p ∧ q 6 ϕp(q) 6 p

Let L be an OML and p C q then ϕp(q) = p ∧ q

If y 6 z then ϕp(y) 6 ϕp(z).

p C q ⇔ ϕp(q) 6 q

ϕq(p) = 0⇔ p ⊥ q ⇔ p 6 q′

ϕq(p) = q ⇔ p′ ∧ q = 0

ϕp ◦ ϕq = ϕq ◦ ϕp = ϕp∧q ⇔ ϕp(q) = p ∧ q ⇔ p C q

p 6 q ⇔ ϕp = ϕq ◦ ϕp = ϕp ◦ ϕq

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 30: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some “known” properties

L is an OML ⇔ ϕp(q) = q ∀q 6 p

p ∧ q 6 ϕp(q) 6 p

Let L be an OML and p C q then ϕp(q) = p ∧ q

If y 6 z then ϕp(y) 6 ϕp(z).

p C q ⇔ ϕp(q) 6 q

ϕq(p) = 0⇔ p ⊥ q ⇔ p 6 q′

ϕq(p) = q ⇔ p′ ∧ q = 0

ϕp ◦ ϕq = ϕq ◦ ϕp = ϕp∧q ⇔ ϕp(q) = p ∧ q ⇔ p C q

p 6 q ⇔ ϕp = ϕq ◦ ϕp = ϕp ◦ ϕq

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 31: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some “known” properties

L is an OML ⇔ ϕp(q) = q ∀q 6 p

p ∧ q 6 ϕp(q) 6 p

Let L be an OML and p C q then ϕp(q) = p ∧ q

If y 6 z then ϕp(y) 6 ϕp(z).

p C q ⇔ ϕp(q) 6 q

ϕq(p) = 0⇔ p ⊥ q ⇔ p 6 q′

ϕq(p) = q ⇔ p′ ∧ q = 0

ϕp ◦ ϕq = ϕq ◦ ϕp = ϕp∧q ⇔ ϕp(q) = p ∧ q ⇔ p C q

p 6 q ⇔ ϕp = ϕq ◦ ϕp = ϕp ◦ ϕq

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 32: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some “known” properties

L is an OML ⇔ ϕp(q) = q ∀q 6 p

p ∧ q 6 ϕp(q) 6 p

Let L be an OML and p C q then ϕp(q) = p ∧ q

If y 6 z then ϕp(y) 6 ϕp(z).

p C q ⇔ ϕp(q) 6 q

ϕq(p) = 0⇔ p ⊥ q ⇔ p 6 q′

ϕq(p) = q ⇔ p′ ∧ q = 0

ϕp ◦ ϕq = ϕq ◦ ϕp = ϕp∧q ⇔ ϕp(q) = p ∧ q ⇔ p C q

p 6 q ⇔ ϕp = ϕq ◦ ϕp = ϕp ◦ ϕq

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 33: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some “known” properties

L is an OML ⇔ ϕp(q) = q ∀q 6 p

p ∧ q 6 ϕp(q) 6 p

Let L be an OML and p C q then ϕp(q) = p ∧ q

If y 6 z then ϕp(y) 6 ϕp(z).

p C q ⇔ ϕp(q) 6 q

ϕq(p) = 0⇔ p ⊥ q ⇔ p 6 q′

ϕq(p) = q ⇔ p′ ∧ q = 0

ϕp ◦ ϕq = ϕq ◦ ϕp = ϕp∧q ⇔ ϕp(q) = p ∧ q ⇔ p C q

p 6 q ⇔ ϕp = ϕq ◦ ϕp = ϕp ◦ ϕq

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 34: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some “known” properties

L is an OML ⇔ ϕp(q) = q ∀q 6 p

p ∧ q 6 ϕp(q) 6 p

Let L be an OML and p C q then ϕp(q) = p ∧ q

If y 6 z then ϕp(y) 6 ϕp(z).

p C q ⇔ ϕp(q) 6 q

ϕq(p) = 0⇔ p ⊥ q ⇔ p 6 q′

ϕq(p) = q ⇔ p′ ∧ q = 0

ϕp ◦ ϕq = ϕq ◦ ϕp = ϕp∧q ⇔ ϕp(q) = p ∧ q ⇔ p C q

p 6 q ⇔ ϕp = ϕq ◦ ϕp = ϕp ◦ ϕq

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 35: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some “known” properties

L is an OML ⇔ ϕp(q) = q ∀q 6 p

p ∧ q 6 ϕp(q) 6 p

Let L be an OML and p C q then ϕp(q) = p ∧ q

If y 6 z then ϕp(y) 6 ϕp(z).

p C q ⇔ ϕp(q) 6 q

ϕq(p) = 0⇔ p ⊥ q ⇔ p 6 q′

ϕq(p) = q ⇔ p′ ∧ q = 0

ϕp ◦ ϕq = ϕq ◦ ϕp = ϕp∧q ⇔ ϕp(q) = p ∧ q ⇔ p C q

p 6 q ⇔ ϕp = ϕq ◦ ϕp = ϕp ◦ ϕq

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 36: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some “known” properties

L is an OML ⇔ ϕp(q) = q ∀q 6 p

p ∧ q 6 ϕp(q) 6 p

Let L be an OML and p C q then ϕp(q) = p ∧ q

If y 6 z then ϕp(y) 6 ϕp(z).

p C q ⇔ ϕp(q) 6 q

ϕq(p) = 0⇔ p ⊥ q ⇔ p 6 q′

ϕq(p) = q ⇔ p′ ∧ q = 0

ϕp ◦ ϕq = ϕq ◦ ϕp = ϕp∧q ⇔ ϕp(q) = p ∧ q ⇔ p C q

p 6 q ⇔ ϕp = ϕq ◦ ϕp = ϕp ◦ ϕq

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 37: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Some “known” properties

L is an OML ⇔ ϕp(q) = q ∀q 6 p

p ∧ q 6 ϕp(q) 6 p

Let L be an OML and p C q then ϕp(q) = p ∧ q

If y 6 z then ϕp(y) 6 ϕp(z).

p C q ⇔ ϕp(q) 6 q

ϕq(p) = 0⇔ p ⊥ q ⇔ p 6 q′

ϕq(p) = q ⇔ p′ ∧ q = 0

ϕp ◦ ϕq = ϕq ◦ ϕp = ϕp∧q ⇔ ϕp(q) = p ∧ q ⇔ p C q

p 6 q ⇔ ϕp = ϕq ◦ ϕp = ϕp ◦ ϕq

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 38: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Sasaki projection as binary operation

We will consider the Sasaki projection as a binary operation(sometimes called the Sasaki map)

∗ : L× L → L(x , y) 7→ x ∗ y = x ∧ (x ′ ∨ y)

The Sasaki projection is neither commutative nor associative, itsatisfies

idempotence x ∗ x = xneutral element 1 ∗ x = x ∗ 1 = xabsorption element 0 ∗ x = x ∗ 0 = 0

Further x C (x ∗ y), but not y C (x ∗ y)

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 39: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Sasaki projection as binary operation

We will consider the Sasaki projection as a binary operation(sometimes called the Sasaki map)

∗ : L× L → L(x , y) 7→ x ∗ y = x ∧ (x ′ ∨ y)

The Sasaki projection is neither commutative nor associative, itsatisfies

idempotence x ∗ x = xneutral element 1 ∗ x = x ∗ 1 = xabsorption element 0 ∗ x = x ∗ 0 = 0

Further x C (x ∗ y), but not y C (x ∗ y)

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 40: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Sasaki projection as binary operation

We will consider the Sasaki projection as a binary operation(sometimes called the Sasaki map)

∗ : L× L → L(x , y) 7→ x ∗ y = x ∧ (x ′ ∨ y)

The Sasaki projection is neither commutative nor associative, itsatisfies

idempotence x ∗ x = xneutral element 1 ∗ x = x ∗ 1 = xabsorption element 0 ∗ x = x ∗ 0 = 0

Further x C (x ∗ y), but not y C (x ∗ y)

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 41: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Sasaki projection as binary operation

We will consider the Sasaki projection as a binary operation(sometimes called the Sasaki map)

∗ : L× L → L(x , y) 7→ x ∗ y = x ∧ (x ′ ∨ y)

The Sasaki projection is neither commutative nor associative, itsatisfies

idempotence x ∗ x = xneutral element 1 ∗ x = x ∗ 1 = xabsorption element 0 ∗ x = x ∗ 0 = 0

Further x C (x ∗ y)

, but not y C (x ∗ y)

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 42: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Sasaki projection as binary operation

We will consider the Sasaki projection as a binary operation(sometimes called the Sasaki map)

∗ : L× L → L(x , y) 7→ x ∗ y = x ∧ (x ′ ∨ y)

The Sasaki projection is neither commutative nor associative, itsatisfies

idempotence x ∗ x = xneutral element 1 ∗ x = x ∗ 1 = xabsorption element 0 ∗ x = x ∗ 0 = 0

Further x C (x ∗ y), but not y C (x ∗ y)

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 43: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Other tools

Computer program (Marek Hycko)http://www.mat.savba.sk/˜hycko/omlCounterexamples could all be found in the orthomodular lattice L22

s

s

s s s s s s s s s s ss s s s s s s s s s s

�������

�������

���������

"""""""""""

BBBBBBB

JJJJJJJ

@@@

@@@@

ZZZ

ZZZ

ZZZ

bbb

bbb

bbb

bb

BBBBBBB

JJJJJJJ

@@@@@@@

ZZZZZZZZZ

bbbbbbbbbbb

�������

���

����

���

���

���

"""

"""

"""

""

������������������������������@

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@�

����

���

��

���

��

���

��

���

��HHHHH

HHHHH

HHHHH

HHHHH

HHHHH

1

0

a′

a

a′

a

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 44: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Other tools

Computer program (Marek Hycko)http://www.mat.savba.sk/˜hycko/oml

Counterexamples could all be found in the orthomodular lattice L22

s

s

s s s s s s s s s s ss s s s s s s s s s s

�������

�������

���������

"""""""""""

BBBBBBB

JJJJJJJ

@@@

@@@@

ZZZ

ZZZ

ZZZ

bbb

bbb

bbb

bb

BBBBBBB

JJJJJJJ

@@@@@@@

ZZZZZZZZZ

bbbbbbbbbbb

�������

���

����

���

���

���

"""

"""

"""

""

������������������������������@

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@�

����

���

��

���

��

���

��

���

��HHHHH

HHHHH

HHHHH

HHHHH

HHHHH

1

0

a′

a

a′

a

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 45: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Other tools

Computer program (Marek Hycko)http://www.mat.savba.sk/˜hycko/omlCounterexamples could all be found in the orthomodular lattice L22

s

s

s s s s s s s s s s ss s s s s s s s s s s

�������

�������

���������

"""""""""""

BBBBBBB

JJJJJJJ

@@@

@@@@

ZZZ

ZZZ

ZZZ

bbb

bbb

bbb

bb

BBBBBBB

JJJJJJJ

@@@@@@@

ZZZZZZZZZ

bbbbbbbbbbb

�������

���

����

���

���

���

"""

"""

"""

""

������������������������������@

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@�

����

���

��

�����

�����

���

��HHHHH

HHHHH

HHHHH

HHHHH

HHHHH

1

0

a′

a

a′

a

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 46: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Our results

Lemma

Let L be an orthomodular lattice and let ∗ be the Sasakiprojection. It has the following properties:

If x 6 y then x ′ ∨ (y ∗ z) = x ′ ∨ z.

If x 6 z then x ′ ∨ (y ∗ z) = x ′ ∨ y.

If x 6 z then (x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y.

If y 6 z then x ∗ y 6 x ∗ z.

If y 6 z then (x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y.

If z 6 y then x ∗ (y ∗ z) = (x ∗ y) ∗ z = x ∗ z.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 47: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Our results

Lemma

Let L be an orthomodular lattice and let ∗ be the Sasakiprojection. It has the following properties:

If x 6 y then x ′ ∨ (y ∗ z) = x ′ ∨ z.

If x 6 z then x ′ ∨ (y ∗ z) = x ′ ∨ y.

If x 6 z then (x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y.

If y 6 z then x ∗ y 6 x ∗ z.

If y 6 z then (x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y.

If z 6 y then x ∗ (y ∗ z) = (x ∗ y) ∗ z = x ∗ z.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 48: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Our results

Theorem

Let L be an OML with x, y and z elements in L. If x C y then

x ∗ (y ∗ z) = (x ∗ y) ∗ z

Proof idea:Calculate both sides and use the properties

x C y ⇒ x ∗ y = x ∧ y

x 6 y ⇒ x C y

if x commutes with y and with z , then x commutes with anyorthomodular lattice polynomial in variables y and z .

Note: Neither x C z nor y C z are sufficient to fulfil theassociativity equation; this is easy to find counterexamples inL22.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 49: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Our results

Theorem

Let L be an OML with x, y and z elements in L. If x C y then

x ∗ (y ∗ z) = (x ∗ y) ∗ z

Proof idea:Calculate both sides and use the properties

x C y ⇒ x ∗ y = x ∧ y

x 6 y ⇒ x C y

if x commutes with y and with z , then x commutes with anyorthomodular lattice polynomial in variables y and z .

Note: Neither x C z nor y C z are sufficient to fulfil theassociativity equation; this is easy to find counterexamples inL22.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 50: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Our results

Theorem

Let L be an OML with x, y and z elements in L. If x C y then

x ∗ (y ∗ z) = (x ∗ y) ∗ z

Proof idea:Calculate both sides and use the properties

x C y ⇒ x ∗ y = x ∧ y

x 6 y ⇒ x C y

if x commutes with y and with z , then x commutes with anyorthomodular lattice polynomial in variables y and z .

Note: Neither x C z nor y C z are sufficient to fulfil theassociativity equation; this is easy to find counterexamples inL22.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 51: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Our results

Theorem

Let L be an OML with x, y and z elements in L. If x C y then

x ∗ (y ∗ z) = (x ∗ y) ∗ z

Proof idea:Calculate both sides and use the properties

x C y ⇒ x ∗ y = x ∧ y

x 6 y ⇒ x C y

if x commutes with y and with z , then x commutes with anyorthomodular lattice polynomial in variables y and z .

Note: Neither x C z nor y C z are sufficient to fulfil theassociativity equation; this is easy to find counterexamples inL22.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 52: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Our results

Theorem

Let L be an OML with x, y and z elements in L. If x C y then

x ∗ (y ∗ z) = (x ∗ y) ∗ z

Proof idea:Calculate both sides and use the properties

x C y ⇒ x ∗ y = x ∧ y

x 6 y ⇒ x C y

if x commutes with y and with z , then x commutes with anyorthomodular lattice polynomial in variables y and z .

Note: Neither x C z nor y C z are sufficient to fulfil theassociativity equation; this is easy to find counterexamples inL22.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 53: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Our results

Theorem

Let L be an OML with x, y and z elements in L. If x C y then

x ∗ (y ∗ z) = (x ∗ y) ∗ z

Proof idea:Calculate both sides and use the properties

x C y ⇒ x ∗ y = x ∧ y

x 6 y ⇒ x C y

if x commutes with y and with z , then x commutes with anyorthomodular lattice polynomial in variables y and z .

Note: Neither x C z nor y C z are sufficient to fulfil theassociativity equation; this is easy to find counterexamples inL22.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 54: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Our results

Theorem

Let L be an OML with x, y and z elements in L. If x C y then

x ∗ (y ∗ z) = (x ∗ y) ∗ z

Proof idea:Calculate both sides and use the properties

x C y ⇒ x ∗ y = x ∧ y

x 6 y ⇒ x C y

if x commutes with y and with z , then x commutes with anyorthomodular lattice polynomial in variables y and z .

Note: Neither x C z nor y C z are sufficient to fulfil theassociativity equation; this is easy to find counterexamples inL22.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 55: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Alternative algebras

Definition

An alternative algebra M is a non–empty set together with a binaryoperation, ∗ which need not to be associative, but it has to bealternative, this means that ∀x , y ∈ M the following equations hold

x ∗ (x ∗ y) = (x ∗ x) ∗ y left identity and(y ∗ x) ∗ x = y ∗ (x ∗ x) right identity

From the left and right identities the flexible identity follows

x ∗ (y ∗ x) = (x ∗ y) ∗ x

Theorem

The Sasaki projection fulfils all three identities of an alternativealgebra.

It fulfils also (x ∗ x ′) ∗ y = x ∗ (x ′ ∗ y) = 0

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 56: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Alternative algebras

Definition

An alternative algebra M is a non–empty set together with a binaryoperation, ∗ which need not to be associative, but it has to bealternative, this means that ∀x , y ∈ M the following equations hold

x ∗ (x ∗ y) = (x ∗ x) ∗ y left identity and(y ∗ x) ∗ x = y ∗ (x ∗ x) right identity

From the left and right identities the flexible identity follows

x ∗ (y ∗ x) = (x ∗ y) ∗ x

Theorem

The Sasaki projection fulfils all three identities of an alternativealgebra.

It fulfils also (x ∗ x ′) ∗ y = x ∗ (x ′ ∗ y) = 0

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 57: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Alternative algebras

Definition

An alternative algebra M is a non–empty set together with a binaryoperation, ∗ which need not to be associative, but it has to bealternative, this means that ∀x , y ∈ M the following equations hold

x ∗ (x ∗ y) = (x ∗ x) ∗ y left identity and(y ∗ x) ∗ x = y ∗ (x ∗ x) right identity

From the left and right identities the flexible identity follows

x ∗ (y ∗ x) = (x ∗ y) ∗ x

Theorem

The Sasaki projection fulfils all three identities of an alternativealgebra.

It fulfils also (x ∗ x ′) ∗ y = x ∗ (x ′ ∗ y) = 0

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 58: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Alternative algebras

Definition

An alternative algebra M is a non–empty set together with a binaryoperation, ∗ which need not to be associative, but it has to bealternative, this means that ∀x , y ∈ M the following equations hold

x ∗ (x ∗ y) = (x ∗ x) ∗ y left identity and(y ∗ x) ∗ x = y ∗ (x ∗ x) right identity

From the left and right identities the flexible identity follows

x ∗ (y ∗ x) = (x ∗ y) ∗ x

Theorem

The Sasaki projection fulfils all three identities of an alternativealgebra.

It fulfils also (x ∗ x ′) ∗ y = x ∗ (x ′ ∗ y) = 0

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 59: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Moufang–like identities

Theorem

Let L be an orthomodular lattice and let ∗ be the Sasakiprojection. Then

(x ∗ y ∗ x) ∗ z = (x ∗ y) ∗ (x ∗ z)(z ∗ (x ∗ y)

)∗ x = z ∗ (x ∗ y ∗ x)(

(x ∗ y) ∗ z)∗ x = (x ∗ y) ∗ (z ∗ x)

for any x , y , z ∈ L.

Proof idea:

The Sasaki projection fulfils the left, right and flexibleidentities.Further we use the properties (x ∗ y) C x andIf x 6 z or y 6 z then

(x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 60: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Moufang–like identities

Theorem

Let L be an orthomodular lattice and let ∗ be the Sasakiprojection. Then

(x ∗ y ∗ x) ∗ z = (x ∗ y) ∗ (x ∗ z)(z ∗ (x ∗ y)

)∗ x = z ∗ (x ∗ y ∗ x)(

(x ∗ y) ∗ z)∗ x = (x ∗ y) ∗ (z ∗ x)

for any x , y , z ∈ L.

Proof idea:

The Sasaki projection fulfils the left, right and flexibleidentities.Further we use the properties (x ∗ y) C x andIf x 6 z or y 6 z then

(x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 61: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Moufang–like identities

Theorem

Let L be an orthomodular lattice and let ∗ be the Sasakiprojection. Then

(x ∗ y ∗ x) ∗ z = (x ∗ y) ∗ (x ∗ z)(z ∗ (x ∗ y)

)∗ x = z ∗ (x ∗ y ∗ x)(

(x ∗ y) ∗ z)∗ x = (x ∗ y) ∗ (z ∗ x)

for any x , y , z ∈ L.

Proof idea:

The Sasaki projection fulfils the left, right and flexibleidentities.Further we use the properties (x ∗ y) C x andIf x 6 z or y 6 z then

(x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 62: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Moufang–like identities

Theorem

Let L be an orthomodular lattice and let ∗ be the Sasakiprojection. Then

(x ∗ y ∗ x) ∗ z = (x ∗ y) ∗ (x ∗ z)(z ∗ (x ∗ y)

)∗ x = z ∗ (x ∗ y ∗ x)(

(x ∗ y) ∗ z)∗ x = (x ∗ y) ∗ (z ∗ x)

for any x , y , z ∈ L.

Proof idea:

The Sasaki projection fulfils the left, right and flexibleidentities.

Further we use the properties (x ∗ y) C x andIf x 6 z or y 6 z then

(x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 63: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Moufang–like identities

Theorem

Let L be an orthomodular lattice and let ∗ be the Sasakiprojection. Then

(x ∗ y ∗ x) ∗ z = (x ∗ y) ∗ (x ∗ z)(z ∗ (x ∗ y)

)∗ x = z ∗ (x ∗ y ∗ x)(

(x ∗ y) ∗ z)∗ x = (x ∗ y) ∗ (z ∗ x)

for any x , y , z ∈ L.

Proof idea:

The Sasaki projection fulfils the left, right and flexibleidentities.Further we use the properties (x ∗ y) C x and

If x 6 z or y 6 z then

(x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 64: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Moufang–like identities

Theorem

Let L be an orthomodular lattice and let ∗ be the Sasakiprojection. Then

(x ∗ y ∗ x) ∗ z = (x ∗ y) ∗ (x ∗ z)(z ∗ (x ∗ y)

)∗ x = z ∗ (x ∗ y ∗ x)(

(x ∗ y) ∗ z)∗ x = (x ∗ y) ∗ (z ∗ x)

for any x , y , z ∈ L.

Proof idea:

The Sasaki projection fulfils the left, right and flexibleidentities.Further we use the properties (x ∗ y) C x andIf x 6 z or y 6 z then

(x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 65: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Conclusions

Sasaki operations form a promising alternative to latticeoperations (join and meet).

Sasaki operations satisfy more equations than mostorthomodular operations and therefore they are the bestcandidates for developing alternative algebraic tools forcomputations in orthomodular lattices.

The potential of using Sasaki operations in the algebraicfoundations of orthomodular lattices is still not sufficientlyexhausted.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 66: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Conclusions

Sasaki operations form a promising alternative to latticeoperations (join and meet).

Sasaki operations satisfy more equations than mostorthomodular operations and therefore they are the bestcandidates for developing alternative algebraic tools forcomputations in orthomodular lattices.

The potential of using Sasaki operations in the algebraicfoundations of orthomodular lattices is still not sufficientlyexhausted.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 67: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Conclusions

Sasaki operations form a promising alternative to latticeoperations (join and meet).

Sasaki operations satisfy more equations than mostorthomodular operations and therefore they are the bestcandidates for developing alternative algebraic tools forcomputations in orthomodular lattices.

The potential of using Sasaki operations in the algebraicfoundations of orthomodular lattices is still not sufficientlyexhausted.

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 68: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Thanks

Thank you for your attention!

Questions?

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 69: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Thanks

Thank you for your attention!

Questions?

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Page 70: New properties of Sasaki projectionslogica.dmi.unisa.it/tacl/wp-content/uploads/2014/08/TACL... · New properties of Sasaki projections Jeannine Gabri els*, Stephen Gagola III** and

Thanks

Thank you for your attention!

Questions?

Jeannine Gabriels*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections