34
New directions in reverse mathematics Damir D. Dzhafarov University of California, Berkeley February 20, 2013

New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Newdirectionsinreversemathematics

DamirD.DzhafarovUniversityofCalifornia, Berkeley

February20, 2013

Page 2: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

A foundationalmotivation.

Reversemathematics ismotivatedbyafoundationalquestion:

Question. Whichaxiomsdowe really needtoproveagiventheorem?

Thequestionleadstotheideaofthe strength ofatheorem. Whichtheoremsdoesitimply? Whichimplyit? Whichisitequivalentto?

Example. Over ZF, theaxiomofchoiceisequivalenttoZorn’slemma.

Settheoryismuchtoopowerfultoaccuratelycalibratestrength.

Wewouldlikeresultsoftheform

Overthetheory T, theorem P implies/isequivalenttotheorem Q,

where T isrelatively weak, butalso expressive enoughtoaccommodateadecentamountofmathematics.

Page 3: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Subsystemsofsecond-orderarithmetic.

Second-orderarithmetic, Z2, isatwo-sortedtheorywithvariablesfornumbers and setsofnumbers, andtheusual symbolsofarithmetic.

Theaxiomsof Z2 arethoseofPeanoarithmetic, andthe comprehensionscheme: if φ isaformula(withsetparameters)then {x : φ(x)} exists.

Example. If G0,G1, . . . and G aregroups, then {i ∈ N : Gi ∼= G} exists.

Werestrictwhichformulas φ weallowtoobtainvarious subsystems:

RCA0 ∆01 (computable)formulas.

WKL0 Formulasdefiningpathsthroughinfinitebinarytrees.ACA0 Arithmeticalformulas.

Twoothersubsystems, ATR0 and Π11-CA0, completethe “bigfive”.

Page 4: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Subsystemsofsecond-orderarithmetic.

Z2

��Π11-CA0

��ATR0

��ACA0

��WKL0

��RCA0

Page 5: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Connectionswithcomputabilitytheory.

A set A iscomputablefrom B, written A ⩽T B, if A = Φ(B) forsomeeffectiveprocedure Φ; i.e., knowing B, wecancomputablyfigureout A.

The haltingsetof A is A ′ = {i ∈ N : the ithprogramwithoracle A halts}.

A modelof Z2 consistsof(apossiblynonstandardversionof) N andasubsetof P(N) closedundercertaincomputability-theoreticoperations.

RCA0 Modelsclosedunder ⩽T and ⊕ (disjointunion).ACA0 Modelsclosedunderthejumpoperator, A 7→ A ′.

Thestrengthofatheoremcorrespondstohoweffectively solutions canbefoundtoagivencomputable instance ofthattheorem.

Example. DoeseverycomputablecommutativeunitringhaveaExample. computablemaximalideal? Doallidealscompute ∅ ′?

Page 6: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Reversemathematics.

Most(countable)classicalmathematicscanbedevelopedwithin Z2.

Theorem. Thefollowingareprovablein RCA0.

1(Simpson). Bairecategorytheorem, intermediatevaluetheorem.

2(Brown; Simpson). Urysohn’slemma, Tietzeextensiontheorem.

3(Rabin). Existenceofalgebraicclosuresofcountablefields.

Workinreversemathematicshasrevealeda strikingfact: mosttheoremsareprovablein RCA0, or equivalent tooneoftheotherfoursystems.

Theorem. Thefollowingareequivalentto WKL0 over RCA0.

1(Brown; Friedman). Heine-Boreltheoremfor [0, 1].

2(Orevkov; ShojiandTanaka). Brouwerfixed-pointtheorem.

3(Friedman, Simpson, andSmith). Primeidealtheorem.

Page 7: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Reversemathematics.

Theorem. Thefollowingareequivalentto ACA0 over RCA0.

1(Friedman). Bolzano-Weierstrasstheorem.

2(Dekker). Existenceofbasesinvectorspaces.

3(Friedman, Simpson, andSmith). Maximalidealtheorem.

Themaximalidealtheoremis stronger thantheprimeidealtheorem.

Question. Arethere irregular principles, lyingoutsidethebigfive?

Remark. Inductionin RCA0 islimitedto IΣ01, i.e., to

(φ(0)∧ (∀x)[φ(x) → φ(x+ 1)]) → (∀x)φ(x)

for Σ01 formulas φ. RCA0 cannotprove IΣ0n for n > 1.

Page 8: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Ramsey’stheorem.

Definition. Let [N]n denotethesetofall n-elementsubsetsof N.

Definition. A k-coloring of [N]n isamap f : [N]n → k = {0, 1, . . . , k− 1}.

RT(n, k). Every k-coloringof [N]n hasaninfinitehomogeneousset.

So RT(1, k) isjustthepigeonholeprinciple.

RT(2, k) assertstheexistenceofinfinitecliquesoranticliques.

.. · · ·

Page 9: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Ramsey’stheorem.

Definition. Let [N]n denotethesetofall n-elementsubsetsof N.

Definition. A k-coloring of [N]n isamap f : [N]n → k = {0, 1, . . . , k− 1}.

RT(n, k). Every k-coloringof [N]n hasaninfinitehomogeneousset.

So RT(1, k) isjustthepigeonholeprinciple.

RT(2, k) assertstheexistenceofinfinitecliquesoranticliques.

.. · · ·

Page 10: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Ramsey’stheorem.

RT(1, k) isprovedin RCA0. For n ⩾ 2, RT(n, k) isprovablein ACA0.

Theorem(Jockusch). For n ⩾ 3, RT(n, k) isequivalentto ACA0.

Howstrongis RT(2, k)? Itcanbeshownthatitisnotprovablein WKL0.

Theorem. Let f beacomputable k-coloringof [N]2.

1(Seetapun). Forany C ≰T ∅, f hasaninfinitehomogeneousset H ≱T C.

2(Cholak, Jockusch, andSlaman). f hasalow2 infinitehomogeneousset.

3(DzhafarovandJockusch). f hastwolow2 infinitehomogeneoussets3 H0 and H1 whosedegreeformaminimalpair.

Thisallowsustobuildamodelof RCA0 + RT(2, k) notcomputing ∅ ′.

Corollary. RT(2, k) doesnotimply ACA0 over RCA0.

Page 11: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Ramsey’stheorem.

Π11-CA0

��ATR0

��ACA0

��

RT(3, k)

RT(2, k)

WKL0

��RCA0

Page 12: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Ramsey’stheorem.

Π11-CA0

��ATR0

��ACA0

��

"*MMMM

MMMMM

MMMMMM

MMM// RT(3, k)oo

RT(2, k)

WKL0

��

077

RCA0

Page 13: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

A zooofcombinatorialprinciples.

Elucidatingthestrengthof RT(2, k) hasgivenrisetoanindustryofresearchintothereversemathematicsofcombinatorialprinciples.

Downey, Hirschfeldt, Lempp, andSolomon; Mileti; Liu. Furtherinvestigationoftheinformationcontentof RT(2, k).

Cholak, Jockusch, andSlaman. StableRamsey’stheorem, cohesiveprinciple.

HirschfeldtandShore. Principlesaboutpartialandlinearorders.

DzhafarovandHirst. PolarizedversionsofRamsey’stheorem.

BovykinandWeiermann; Lerman, Solomon, andTowsner. Tournaments.

Ambos-Spiesetal.; Dzhafarov. Combinatorialprinciplesrelatedtonotionsofalgorithmicrandomness.

Page 14: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

A zooofcombinatorialprinciples.

ACA0

��

��

RT(2, k)

��

s{ pppppp

pppp

pppp

$,PPPP

PPPPP

PPPPPP

PPP

CAC

��

IPT

��ADS

��

EM

��

SRT(2, k)

��

WKL0

��COH

�#>>

>>>>

>>>>

>>>>

>>>>

>>>>

>>>>

>>ASRT

$,QQQQ

QQQQQ

QQQQQQ

QQQWWKL0

��DNR

ow fffffffffff

ffffffffff

ff

ffffffffff

ffffffffff

fff

RCA0

Page 15: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Beyondcombinatorics: theatomicmodeltheorem.

Hirschfeldt, Shore, andSlamanstudiedmodel-theoretictheoremsconcerningwhenatheoryhasaanatomicmodel, oneassmallaspossible. (Atomicmodelsareinitialobjectsinthecategoryofmodels.)

AMT. Everyatomictheoryhasanatomicmodel.

Therearetwovariants, OPT and AST, whicharespecialcasesof AMT.

Theorem(Hirschfeldt, Shore, andSlaman.)

1. AMT isnotprovablein RCA0, butitisextremelyweak: itisimplied1. over RCA0 byvirtuallyeverycombinatorialprinciplebelow RT(2, k).

2. OPT isequivalenttotheexistenceofhyperimmunesets, i.e., itcanbe2. characterizedintermsofgrowthratesofcomputablefunctions.

3. AST isequivalenttotheexistenceofnoncomputablesets.

Page 16: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Beyondcombinatorics: theatomicmodeltheorem.

ACA0

��

��

RT(2, k)

��

rz mmmmmm

mmmmmm

%-SSSSSS

SS

SSSSSSSS

CAC

��

IPT

��ADS

��s{ oooooooooooo

EM

��

SRT(2, k)

��

WKL0

��AMT

�$@@

@@@@

@@@@

@

@@@@

@@@@

@@@ COH

� 88

8888

8888

8888

88

8888

8888

8888

8888

ASRT

%-SSSSSS

SS

SSSSSSSS

WWKL0��

DNR

qy kkkkkkkk

kkkkkkkk

kkkkkkk

kkkkkkkk

kkkkkkkk

kkkkkkk

OPT

$,RRRR

RRR

RRRRRR

R

AST

��RCA0

Page 17: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Intersectionprinciples.

A familyofsetsissaidtohavethe finiteintersectionproperty(f.i.p.)iftheintersectionofanyfinitelymanyofitsmembersisnon-empty.

FIP. Everyfamilyofsetshasamaximalsubfamilywithf.i.p.

NIP. Everyfamilyofsetshasamaximaldisjointsubfamily.

Over ZF, theseprinciplesareequivalenttotheaxiomofchoice.

Theorem(DzhafarovandMummert).

1. Over RCA0, NIP isequivalentto ACA0.

2. FIP isnotprovablein RCA0, butithassolutionscomputablefromany2. noncomputablec.e. set, aswellasfromanyCohengenericset.

3. Over RCA0, AMT implies FIP, whichimplies OPT.

Page 18: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Intersectionprinciples.

NIP // ACA0

��

oo

��

RT(2, k)

��

rz mmmmmm

mmmmmm

%-SSSSSS

SS

SSSSSSSS

CAC

��

IPT

��ADS

��s{ oooooooooooo

EM

��

SRT(2, k)

��

WKL0

��AMT

��

COH

� 88

8888

8888

8888

88

8888

8888

8888

8888

ASRT

%-SSSSSS

SS

SSSSSSSS

WWKL0��

FIP

#+PPPP

PPPPPP

PPPP DNR

qy kkkkkkkk

kkkkkkkk

kkkkkkk

kkkkkkkk

kkkkkkkk

kkkkkkk

OPT

$,RRRR

RRR

RRRRRR

R

AST

��RCA0

Page 19: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Computableanduniformreductions.

Animplication P → Q in RCA0 mayuse P severaltimestoobtain Q, orinvolvenon-uniformdecisionsabouthowtoproceedinaconstruction.

Butinmostcases, theimplicationisactuallya computablereduction.

Example. P = “everyinfinitebinarytreehasaninfinitepath”.Example. Q = “everycommutativeringwithunityhasaprimeideal”.

..Instances.

Solutions

.

P

.

Q

. ring R. binarytree T.

branch B

.

ideal I

Page 20: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Computableanduniformreductions.

Animplication P → Q in RCA0 mayuse P severaltimestoobtain Q, orinvolvenon-uniformdecisionsabouthowtoproceedinaconstruction.

Butinmostcases, theimplicationisactuallya computablereduction.

Example. P = “everyinfinitebinarytreehasaninfinitepath”.Example. Q = “everycommutativeringwithunityhasaprimeideal”.

..Instances.

Solutions

.

P

.

Q

. ring R. binarytree T.

branch B

.

ideal I

Page 21: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Computableanduniformreductions.

Animplication P → Q in RCA0 mayuse P severaltimestoobtain Q, orinvolvenon-uniformdecisionsabouthowtoproceedinaconstruction.

Butinmostcases, theimplicationisactuallya computablereduction.

Example. P = “everyinfinitebinarytreehasaninfinitepath”.Example. Q = “everycommutativeringwithunityhasaprimeideal”.

..Instances.

Solutions

.

P

.

Q

. ring R. binarytree T.

branch B

.

ideal I

. Φ

Page 22: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Computableanduniformreductions.

Animplication P → Q in RCA0 mayuse P severaltimestoobtain Q, orinvolvenon-uniformdecisionsabouthowtoproceedinaconstruction.

Butinmostcases, theimplicationisactuallya computablereduction.

Example. P = “everyinfinitebinarytreehasaninfinitepath”.Example. Q = “everycommutativeringwithunityhasaprimeideal”.

..Instances.

Solutions

.

P

.

Q

. ring R. binarytree T.

branch B

.

ideal I

. Φ

Page 23: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Computableanduniformreductions.

Animplication P → Q in RCA0 mayuse P severaltimestoobtain Q, orinvolvenon-uniformdecisionsabouthowtoproceedinaconstruction.

Butinmostcases, theimplicationisactuallya computablereduction.

Example. P = “everyinfinitebinarytreehasaninfinitepath”.Example. Q = “everycommutativeringwithunityhasaprimeideal”.

..Instances.

Solutions

.

P

.

Q

. ring R. binarytree T.

branch B

.

ideal I

. Φ.

Ψ

Here, thereductionisalso uniform: Φ and Ψ donotdependon R.

Page 24: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

StableRamsey’stheorem.

Twoversionsof RT(2, k) aimedatsimplifyingtheproblem:

SRT(2, k). RT(2, k) for stablecolorings: f(x, y) = f(x, z) foralmostall y, z.

COH. Sequentialformof RT(1, k), butallowingfinitelymanymistakes.

Itisknownthat RT(2, k) ↔ SRT(2, k) + COH over RCA0.

OpenQuestion(Cholak, Jockusch, andSlaman). Does SRT(2, k) implyRT(2, k) instandardmodelsof RCA0? I.e., does SRT(2, k) imply COH?

Asapartialsolution, lendingcredencetoa negative answer:

Theorem(Dzhafarov). COH doesnotcomputablyreduceto SRT(2, k).

Thus, if SRT(2, k) implies COH itisnotviathe typical argument. Theproofisaforcingargument: SRT(2, k) doesnot generically imply COH.

Page 25: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Differentnumbersofcolors.

If j < k, then RT(n, j) istriviallyuniformlyreducibleto RT(n, k), viatheidentityreductions. Over RCA0, RT(n, j) alsoimplies RT(n, k).

Question. If j < k, isthere auniformreductionfrom RT(n, k) to RT(n, j)?

Definition. Twoinstancesof RT(n, j) are uniformlyreducibletoone ifDefinition. thereareeffectiveprocedures Φ and Ψ suchthat:Definition. 1. if f0, f1 : [N]n → j then Φ(f0, f1) = g : [N]n → j;Definition. 2. if G isinfiniteand g-homogeneousthen Ψ(G) = ⟨H0,H1⟩Definition. 2. where Hi isinfiniteand fi-homogeneous.

Theorem(Dorais, Dzhafarov, Hirst, Mileti, andShafer). Iftwoinstancesof RT(n, j) areuniformlyreducibletoone, thensoare ω many.

Bycodingcolorsintermsofmultipleinstances, weobtain:

Corollary. If j < k, then RT(n, k) isnotuniformlyreducibleto RT(n, j).

Page 26: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Proofofthesquashingtheorem.

Fix f0, f1, . . . : [N]n → j, andcomputablereductions Φ,Ψ.

Webuildnewcolorings g0, g1, . . . : [N]n → j soastosatisfy

gi(⃗x) = Φ(fi, gi+1)(⃗x)

forlargeenough x⃗ ∈ [N]n. Thus, g0 ≈ Φ(f0, g1).

Page 27: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Proofofthesquashingtheorem.

Fix f0, f1, . . . : [N]n → j, andcomputablereductions Φ,Ψ.

Webuildnewcolorings g0, g1, . . . : [N]n → j soastosatisfy

gi(⃗x) = Φ(fi, gi+1)(⃗x)

forlargeenough x⃗ ∈ [N]n. Thus, g0 ≈ Φ(f0,Φ(f1, g2)).

Page 28: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Proofofthesquashingtheorem.

Fix f0, f1, . . . : [N]n → j, andcomputablereductions Φ,Ψ.

Webuildnewcolorings g0, g1, . . . : [N]n → j soastosatisfy

gi(⃗x) = Φ(fi, gi+1)(⃗x)

forlargeenough x⃗ ∈ [N]n. Thus, g0 ≈ Φ(f0,Φ(f1,Φ(f2, g3))).

Page 29: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Proofofthesquashingtheorem.

Fix f0, f1, . . . : [N]n → j, andcomputablereductions Φ,Ψ.

Webuildnewcolorings g0, g1, . . . : [N]n → j soastosatisfy

gi(⃗x) = Φ(fi, gi+1)(⃗x)

forlargeenough x⃗ ∈ [N]n. Thus, g0 ≈ Φ(f0,Φ(f1,Φ(f2,Φ(f3, · · · )))).

Page 30: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Proofofthesquashingtheorem.

Fix f0, f1, . . . : [N]n → j, andcomputablereductions Φ,Ψ.

Webuildnewcolorings g0, g1, . . . : [N]n → j soastosatisfy

gi(⃗x) = Φ(fi, gi+1)(⃗x)

forlargeenough x⃗ ∈ [N]n. Thus, g0 ≈ Φ(f0,Φ(f1,Φ(f2,Φ(f3, · · · )))).

..g0. g1. g2. g3.

n3

If Gi ishomogeneousfor gi then Gi − ni ishomogeneousfor Φ(fi, gi+1).

Page 31: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Proofofthesquashingtheorem.

Fix f0, f1, . . . : [N]n → j, andcomputablereductions Φ,Ψ.

Webuildnewcolorings g0, g1, . . . : [N]n → j soastosatisfy

gi(⃗x) = Φ(fi, gi+1)(⃗x)

forlargeenough x⃗ ∈ [N]n. Thus, g0 ≈ Φ(f0,Φ(f1,Φ(f2,Φ(f3, · · · )))).

..g0. g1. g2. g3.

Φ(f0, g1)

.

n1

.

n3

If Gi ishomogeneousfor gi then Gi − ni ishomogeneousfor Φ(fi, gi+1).

Page 32: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Proofofthesquashingtheorem.

Fix f0, f1, . . . : [N]n → j, andcomputablereductions Φ,Ψ.

Webuildnewcolorings g0, g1, . . . : [N]n → j soastosatisfy

gi(⃗x) = Φ(fi, gi+1)(⃗x)

forlargeenough x⃗ ∈ [N]n. Thus, g0 ≈ Φ(f0,Φ(f1,Φ(f2,Φ(f3, · · · )))).

..g0. g1. g2. g3.

Φ(f0, g1)

.

Φ(f1, g2)

.

n1

.

n2

.

n3

If Gi ishomogeneousfor gi then Gi − ni ishomogeneousfor Φ(fi, gi+1).

Page 33: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Proofofthesquashingtheorem.

Fix f0, f1, . . . : [N]n → j, andcomputablereductions Φ,Ψ.

Webuildnewcolorings g0, g1, . . . : [N]n → j soastosatisfy

gi(⃗x) = Φ(fi, gi+1)(⃗x)

forlargeenough x⃗ ∈ [N]n. Thus, g0 ≈ Φ(f0,Φ(f1,Φ(f2,Φ(f3, · · · )))).

..g0. g1. g2. g3.

Φ(f0, g1)

.

Φ(f1, g2)

.

Φ(f2, g3)

.

n1

.

n2

.

n3

Page 34: New directions in reverse mathematicsSubsystems of second-order arithmetic. Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers and sets of numbers, and

Thankyouforyourattention!