23
Recombina*on and Linkage Disequilibrium (LD)

NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

Recombina*on  and  Linkage  Disequilibrium  (LD)  

Page 2: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

A    B    

a    B      

A    b    

a    b    

½  (1-­‐r)  

½  (1-­‐r)  

½  r  

½  r  

r  =  recombina*on  frac*on    probability  of  an  odd  Number  of  crossovers  occur  Between  our  markers      

A    B    

a    b    

0  <r<  ½    

Page 3: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

If independent the expected

frequency of gametes (haplotypes)

pA X pB

pa X pb

pA X pb

pa X pB

Define “D” DAB = pAB - pApB Dab = pab - papb DAb = pAb - pApb DaB = paB - papB

pAB = frequency of AB pab = frequency of ab pAb = frequency of Ab paB = frequency of aB

Linkage disequilibrium: The non-random association of alleles at different sites in the genome in a population.

The  covariance  of  A  and  B.  

Page 4: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

Define “D” DAB = pAB - pApB Dab = pab - papb DAb = pAb - pApb DaB = paB - papB

Linkage disequilibrium: The non-random association of alleles at different sites in the genome.

DAB = - DAb DAB = Dab and DAb = DaB (so, knowing DAB is enough - call this “D”) If O = E, then D = 0 If D >0 (or D<0) then there is “linkage disequilibrium (LD)” Note: you can also write pAB= pApB+D

Page 5: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

       

Page 6: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

Decay  of  LD  in  a  very  large  boring    randomly  ma*ng  popula*on    

Dt = (1- r)t Do

With  inbreeding  coefficient  f  replace  r  with  r(1-­‐f)  

Page 7: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

linkage disequilibrium  How does LD change over time due to recombination?

Dt = (1- r)t Do

Note: more distant markers recombine more!

So eventually recombination leads to D=0. Even with free recombination (r=0.5), it isnt instantaneous however.

Page 8: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

What  creates  LD  

•  Muta*onal  origin  •  Gene*c  driN  (and  Hitchhiking)  •  Epista*c  selec*on*  •  Assorta*ve  ma*ng.    

–  Inbreeding  –  Popula*on  structure  and  admixture  – Assorta*ve  ma*ng  by  phenotype*  

•  *only  for  specific  markers    

Page 9: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

Population structure can increase LD if allele frequencies differ among populations

Countervailing forces that increase LD

Pretty pictures courtesy of P. Andolfatto (Princeton)

Page 10: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of
Page 11: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

LD  between  Neand

erthal  alleles  in    

mod

ern  hu

man  pop

ula*

ons  

Page 12: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

Evolu*on  by  gene*c  driN  •  Evolu*on  by  Gene*c  driN:  a  change  in  allele  frequency  because  individuals  carry  the  allele  by  chance  produce  more  /  less  offspring  in  any  given  genera*on.  *  

•  *in  sexual  popula*ons….  

•  Gene*c  driN  can  affect  selected  alleles  but  only  if  they  are  very  weakly  selected  (except  when  they  are  rare).  

•  A  neutral  allele:  An  allele  with  no  effect  on  fitness  from  other  alleles  at  that  locus.    

Page 13: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

•  Neutral  polymorphism/alleles:  

•  Only  2%  of  our  genome  encodes  for  proteins  •  Changes  outside  exons  may  be  completely  neutral  if  they  do  not  disrupt  regulatory  sites.  

•  Examples  of  poten*ally  neutral  alleles:  •  A  synonymous  change  in  a  codon.  •  A  non-­‐synonymous  change  that  replaces  one  amino-­‐acid  with  a  func*onally  similar  one.  

•  A  non-­‐synonymous  change  which  produces  a  large  change  in  a  phenotype  on  which  selec*on  no  longer  acts.  

Page 14: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

How  much  of  gene*c  divergence  between  species  is  neutral.  

•  ~36  million  subs*tu*ons  have  occurred  since  human  and  chimp  last  shared  a  common  ancestor.    

•  How  many  of  these  subs*tu*ons  fix  due  to  selec*on?  

•  How  much  of  polymorphism  is  neutral?  

Page 15: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

Why  is  there  so  much  polymorphism?  •  The  paradox  of  varia*on  in  popula*on  gene*cs:  Selec*on  quickly  fixes  alleles    that  are  beneficial  so  why  is  there  so  much  gene*c  polymorphism  within  natural  popula*ons?  

 Three  explana*ons:    •  Balancing  selec*on  •  Muta*on-­‐selec*on  balance  •  Muta*on-­‐gene*c  driN  balance  (Neutral  theory).  

Page 16: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

Neutral  theory  of    molecular  evolu*on  

• Kimura  1968;  King  and  Jukes  1969  • Claimed:    • Most  new  muta*ons  are  deleterious  and      are  lost  immediately  • Most  of  the  observed  molecular  polymorphism    and  subs*tu*ons  are  neutral    Claimed  that  this  is  consistent  with:    -­‐High  levels  of  gene*c  polymorphism  -­‐The  molecular  clock  

     

         

Page 17: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of
Page 18: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

•  The  rate  of  gene*c    driN  is  higher  in    smaller  popula*ons  Allele  frequencies  do  driN  in  very  large  popula*ons    but  at  a  very  slow  rate.          

Page 19: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

Loss  of  heterozygosity  •  In  the  absence  of  new  muta*ons,  alleles  driN  to  either  

loss  or  fixa*on.  Thus  the  amount  of  heterozygosity  within  the  popula*on  decreases  a  rate  inversely  propor*onal  to  popula*on  size  

Heterozygosity decreases on a time-scale proportional to2N generations

Ht � H0e� t

2N

Heterozygosity  =    Frac*on  of  sites  that    are  heterozygous  

Page 20: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

Loss  of  heterozygosity  

Page 21: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

GenerationsPast Present

0.0

0.2

0.4

0.6

0.8

1.0

Muta*on-­‐driN  equilibrium  (MDE)  

Page 22: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

Muta*on-­‐driN  equilibrium  (MDE)  • Varia*on  lost  by  driN  =  varia*on                      introduced  by  muta*on  

• Ne  =  effec*ve  popula*on  size,    µ = muta*on  rate  to  new  neutral  alleles    At  MDE,  heterozygosity  =  H  =    4  Neµ          

Muta*on-­‐driN  equilibrium  (MDE)  

The  rate  of  gene*c  driN  is  slower  in  larger  popula*ons  and  the  input  of  new  muta*ons  is  higher.  Large  popula*ons  have  a  higher  level  of  neutral  polymorphism  

Page 23: NEW Lecture 5 - WordPress.comDefine “D” D AB = p AB - p Ap B D ab = p ab - p ap b D Ab = p Ab - p Ap b D aB = p aB - p ap B Linkage disequilibrium: The non-random association of

Neutral  theory  of    molecular  evolu*on  • Kimura  1968;  King  and  Jukes  1969  • Claim:  Most  of  the  observed  molecular  polymorphism  is  neutral        

         

Consistent  with  Neutral  theory  Levels  of  gene*c  variability  within    Popula*ons  (i.e.  heterozygosity)  are    high  and  are  broadly  correlated    with  popula*on  size