New Optimization Algorithms in Physics_1

Embed Size (px)

Citation preview

  • 8/11/2019 New Optimization Algorithms in Physics_1

    1/10

    New Optimization

    Algorithms in Physics

    Edited byAlexander K. Hartmann and Heiko Rieger

    New Optimization Algorithms in Physics.Edited by Alexander K. Hartmann, Heiko Rieger

    Copyright c 2004 Wiley-VCH Verlag GmbH & Co. KGaA

    ISBN: 3-527-40406-6

  • 8/11/2019 New Optimization Algorithms in Physics_1

    2/10

    New Optimization

    Algorithms in Physics

    Edited byAlexander K. Hartmann and Heiko Rieger

  • 8/11/2019 New Optimization Algorithms in Physics_1

    3/10

    Editors

    Alexander K.Hartmann

    Universitt Gttingen, Germany

    [email protected]

    Heiko Rieger

    Universitt des Saarlandes, Germany

    [email protected]

    Cover Picture

    Short artificial peptide (U. H. E. Hansmann);

    Dense configuration of polydisperse hard discs (W.

    Krauth); Cut Polytope for the complete graph withN=3 (F. Liers et al); Factor graph for 3-SAT (R.

    Zecchina)

    This book was carefully produced.Nevertheless,

    editors,authors and publisher do not warrant the

    information contained therein to be free of errors.Readers are advised to keep in mind that state-

    ments,data, illustrations, procedural details orother items may inadvertently be inaccurate.

    Library of Congress Card No.: applied for

    British Library Cataloging-in-Publication Data:

    A catalogue record for this book is available fromthe British Library

    Bibliographic information published by

    Die Deutsche Bibliothek

    Die Deutsche Bibliothek lists this publication inthe Deutsche Nationalbibliografie; detailed bibli-

    ographic data is available in the Internet at.

    2004 WILEY-VCH Verlag GmbH & Co. KGaA,

    Weinheim

    All rights reserved (including those of translationinto other languages). No part of this book may

    be reproduced in any form nor transmitted or

    translated into machine language without writtenpermission from the publishers. Registered

    names, trademarks, etc. used in this book, evenwhen not specifically marked as such, are not to

    be considered unprotected by law.

    Printed in the Federal Republic of Germany

    Printed on acid-free paper

    Composition Uwe Krieg,Berlin

    Printing Strauss GmbH, MrlenbachBookbinding Litges & Dopf Buchbinderei

    GmbH, HeppenheimISBN 3-527-40406-6

  • 8/11/2019 New Optimization Algorithms in Physics_1

    4/10

    Contents

    List of Contributors XI

    1 Introduction

    (A.K. Hartmann and H. Rieger

    ) 1

    Part I Applications in Physics 5

    2 Cluster Monte Carlo Algorithms

    (W. Krauth) 7

    2.1 Detailed Balance and a priori Probabilities . . . . . . . . . . . . . . . . . . . 7

    2.2 The Wolff Cluster Algorithm for the Ising Model . . . . . . . . . . . . . . . 10

    2.3 Cluster Algorithm for Hard Spheres and Related Systems . . . . . . . . . . . 12

    2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    2.4.1 Phase Separation in Binary Mixtures . . . . . . . . . . . . . . . . . . 16

    2.4.2 Polydisperse Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . 18

    2.4.3 Monomer-Dimer Problem . . . . . . . . . . . . . . . . . . . . . . . 19

    2.5 Limitations and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    3 Probing Spin Glasses with Heuristic Optimization Algorithms

    (O.C. Martin) 23

    3.1 Spin Glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    3.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    3.1.2 The Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    3.1.3 Models of Spin Glasses . . . . . . . . . . . . . . . . . . . . . . . . . 243.1.4 Some Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    3.2 Some Heuristic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    3.2.1 General Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    3.2.2 Variable Depth Search . . . . . . . . . . . . . . . . . . . . . . . . . 32

    3.2.3 Genetic Renormalization Algorithm . . . . . . . . . . . . . . . . . . 36

    3.3 A Survey of Physics Results . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    3.3.1 Convergence of the Ground-state Energy Density . . . . . . . . . . . 41

    3.3.2 Domain Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    3.3.3 Clustering of Ground States . . . . . . . . . . . . . . . . . . . . . . 42

    3.3.4 Low-energy Excitations . . . . . . . . . . . . . . . . . . . . . . . . 42

  • 8/11/2019 New Optimization Algorithms in Physics_1

    5/10

    VI Contents

    3.3.5 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    3.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    4 Computing Exact Ground States of Hard Ising Spin Glass Problems byBranch-and-cut

    (F. Liers, M. Jnger, G. Reinelt, and G. Rinaldi) 47

    4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    4.2 Ground States and Maximum Cuts . . . . . . . . . . . . . . . . . . . . . . . 48

    4.3 A General Scheme for Solving Hard Max-cut Problems . . . . . . . . . . . . 51

    4.4 Linear Programming Relaxations of Max-cut . . . . . . . . . . . . . . . . . 55

    4.5 Branch-and-cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    4.6 Results of Exact Ground-state Computations . . . . . . . . . . . . . . . . . . 62

    4.7 Advantages of Branch-and-cut . . . . . . . . . . . . . . . . . . . . . . . . . 65

    4.8 Challenges for the Years to Come . . . . . . . . . . . . . . . . . . . . . . . 66References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    5 Counting States and Counting Operations

    (A. Alan Middleton) 71

    5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    5.2 Physical Questions about Ground States . . . . . . . . . . . . . . . . . . . . 72

    5.2.1 Homogeneous Models . . . . . . . . . . . . . . . . . . . . . . . . . 72

    5.2.2 Magnets with Frozen Disorder . . . . . . . . . . . . . . . . . . . . . 73

    5.3 Finding Low-energy Configurations . . . . . . . . . . . . . . . . . . . . . . 75

    5.3.1 Physically Motivated Approaches . . . . . . . . . . . . . . . . . . . 755.3.2 Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . 76

    5.3.3 Ground-state Algorithm for the RFIM . . . . . . . . . . . . . . . . . 78

    5.4 The Energy Landscape: Degeneracy and Barriers . . . . . . . . . . . . . . . 80

    5.5 Counting States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    5.5.1 Ground-state Configuration Degeneracy . . . . . . . . . . . . . . . . 83

    5.5.2 Thermodynamic State . . . . . . . . . . . . . . . . . . . . . . . . . 85

    5.5.3 Numerical Studies of Zero-temperature States . . . . . . . . . . . . . 86

    5.6 Running Times for Optimization Algorithms . . . . . . . . . . . . . . . . . . 91

    5.6.1 Running Times and Evolution of the Heights . . . . . . . . . . . . . 92

    5.6.2 Heuristic Derivation of Running Times . . . . . . . . . . . . . . . . 945.7 Further Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    6 Computing the Potts Free Energy and Submodular Functions

    (J.-C. Angls dAuriac) 101

    6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    6.2 The Potts Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    6.2.1 Definition of the Potts Model . . . . . . . . . . . . . . . . . . . . . . 102

    6.2.2 Some Results for Non-random Models . . . . . . . . . . . . . . . . . 103

    6.2.3 The Ferromagnetic Random Bond Potts Model . . . . . . . . . . . . 103

  • 8/11/2019 New Optimization Algorithms in Physics_1

    6/10

    Contents VII

    6.2.4 High Temperature Development . . . . . . . . . . . . . . . . . . . . 103

    6.2.5 Limit of an Infinite Number of States . . . . . . . . . . . . . . . . . 104

    6.3 Basics on the Minimization of Submodular Functions . . . . . . . . . . . . . 105

    6.3.1 Definition of Submodular Functions . . . . . . . . . . . . . . . . . . 1056.3.2 A Simple Characterization . . . . . . . . . . . . . . . . . . . . . . . 105

    6.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    6.3.4 Minimization of Submodular Function . . . . . . . . . . . . . . . . . 106

    6.4 Free Energy of the Potts Model in the Infinite q-Limit . . . . . . . . . . . . . 107

    6.4.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    6.4.2 The Auxiliary Problem . . . . . . . . . . . . . . . . . . . . . . . . . 108

    6.4.3 The Max-flow Problem: the Goldberg and Tarjan Algorithm . . . . . 111

    6.4.4 About the Structure of the Optimal Sets . . . . . . . . . . . . . . . . 111

    6.5 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 112

    6.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126.5.2 Example of Application . . . . . . . . . . . . . . . . . . . . . . . . 114

    6.5.3 Evaluation of the CPU Time . . . . . . . . . . . . . . . . . . . . . . 114

    6.5.4 Memory Requirement . . . . . . . . . . . . . . . . . . . . . . . . . 114

    6.5.5 Various Possible Improvements . . . . . . . . . . . . . . . . . . . . 115

    6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    Part II Phase Transitions in Combinatorial Optimization Problems 119

    7 The Random 3-satisfiability Problem: From the Phase Transition to the Efficient

    Generation of Hard, but Satisfiable Problem Instances

    (M. Weigt) 121

    7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    7.2 Random 3-SAT and the SAT/UNSAT Transition . . . . . . . . . . . . . . . . 122

    7.2.1 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    7.2.2 Using Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . 124

    7.3 Satisfiable Random 3-SAT Instances . . . . . . . . . . . . . . . . . . . . . . 127

    7.3.1 The Naive Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    7.3.2 Unbiased Generators . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

    8 Analysis of Backtracking Procedures for Random Decision Problems

    (S. Cocco, L. Ein-Dor, and R. Monasson) 139

    8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    8.2 Phase Diagram, Search Trajectories and the Easy SAT Phase . . . . . . . . . 143

    8.2.1 Overview of Concepts Useful to DPLL Analysis . . . . . . . . . . . 144

    8.2.2 Clause Populations: Flows, Averages and Fluctuations . . . . . . . . 145

    8.2.3 Average-case Analysis in the Absence of Backtracking . . . . . . . . 147

    8.2.4 Occurrence of Contradictions and Polynomial SAT Phase . . . . . . . 150

  • 8/11/2019 New Optimization Algorithms in Physics_1

    7/10

    VIII Contents

    8.3 Analysis of the Search Tree Growth in the UNSAT Phase . . . . . . . . . . . 153

    8.3.1 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 153

    8.3.2 Parallel Growth Process and Markovian Evolution Matrix . . . . . . 155

    8.3.3 Generating Function and Large-size Scaling . . . . . . . . . . . . . . 158

    8.3.4 Interpretation in Terms of Growth Process . . . . . . . . . . . . . . . 1618.4 Hard SAT Phase: Average Case and Fluctuations . . . . . . . . . . . . . . . 164

    8.4.1 Mixed Branch and Tree Trajectories . . . . . . . . . . . . . . . . . . 164

    8.4.2 Distribution of Running Times . . . . . . . . . . . . . . . . . . . . . 165

    8.4.3 Large Deviation Analysis of the First Branch in the Tree . . . . . . . 167

    8.5 The Random Graph Coloring Problem . . . . . . . . . . . . . . . . . . . . . 171

    8.5.1 Description of DPLL Algorithm for Coloring . . . . . . . . . . . . . 171

    8.5.2 Coloring in the Absence of Backtracking . . . . . . . . . . . . . . . 172

    8.5.3 Coloring in the Presence of Massive Backtracking . . . . . . . . . . 173

    8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

    9 New Iterative Algorithms for Hard Combinatorial Problems

    (R. Zecchina) 183

    9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

    9.2 Combinatorial Decision Problems, K-SAT and the Factor Graph Representation185

    9.2.1 Random K-SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    9.3 Growth Process Algorithm: Probabilities, Messages and Their Statistics . . . 190

    9.4 Traditional Message-passing Algorithm: Belief Propagation as Simple Cavity

    Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

    9.5 Survey Propagation Equations . . . . . . . . . . . . . . . . . . . . . . . . . 1949.6 Decimating Variables According to Their Statistical Bias . . . . . . . . . . . 195

    9.7 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

    Part III New Heuristics and Interdisciplinary Applications 203

    10 Hysteretic Optimization

    (K.F. Pl) 205

    10.1 Hysteretic Optimization for Ising Spin Glasses . . . . . . . . . . . . . . . . . 206

    10.2 Generalization to Other Optimization Problems . . . . . . . . . . . . . . . . 21410.3 Application to the Traveling Salesman Problem . . . . . . . . . . . . . . . . 221

    10.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

    11 Extremal Optimization

    (S. Boettcher) 227

    11.1 Emerging Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

    11.2 Extremal Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

    11.2.1 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

    11.2.2 EO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

  • 8/11/2019 New Optimization Algorithms in Physics_1

    8/10

    Contents IX

    11.2.3 Extremal Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

    11.2.4 Rank Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

    11.2.5 Defining Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

    11.2.6 Distinguishing EO from other Heuristics . . . . . . . . . . . . . . . 235

    11.2.7 Implementing EO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

    11.3 Numerical Results for EO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

    11.3.1 Early Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

    11.3.2 Applications of EO by Others . . . . . . . . . . . . . . . . . . . . . 242

    11.3.3 Large-scale Simulations of Spin Glasses . . . . . . . . . . . . . . . . 243

    11.4 Theoretical Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

    12 Sequence Alignments

    (A.K. Hartmann) 253

    12.1 Molecular Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

    12.2 Alignments and Alignment Algorithms . . . . . . . . . . . . . . . . . . . . . 259

    12.3 Low-probability Tail of Alignment Scores . . . . . . . . . . . . . . . . . . . 266

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

    13 Protein Folding in Silico the Quest for Better Algorithms

    (U.H.E. Hansmann) 275

    13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

    13.2 Energy Landscape Paving . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

    13.3 Beyond Global Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 280

    13.3.1 Parallel Tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . 28013.3.2 Multicanonical Sampling and Other Generalized-ensemble Techniques 283

    13.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

    13.4.1 Helix Formation and Folding . . . . . . . . . . . . . . . . . . . . . . 288

    13.4.2 Structure Predictions of Small Proteins . . . . . . . . . . . . . . . . 290

    13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

    Index 297

  • 8/11/2019 New Optimization Algorithms in Physics_1

    9/10

    List of Contributors

    Jean-Christian Angls dAuriac, Ch. 6

    Centre de Recherches sur les Tres Basses Tem-

    peratures

    BP 166, F-38042 Grenoble, France

    e-mail: [email protected]

    Stefan Boettcher, Ch. 11

    Stefan Boettcher

    Physics Department

    Emory University

    Atlanta, GA 30322; USA

    e-mail: [email protected]

    www.physics.emory.edu/faculty/boettcher

    Simona Cocco, Ch. 8

    Laboratoire de Dynamique des Fluides Com-

    plexes

    3 rue de lUniversit

    67000 Strasbourg, France

    e-mail: [email protected]

    Liat Ein-Dor, Ch. 8

    Department of Physics of Complex Systems

    Wezmann Institute

    Rehovot 76100, Israel

    and

    Laboratoire de Physique Thorique de lENS

    24 rue Lhomond

    75005 Paris, France

    Ulrich H. E. Hansmann, Ch. 13

    Department of Physics

    Michigan Technological University

    Houghton

    MI 49931-1295, USA

    e-mail: [email protected]

    Alexander K. Hartmann, Ch. 1, 12

    Institut fr Theoretische Physik

    Universitt Gttingen

    Tammanstrae 1

    D-37077 Gttingen, Germany

    e-mail:

    [email protected]

    Michael Jnger, Ch. 4

    Institut fr Informatik

    Universitt zu Kln

    Pohligstrae 1

    D-50969 Kln, Germany

    e-mail: [email protected]

    Werner Krauth, Ch. 2

    CNRS-Laboratoire de Physique Statistique

    Ecole Normale Suprieure24, rue Lhomond

    F-75231 Paris Cedex 05, France

    e-mail: [email protected]

    Frauke Liers, Ch. 4

    Institut fr Informatik

    Universitt zu Kln

    Pohligstrae 1

    D-50969 Kln, Germany

    e-mail: [email protected]

    New Optimization Algorithms in Physics.Edited by Alexander K. Hartmann, Heiko Rieger

    Copyright c 2004 Wiley-VCH Verlag GmbH & Co. KGaA

    ISBN: 3-527-40406-6

  • 8/11/2019 New Optimization Algorithms in Physics_1

    10/10

    XII List of Contributors

    Olivier C. Martin, Ch. 3

    LPTMS, Universit Paris-Sud

    Orsay Cedex 91405, France

    e-mail: [email protected]

    A. Alan Middleton, Ch. 5

    Department of Physics

    Syracuse University

    Syracuse, NY, USA

    e-mail: [email protected]

    Remi Monasson, Ch. 8Laboratoire de Physique Thorique de lENS

    24 rue Lhomond

    75005 Paris, France

    e-mail: [email protected]

    and

    Laboratoire de Physique Thorique

    3 rue de lUniversit67000 Strasbourg, France

    Kroly F. Pl, Ch. 10

    Department of Theoretical Physics

    Institute of Nuclear Research of the

    Hungarian Academy of Sciences

    Bem tr 18/c

    H-4026 Debrecen, Hungary

    e-mail: [email protected]

    Gerhard Reinelt, Ch. 4

    Institut fr Informatik

    Ruprecht-Karls-Universitt Heidelberg

    Im Neuenheimer Feld 368

    D-69120 Heidelberg, Germany

    e-mail:

    [email protected]

    Heiko Rieger, Ch. 1

    Theoretische Physik

    Universitt des Saarlandes

    D-66041 Saarbrcken, Germany

    e-mail: [email protected]

    Giovanni Rinaldi, Ch. 4

    Istituto di Analisi dei Sistemi ed Informatica

    Antonio Ruberti - CNR

    Viale Manzoni, 30

    00185 Roma, Italy

    e-mail: [email protected]

    Martin Weigt, Ch. 7

    Institut fr Theoretische Physik

    Universitt GttingenTammanstrae 1

    D-37077 Gttingen, Germany

    e-mail: [email protected]

    Riccardo Zecchina, Ch. 9

    International Centre for Theoretical Physics

    (ICTP)

    Strada Costiera, 11 P.O.Box 586

    I-34100 Trieste, Italy

    e-mail: [email protected]