20
New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich nuclei in the vicinity of 54 Ca N = 32 and 34 are candidates of new magic numbers in Ca isotopes Wienholtz et al. Nature 498, 349 (2013) – Mass of 54 Ca was measured by the Penning ion-trap method – Steep decrease in S 2n from 52 Ca to 54 Ca Established prominent shell closure at N = 32 Steppenbeck et al. Nature 502, 207 (2013) – Ex(2 + 1 ) in 54 Ca was measured – Ex(2 + 1 ) in 54 Ca was found to be only ~500 keV below that in 52 Ca Suggested the existence of an N = 34 shell closure in 54 Ca N > 34 54 Ca Masses have not been measured This work A cri1cal evidence on the shell closure at N = 34 Masses beyond N = 34 ( 55 Ca, 56 Ca, ...) 52 Ca ? S 2n (Z=20)

New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

NewmagicnumbersN=32,34

1

Studythenuclearshellevolu1onatN=32,34bydirectmassmeasurementsofneutron-richnucleiinthevicinityof54Ca

N=32and34arecandidatesofnewmagicnumbersinCaisotopes•  Wienholtzetal.Nature498,349(2013)

–  Massof54CawasmeasuredbythePenningion-trapmethod–  SteepdecreaseinS2nfrom52Cato54Ca–  EstablishedprominentshellclosureatN=32

•  Steppenbecketal.Nature502,207(2013)–  Ex(2+1)in54Cawasmeasured–  Ex(2+1)in54Cawasfoundtobeonly~500keVbelowthatin52Ca–  SuggestedtheexistenceofanN=34shellclosurein54Ca

N>34

54Ca

Masseshavenotbeenmeasured

Thiswork

Acri1calevidenceontheshellclosureatN=34→ MassesbeyondN=34(55Ca,56Ca,...)

52Ca ?

S2n(Z=20)

Page 2: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

3234

Goalofthiswork

2

•  ObtaintheatomicmassdataofAr,K,CaandScisotopesbeyondN=32and34withtheprecisionofseveralhundredskeV

•  Makeclear–  MagicityofCaandScatN=34–  MagicityofKandAratN=32

>1000keV

<1000keV

<500keV

<400keV

<300keV

<200keV

<100keV

Massuncertainty

☆:Es1matedbeamintensi1es>0.001cps

55Ca

Page 3: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

BigRIPS

High Resolution Beam Line

SHARAQ Spectrometer

Experimentalsetup

3

F3 •  Timingdetector(Diamond)•  Trackingdetector(LP-MWDCx2)

S0 PosiWondetector(PPAC)

S2 •  Timingdetector(Diamond)

•  Trackingdetector(LP-MWDCx2)•  ΔEdetector(SSDx2)

Gammadetectors

Produc1ontarget(9Be)

Flightlength(F3-S2)105m(~540ns)

Primarybeam:70Zn(345MeV/u),I=150pnA

F3

S0

S2

•  Momentumslit•  Energydegrader

Forisomertagging(confirmPID)

@RIKENRIBeamFactory(RIBF)-SHARAQ

•  TOF-Bρmethod

PrecisemeasurementofTOFandBρ

ForBρmeasurement

Dispersionmatchingmode(p/δp=14700)

Page 4: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

Diamonddetector

4

S.Michimasa,etal.,NIMB317,710(2013)

•  DevelopedbyCNS-MSUcollabora1on•  PolycrystallineCVDdiamond

•  Crystalsize:30×30×0.2mm3

•  Paddesign–  Effec1vearea:28×28mm2

–  SideA:1pad(4readouts)–  SideB:4strips(8readouts)

•  forcorrec1onofposi1ondependence

SpecificaWon:

Fastresponse→ verygood2mingresolu2on!Diamond

(CVD:chemicalvapordeposi1on)

20ns

Pad

Strip

Strip

Rise1me:~700psDecay1me:~10ns

•  Timingresolu1onwasachievedtobe27ps(σ)for320-AMeV12Nisotopes(previousexp.)

ü  Inthepresentmassmeasurement,σ=11pshasbeenachievedforZ=20nuclei

Page 5: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

ExpectedmassresoluWon

5

•  MassresoluWoninthesystem

–  Bρ:SHARAQoperatedindispersionmatchingtransportmode→ δBρ/Bρ=1/14700(designvalue)

–  TOF:Diamonddetector(σ=30ps)→ δt/t=7.5×10-5

–  Flightlength(L):correctedbyLP-MWDCs(σ=300um)→ δL/L=5.8×10-5

𝝐~1.7×10-4(1/𝝐~6000)isexpectedtobeachieved~1.7×10-4(1/𝝐~6000)isexpectedtobeachieved

•  Massuncertainty

–  σ(syst)=2×10-6isassumed(frompreviousTOFmeasurements)–  55Ca:σm=300keV(σ=6×10-6)→ N=3000eventsareneeded

Page 6: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

ParWcleidenWficaWon

6

•  Totalyieldof55Ca:~3000•  Manyspeciesofreferencenucleioverabroad

rangeofAandZareobserved.–  Thesenucleiareusedinthemasscalibra1on.

•  Nucleiwhosemasseshavenotbeenmeasured:

Z Nuclei(Yield>1000)

17 47Cl,48Cl

18 50Ar

19 --

20 55Ca

21 58Sc,59Sc

22 58Ti,59Ti,60Ti

23 62V,63V

MassesofthesenucleiwillbedeterminedwiththeprecisionofseveralhundredskeV

PIDspectrumaoerroughmasscalibra1on

A/Q2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9

Z

10

12

14

16

18

20

22

24

58Sc 59Sc

61Ti60Ti59Ti58Ti

63V62V

50Ar

47Cl 48Cl

Newmasses

55Ca56Ca

Preliminary

54K

51Ar

Page 7: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

Massspectra

7

Preliminary Preliminary

•  MassresoluWonof1/10000(σ)hasbeenachievedforZ=20nuclei–  55Ca:σm(stat)=90keV(3000events)–  56Ca:σm(stat)=200keV(400events)

NoZgate(allnuclei)

2.694 2.704A/Q0.001

54Ca

Page 8: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

SystemaWcerror

8

σm/q(syst)=6.1keV/q

•  Referencenuclei–  52-54Ca,49,51-52K,46-48Ar,43-46Cl,41-42S,38-42P,36-40Si

•  Massuncertain1es<300keV•  Noknownisomericstates•  MassvaluesaretakenfromAME2012except

53,54Caand52K•  53,54Ca:F.Wienholtzetal.,Nature498,349(2013)•  52K:M.Rosenbuschetal.,PRL114,202501(2015)

•  Systema1cerror–  evaluatedfromthestandarddevia1onof

them/qdifferencesforthereferencenuclei

(Z=20→ σm(syst)=122keV)

Preliminary

•  Massesof55Caand56CaaredeterminedwithprecisionsofafewhundredskeV–  σm=150keV(55Ca),σm=230keV(56Ca)(Preliminary)

•  Wewillfixsoonthefinalvalues(especiallyerrors)ofthemasses

Page 9: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

Two-neutronseparaWonenergyS2n

9

Thiswork

•  GXPF1BR(pf-shell):Nature502,207(2013)•  KB3G(pf-shell)•  NN+3N(MBPT,pf+g9/2):PRC90,024312(2014)

Theore1calcalcula1ons

Enlarge

N=35:KB3GandNN+3NlookgoodN=36:NocalculaWonsreproducethenewvalueswell

Page 10: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

Empiricalshellgap

10

D.Lunneyetal.,Rev.Mod.Phys.75,1021(2003)

•  PeakatN=32–  indicaWngshellclosureatN=32

•  NocalculaWonsagreewithourexperimentalresult

•  EmpiricalshellgapatN=34issmallerthanN=32

Fromthiswork

Empiricalshellgap

Thiswork

•  GXPF1BR•  KB3G•  NN+3N(MBPT)

Page 11: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

Summary

11

•  Inordertostudynuclearshellevolu1onatN=32and34,directmassmeasurementofneutron-richnucleiinthevicinityof54CawasperformedatRIBF-SHARAQbyusingtheTOF-Bρmethod.

•  Massresolu1onof1/10000(σ)hasbeenachievedforZ=20nuclei.

•  Massesof55Caand56CawillbefinalizedsoonwiththeprecisionofafewhundredskeV.

•  ExperimentaldataindicatethatshellgapatN=34issmallerthanN=32intheCaisotopes,andtheore1calcalcula1onsdonotagreewellwithourdata

Page 12: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

Collaborators

12

CNS,UniversityofTokyoM.Kobayashi,S.Michimasa,Y.Kiyokawa,M.Dozono,S.Kawase,K.Kisamori,Y.Kubota,C.S.Lee,M.Matsushita,H.Miya,S.Ota,S.Shimoura,M.Takaki,H.Tokieda,K.Yako,R.Yokoyama

RIKENNishinaCenterH.Baba,N.Fukuda,N.Inabe,T.Kubo,H.Sakai,H.Suzuki,H.Takeda,S.Takeuchi,T.Uesaka,Y.Yanagisawa,K.Yoshida

MSUNSCLA.Stolz

Univ.ofNotreDameG.P.A.Berg

KyotoUniversityT.Furuno,T.Kawabata

RCNP,OsakaUniv.E.Ideguchi

RikkyoUniversityK.Kobayashi,H.Nagakura,Y.Yamaguchi

TokyoUniversityofScienceA.Mizukami,D.Nishimura,H.Oikawa

Page 13: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

Thank you for your attention

Page 14: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

BACKUP

Page 15: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

Nuclearmasstoatomicmass

15

Page 16: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

MasscalibraWon

16

σm/q(syst)=6.1keV/q

•  Referencenuclei–  52-54Ca,49,51-52K,46-48Ar,43-46Cl,41-42S,38-42P,36-40Si

•  Massuncertain1es<300keV•  Noknownisomericstates•  MassvaluesaretakenfromAME2012except

53-54Caand52K•  53-54Ca:F.Wienholtzetal.,Nature498,349

(2013)•  52K:M.Rosenbuschetal.,PRL114,202501(2015)

•  Fisngfunc1on

–  uptothe4thorderaberra1onsareconsidered

•  t:TOF(betweenF3andS2)•  x,y:beamposi1on(atF3,S0orS2)•  a,b:beamangle(atF3orS2)

•  Systema1cerror–  evaluatedfromthestandarddevia1onof

them/qdifferencesforthereferencenuclei

(Z=20→ σm/q(syst)=122keV)

Preliminary

Page 17: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

ZcorrecWon

17

ErrorarisingfromthisfisngZ=20→ σ=3.26keV/q

ErrorsofS2nandΔ3npresentedinthistalkcontainsthiserror

Z-dependenceremains

Fisngfunc1ondoesnotcontaintheZ-term→ Z-dependenceremains

Page 18: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

TimingresoluWonofdiamonddetector

18

•  Timedifferencebetweenbothedgesofastripinadiamonddetector

•  Correctedbyhitposi1oninthestrip

•  TimingresoluWonofthediamonddetectorisesWmatedtobeσ=12ps(cf.12Nat320AMeV→ σ=27ps)

TimedifferenceTL–TR[ps]

Preliminaryσ(Tdiff)=17ps

×BeamTL TR

cf.Timedifferencevstrackedposi1on(beforecorrec1on)

Stripwidth

σ=12ps×1/√2 

Page 19: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

TOFresoluWon

19

•  Correc1onofaberra1onsupto4thorderofxF3,aF3,yF3,bF3,andxS0

–  Coefficients(fisngparameters)c0,c1,c2,…aredeterminedbyleastsquaremethod

•  TOF:about540ns(57Sc,Bρ~7Tm)

•  ΔTOF/TOF=7.8×10-5(σ)hasbeenachieved

Preliminary

beforecorrec1on

aoercorrec1onσ(TOF)=42ps

57Sc

TOFbetweenF3andS2[ns](Timingoffsetisnotadded)

1st

2nd

>3rd

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

beforecorrec1on(measurementvalue)

Page 20: New magic numbers N = 32, 34 - University of Adelaide · New magic numbers N = 32, 34 1 Study the nuclear shell evolu1on at N = 32, 34 by direct mass measurements of neutron-rich

Δ3value

20

W.Satulaetal.,PRL81,3599(1998)

M(N):Massexcess

32 34

Meanfieldpart(shellgap)atN=34isnotsolargeasN=32

Fromthiswork

Δ3(N=even):pairing+mean-fieldΔ3(N=odd):pairing

•  Significantpeaksappearatconven1onalmagicnumbers(e.g.N=28)

•  PeakatN=32–  indicaWngshellclosureatN=32

Δ3value:indicatorofnuclearshellevolu1on

Thiswork