25
N New measurements and new physics with and new physics with spinor BEC Lincoln Turner Yi i Li St M ll S b ti J Yingmei Liu, Steven Maxwell, Sebastian Jung Eduardo Gomez, Adam Black Paul Lett Paul Lett

New measurements and new physics withand new physics ......New measurements and new physics withand new physics with spinor BEC Lincoln Turner Yi iYingmei Li St M ll S b ti JLiu, Steven

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • NNew measurements and new physics withand new physics with

    spinor BEC

    Lincoln TurnerYi i Li St M ll S b ti JYingmei Liu, Steven Maxwell, Sebastian Jung

    Eduardo Gomez, Adam BlackPaul LettPaul Lett

  • Optical trapping

    First suggested by Lekhotov (1978)Demonstrated by Chu (1986)y ( 9 )Applied to BEC (Stamper-Kurn 1998)All-optical BEC (Chapman 2001)

    Some initial experiments on spinor BEC: domain formation and i i (MIT 8 )interactions (MIT group 1998-9)

    Feshbach resonancesTunable interactionsMolecule formationDegenerate Fermi gasesDegenerate Fermi gasesBEC/BCS crossover

  • What is a spinor BEC?

    Magnetic traps hold onlyMagnetic traps hold only one sign of spin projection.

    ( )( ) ( ) in e θψ = rr r

    O ti l t h ld ll i j ti

    ( ) ( )ψ

    Optical traps hold all spin projections

    ⎛ ⎞( )( ) ( ) ...

    ( )

    F

    ψξ

    −⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠

    rr r ( ) ( ) 1T =ξ r ξ r

    ( )Fξ+⎜ ⎟⎝ ⎠r

  • Stern-Gerlach imaging

    Put the BEC in a magnetic gradient

    Spin components separate

    I ith b ti i iBarrett, Sauer,ChImage with absorption imaging ChapmanPRL 87 010404(2001)

  • Symmetry and interactions

    Interactions

    For experimentalists For theorists

    C i l b i h F

    2 2

    1 2 1 24( ) ( )

    F

    f fV a Pπδ− = − ∑r r r r

    Contact potential but with F+1 scattering lengths

    1 2 1 20,2,...

    ( ) ( ) f ff

    V a Pm

    δ=∑r r r r

    Odd f forbidden by Bose symmetry.MDDI small but measurable for F=1MDDI small but measurable for F 1

    Projection ontototal spin

  • Spin-mixing oscillations23Na c>0NIST

    0 4

    0.6

    0.2

    0.4

    Black, Gomez, LDT, Jung, LettPRL 99 070403 (2007)

    0

    20 400 60

    80

    87Rb c

  • F=1 interactionsOnly one spin-changing interaction allowed is

    |+1> |-1> ⇔ |0> |0>

    ⇔( )( ) ( )V δ + F F

    Order parameter has three components

    ⇔( )1 2 1 2 0 2 1 2( ) ( )V c cδ− = − + ⋅r r r r F F

    O de pa a ete as t ee co po e ts

    1

    0

    ( , )( , ) ( ) ( , )

    tt n t

    ξψ ξ

    −⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟

    rr r r

    Three coupled Gross-Pitaevski equations:

    1 ( , )tξ +⎜ ⎟⎝ ⎠r

  • Topological defects galore

    Spin textures

    Spin knots

    Spin knotsSpin vortex lattices

    Nematic disclinationsSpin solitons

    Coreless vortices

  • Single mode approximation

    Assume that the spatial wavefunction is:– constant – identical for all three spin components

    1 ( )( ) ( ) ( )

    tt n t

    ξψ ξ

    −⎛ ⎞⎜ ⎟= ⎜ ⎟r r 0

    1

    ( , ) ( ) ( )( )

    t n tt

    ψ ξξ +

    = ⎜ ⎟⎜ ⎟⎝ ⎠

    r r

    Further break up into populations ρ and phases θ

    1 ( )1 ( )

    i tt e θρ −⎛ ⎞⎜ ⎟

    0

    1

    1

    ( )0

    ( )1

    ( )

    ( , ) ( ) ( )

    ( )

    i t

    i t

    t e

    t n t e

    t e

    θ

    θ

    ρ

    ψ ρ

    ρ +

    +

    ⎜ ⎟= ⎜ ⎟

    ⎜ ⎟⎜ ⎟⎝ ⎠

    r r

    ⎝ ⎠

  • Magnetisation and the linear Zeeman effect

    Magnetisation is m=ρ+ − ρ−Constant of the motion

    E

    Constant of the motion

    Populations normalised

    ρ+ + ρ0 + ρ− = 1

    Whole system described by:One population, say ρ0(t)Overall phase θ = θ + θ – 2θ0

    BOverall phase θ θ+ + θ− 2θ0

    ( )2 20 0 0 01 (1 ) cos (1 )E c mρ ρ ρ θ δ ρ= − + − − + −( )QuadraticZeemanSpin interaction

    c>0 for antiferromagnetic 23Na 

  • Effective Hamiltonian for F=1 in SMA

    ( )2 20 0 0 01 (1 ) cos (1 )E cn n n m nθ δ= − + − − + −E0.6

    0 4

    0 2

    0.4

    ρ0

    ( )2 20 0 0 01 (1 ) cos (1 )E cn n n m nθ δ= − + − − + −

    0

    0.2

    0 π 2π-2π -π0

    θ

    ( )2 20 0 0 01 (1 ) cos (1 )E c mρ ρ ρ θ δ ρ= − + − − + −QuadraticZeemanSpin interaction

  • Destructive Stern-Gerlach measurementsd

    / m

    sti

    on p

    erio

    dO

    scill

    at

    Magnetic field / μTMagnetic field / μT

  • Faraday measurement of transverse magnetisation

    Spin precesses around bias field

    Polarization alternately rotatedleft and right.

    -+

    Faraday signal

    F

    No rotation when spin is perpendicular to beam.

    B

    F

    Put cube at 45° to input polarization, get bright field signal that is nulled for no rotation.

    B

    mF

    that is nulled for no rotation.

    Net effect is a signal oscillating at the Larmor frequency.the Larmor frequency.

  • Faraday measurement, details

    Experimentalist here Theorists here

    2 mm

    0 μm

    Calibrated apertureon xy stage

    2 2

    Image of BEC~0.5mm

    Compound lens:1.8x relay, achromatic pair11x telescope rot x

    F dxθ ∝ ∫11x telescope20x total magnification

  • Faraday measurement: spin oscillations

  • Spin oscillations: period divergence/

    ms

    on p

    erio

    d O

    scill

    ati

    Magnetic field / μT

  • Decoherence in the F=1 SMA system

  • Single-mode ground state

  • Non-linear Landau-Zener tunneling

    γ γ

    Lucas Rutten, Monash

  • Summary: single-mode spin-1 system

    We now understand:

    Free evolution

    Ground state …

    … and how it gets there (decoherence)

    Adiabatic(ish) evolution

  • Anything else?

    Shapiro steps

    Phenomenology in Josephson systemsgy p y

    Add a magnetic field dither

    Macroscopic Quantum State Trapping (MQST)

    Spin echoes of magnetic dipole-dipole interaction (MDDI)

  • Beyond mean-field: Spinor squeezing

    Chang et al, PRL 99 080402 (2007)

  • Beyond single mode

    87Rb Ferromagnetichas lower energy

    23Na Antiferromagnetichas lower energy has lower energyhas lower energy

    Won’t form domains:Robins et al PRA 64 021601R (2001)Robins et al. PRA 64 021601R (2001)

    Zhang et al. PRL 95 180403 (2005)

    Can form domains:Al d l A 8 6 ( 8)Alexander et al. PRA 78 023632 (2008)

  • Application: micromagnetometry

  • Conclusions

    Optical trapping ⇒ spinor order parameter

    Single-mode F=1 model

    F d tFaraday measurement– Well adapted to measuring a single spatial mode

    “NMR” extensions spinor squeezing– NMR extensions, spinor squeezing …

    Microscale atomic magnetometers