50
Logo-4c-originalgrosse New Digital Aeronautical Communication Technologies to support future ATM concepts of SESAR presented by Carl-Herbert Rokitansky prepared by M. Ehammer, Th. Gräupl, B. Jandl University of Salzburg / CoWi / ADC “Future Trends for Digital ATM Communication Technologies”, Salzburg, 21 st of April 2009

New Digital Aeronautical Communication … New Digital Aeronautical Communication Technologies to support future ATM concepts of SESAR presented by Carl-Herbert Rokitansky prepared

  • Upload
    vanthuy

  • View
    234

  • Download
    1

Embed Size (px)

Citation preview

Logo-4c-originalgrosse

New Digital Aeronautical Communication Technologies to support future ATM concepts of SESAR

presented by Carl-Herbert Rokitanskyprepared by M. Ehammer, Th. Gräupl, B. Jandl

University of Salzburg / CoWi / ADC“Future Trends for Digital ATM Communication Technologies”, Salzburg, 21st of April 2009

Logo-4c-originalgrosse

Page 2University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

Outline

Introduction – SESAR Developments and Goals

Cellular Terrestrial ATM Communication Technologies:B-AMC / L-DACS 1 – Some design backgroundand L-DACS 2 (covered in subsequent presentation)

Satellite-based ATM Communication Technology:ESA / IRIS ARTES 10 – a dual link approach

Integration of ATM services at network layer:NEWSKY Networking the Sky for future Applications

Logo-4c-originalgrosse

Page 3University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

Single European Sky ATM Research (SESAR) Overview

SESAR networking technology roadmap:- Ground-ground network: Pan-European IP Network (PENS)- Air-ground network: No clear statement regarding roadmap for

networking technology (ATN/ISO vs. ATN/IPS):

- NEWSKY as input to SESAR WP9 (Aircraft System) and WP15 (Communication/Navigation/Surveillance System)

Source: SESAR D5

SESAR: Single European Sky ATM Research (2 Mrd. Euro)

(EU-Kommission, EuroControl, Industrie)

Development: 2008 – 2013+

Implementation: 2013 – 2020+

Logo-4c-originalgrosse

Page 4University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

Single European Sky ATM Research (SESAR) Main Goals

Source: SESAR D5

• Increasement of Capacity by 73% (- 2020) up to 300% (long-term)

• Enhancement of Safety: triple by 2020; 10-times (long-term)

• Environment: Reduction of environmental impact by 10% per flight

• Costs: Reduction of ATM costs by 50% per flight

Logo-4c-originalgrosse

Page 5University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

L-DACS Background

L-DACS stands for:L-Band Digital Aeronautical Communication System

Two remaining technology candidates remaining:- Based on broad-band (B-AMC and P34) approach: L-DACS1- Based on narrow-band (AMACS and LDL) approach: L-DACS2

L-DACS 1 evolved in several projects (and years)

NBMA system- Based on FDD (for Forward Link / Reverse Link) cells

Logo-4c-originalgrosse

Page 6University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

L-DACS Design Goals of LDACS 1

Based on recommendations of AP17- Fit requirements of COCRv2 (latency requirements)- Deterministic Medium Access Approach- Spectrum Efficiency- Adaptive Coding and Modulation (variable bit rates)- Implementation complexity should be low- and many more …

Logo-4c-originalgrosse

Page 7University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

B-AMC as L-DACS1 System

General L-DACS 1 capabilities- L-DACS 1 supports A/G and A/A communications

A/G communications centralized via ground stationA/A communications decentralized (not addressed here)

- L-DACS 1 supports data and voice communicationsFocus is on data communicationsVoice communications is a configurable option

- L-DACS 1 covers all ATS and safety-related AOC servicesExtendable to non safety-related AOC, AAC (and APC?) services

- L-DACS 1 is designed to meet the requirements for future radio systems as defined in COCR document

Logo-4c-originalgrosse

Page 8University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

B-AMC / L-DACS 1 - PL – Inlay Approach

GSM

960

SSR

SSR11641150

DME DME DME

UA

T

978 1025 1035 1085 1095

JTIDS

969 1008

JTIDS

1053 1065

JTIDS (MIDS)

1113 1213

B-AMC A/G FL(crowded areas)B-AMC A/A

B-AMC A/G FL(no airborne DME)

B-AMC A/G RL

B-AMC A/G RL(optional)

Galileo/GPSDME (1157-1213)

B-AMC A/G RL(crowded areas)B-AMC A/A

f/MHz

Logo-4c-originalgrosse

Page 9University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Modeling of Interference from/to L-DACS 1 and existing DME

fD2

fB

fD1

rB

rD2

rD1

dD2

dD1

DME DoC

fD2 = fB ± 1,5 MHz

DME DoC

fD1 = fB ± 0,5 MHz

B-AMC DoC

A

B

C

D

hD2

hB

hD1

Non- overlapping B-AMC and DME DoCs

Overlapping B-AMC and DME DoCs

The B-AMC GS is operating (FL) on the channel fB , serving a circular Designed Operational Coverage (DoC) area with radius rB and height hB .Frequency planning requires knowledge about the constellation of adjacent DME GSs operating at fD1 = fB ± 0.5 MHz and fD2 = fB ± 1.5 MHz.The corresponding DME DoCs are assumed to be circular, with radii rD1 and rD2 and maximum designed heights hD1 and hD2 .The separation distances between the B-AMC DoC and the DME DoCs are described by dD1 and dD2 , for frequency separations of ± 0.5 MHz and ± 1.5 MHz, respectively.These distances are determined with a victim airborne RX placed at the boundary of the circular DoC of the victim system at the "appropriate" height.

Logo-4c-originalgrosse

Page 10University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Evaluation of Interference: L-DACS 1 GS towards Airborne DME Receiver

After applyingInterferenceKick-Out Criteriatowards DME:

Throughout Europe, for each L-DACS 1 cell (r=120nm or 60nm)an interference saftey margin towards DME can be realized(Yellow: 6 dB;Green: 12 dB)

Logo-4c-originalgrosse

Page 11University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

L-DACS1 Frame-structure

RL DATA

FL DATA

D1

variable

Multi-Frame RL

C1

variable

FL DATA

Multi-Frame FL – Cell Specific ACM

RA RL RL RL RL

BC FL FL FL FL FL

Super-Frame

C1

C2

C3

C4

D1 D2 D3 D4

Multi-Frame #1 Multi-Frame #2 Multi-Frame #3 Multi-Frame #4

FL DATAC1

variable

FL DATA

Multi-Frame FL – User Specific ACM

Logo-4c-originalgrosse

Page 12University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

Resource Acquisition Reservation Mechanism

Aircraft requests resources via DCCH.Ground station assigns resources via CCCH.Aircraft uses allocated resources to transmit data.Resources are requested for all LLC data within the MAC transmission queues.

DC

CC

Scope of Assignment on RL

CC

DC

Resource Request

AssignmentMulti-Frame

Logo-4c-originalgrosse

Page 13University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

L-DACS1 Simulation Results – Medium Access

Linear increase of latency, while rising PIACPIAC versus Revers Link Latency

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600

PIAC

Tim

e in

Mill

isec

onds

RL Latency - 95% Qtl.

RL Latency - mean

RL - Latency - mean (theory)

Linear (RL Latency - 95% Qtl.)

Linear (RL Latency - mean)

Latency requirement without A-EXEC (1400 ms):

up to 400 A/C in a single cell

Linear Regression of simulated RL latency (mean)

Theoretical prediction of RL latency (mean)

Latency requirement with A-EXEC (740 ms):

up to 200 A/C in a single cell

Logo-4c-originalgrosse

Page 14University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>14

Logo-4c-originalgrosse

Page 15University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Iris/ARTES 10 Program

Iris/ARTES 10 is a dedicated ESA program to support SESAR("Single European Sky ATM Research") under the umbrella of ESA’s Advanced Research in Telecommunication Systems program (ARTES)

It aims to develop a new Air-Ground communication system for Air Traffic Management as the satellite-based communication solution for the SESAR program.

Three phases:- Definition Phase until 2009.- Development Phase post 2009- Target satellite launch in 2013.

15

Logo-4c-originalgrosse

Page 16University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Iris/ARTES 10 Program

SESAR schedule vs. Iris phases

16

Logo-4c-originalgrosse

Page 17University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Analysis of Communication System Capacity

USBG contributed the ATM traffic model to the analysis of the required communication system capacity:

Used to refine the system requirements.Used for early performance assessment.

17

Logo-4c-originalgrosse

Page 18University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Analysis of Communication System Capacity

Analysis of the required communication system capacity:- Identify area of interest and reference air traffic data.For years 2013 until 2025:1. Estimate the air traffic growth in the area of interest.2. Estimate the future air traffic distribution and density.3. Estimate the required communication system capacity of

the Iris system.

- Provide input to the performance evaluation.System design is still ongoing.Not discussed here.

18

Logo-4c-originalgrosse

Page 19University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Area of Interest

The area of interest of the Iris/ARTES10 program is defined by the possible radio coverage of a GEO satellite positioned “over Europe and the Atlantic”.- It is assumed that this is contained in the

geographic area between 80° W to 80° E and 80°S to 80° N.

19

Logo-4c-originalgrosse

Page 20University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Area of Interest

20

The area of interest is divided into three regions:- Controlled airspace of

ECAC countries (green).- Controlled airspace of

non-ECAC countries (white).

- Oceanic, remote, or polar (ORP) area (blue).

Based on 2007 US National Geospatial Intelligence Agency (NGA) data.

Logo-4c-originalgrosse

Page 21University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

PIAC estimation: Regions

ECAC region ORP region

Note: Concept can be applied to any other region around the world

Logo-4c-originalgrosse

Page 22University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Reference Air TrafficAir traffic reference day: 31st Aug. 2007- Based on CFMU (Eurocontrol) and OAG (worldwide scheduled flights)

data.

- For airport relations (departure – destination) contained in CFMU and OAG: OAG contains 95.3% of CMFU flights.

- OAG data contains flights with airport relations not present in CMFU.Mostly flights outside of Europe.

- CFMU contains flights with airport relations not present in OAG.Mostly military flights, general aviation, and short term business flights.Additional flights were added to the OAG data to account for these extra flights.

- Reference day = CMFU data + extended OAG data

- Tool used to simulate Air Traffic in area of interest: NAVSIM

22

Logo-4c-originalgrosse

Page 23University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

ESA/Iris: Future Air Traffic (PIAC) Estimation by UniSBG EuroControl Medium-Term Forecast (- 2013) & Long-Term Forecast (-2025) ECAC/ESRA

NAVSIMIris/PIAC

WorldwideAir TrafficSimulation& Forecast

(USBGSim)

EC/CFMU FLIGHT DATA PEAK Ref. Day: Aug.31, 2007

Air Traffic forecast by SAAM Ref. Year 2020

NAVSIM (c) Mobile Communications R&D GmbH

ESA/IrisSatelliteCommsSystem

Simulator/Emulator tobe developed by Consortia

Validationof Results

PIAC Estimation for ECAC, ORP, GEO coverage areafor years 2008 up to 2025 for Air Traffic Growths Scenarios: A (High), B,C (Medium), D (Low) as baseline for target Satellite Iris Communication System; Evaluation of capacity limits; Optimization of system parameters

Europeanand relevantworld-wide(CFMU/SAAM)and non-European(SCHEDULED)Air TrafficSimulationusing NAVSIM:TMA&ENRwith/wo.APT

SCHEDULED FLIGHT DATA (Airlines, Charter,Cargo) for PEAK Ref.Day: Aug.31,2007

StatisticalComparison:CommonAirport Pairs& additionalCFMU flights;Correction ofmissing flightsSCHEDULEDFlight Data

Apply Multiplicator foryears 2008 to 2025 in 1x1 degree GEO grid

FutureComms InfrastructureEvaluation Scenarios (2020 - 2025)

Result

Logo-4c-originalgrosse

Page 24University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

NAVSIM: Simulation of Real Air Traffic: August 31, 2007

Around115.000 flights/day world-wide (2007)estimated: 350.000 flights on peak days (2025)

EuroControl Data +Worldwide scheduledFlight Plans

EuroControlMedium- / LongtermForecasts: 2008 – 2025

Logo-4c-originalgrosse

Page 25University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Air Traffic GrowthThe air traffic growth estimation is based on Eurocontrol STATFOR studies for the ESRA countries:- Medium Term Forecast (2007-2013)

High, medium, low.- Long Term Forecast (2013-2025)

Scenario A (high-growth), B, C (medium-growth), D (low growth).

Medium term and long term growth forecasts are combined into four common scenarios:- High-A (no constraints; e.g. additional runways at airports if needed)- Med-B (strong growth assumed, but some capacity constraints apply)- Med-C (medium growth rates)- Low-D (changing attitudes: e.g. less long-haul tourist flights)

25

Logo-4c-originalgrosse

Page 26University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Air Traffic GrowthThe area of interest was partitioned into a 1°x1° grid.- Each grid cell was assigned to

one ECAC country or region (ORP, etc.).

- Each grid cell was linked to the estimated air traffic growth rate of its country/region.

- The growth rate is not constant. It depends on

Target timeCountry/regionForecast scenario

26

Estimated Air Traffic Growth Factor 2025/2007 High-A

Logo-4c-originalgrosse

Page 27University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Air Traffic Forecast: Results 2013

PIAC estimation High-growth - A Growth forecast High-growth - A

Logo-4c-originalgrosse

Page 28University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Air Traffic Forecast: Results 2020

PIAC estimation High-growth - A Growth forecast High-growth - A

Logo-4c-originalgrosse

Page 29University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Air Traffic Forecast: Results 2025

PIAC estimation High-growth - A Growth forecast High-growth - A

Logo-4c-originalgrosse

Page 30University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Air Traffic Distribution and Density

Accuracy of the estimation:- Results have been compared to

other available results:SAAM (TMA+ENR, 2020+).FCI (TMA+ENR, 2025)

- Our results are in good agreement with the other sources.

Slightly higher than SAAM.Low-D almost equal to FCI

- But: Our results offer much higher detail!

30

ECAC (TMA + ENR)

2500

3500

4500

5500

6500

2007 2010 2013 2016 2019 2022 2025Year

PIA

C

High AMed BMed CLow DFCISAAM

Logo-4c-originalgrosse

Page 31University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Data/Voice Traffic SimulationThe simulated air traffic was used to generate voice and data traffic according to the actual flight phase:- communications at departure gate, taxiing, take-off, - departure, en-route, arrival, approach, final approach, - landing, taxiing, communications at destination gate.

The voice model is based on Eurocontrol Reports (Aircraft DSB-AM Usage Profile).The data model is based on the COCRv2.- 24 ATS services- 21 AOC services- 2 NET services- Some services (12) were identified as unsuitable for

transmission over a satellite system and not included.

31

Logo-4c-originalgrosse

Page 32University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Data/Voice Traffic SimulationData message generation is triggered by events specified in COCRv2:- Change of domain, sector, ground position, etc.

Example (ATC Clearance (ACL) service):

32

APT: A/C on

ground , departure

APT : A/C on

ground , arrival

TMA TMA

ENR ENRORP

1 message exchange á :UL: 2x93 BDL: 2x93 B

2 message exchanges : 2 message

exchanges :

5 message exchanges :

5 message exchanges :

2 message exchanges :

1 message exchanges :

Logo-4c-originalgrosse

Page 33University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

Results

Various scenarios were assessed and evaluated during the Iris/ARTES 10 study.- Three TL ACKs scenarios.- With/without/modified WXGRAPH.- Concentration of different areas of interest.

Results presented here:- Worst case TL ACKs.- Unmodified WXGRAPH service (most demanding case).- ECAC area only.

33

Logo-4c-originalgrosse

Page 34University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

ResultsDistribution of voice load (2025; High-A).

34

Logo-4c-originalgrosse

Page 35University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

ResultsDistribution of data load (2025; High-A).

35

Logo-4c-originalgrosse

Page 36University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

ResultsEvolution of Iris data and voice traffic in the ECAC area (High-A).

36

2013 2020 p1 2020 p2 2025

min 16.0 22.2 15.8 40.3

avg 578.7 936.9 2250.8 4453.6

95% 679.9 1064.6 2786.2 5215.5

99% 729.8 1131.0 3068.0 5553.5

max 804.9 1323.8 3425.8 6160.3

stdev 61.6 77.4 313.0 453.4peak/avg. 1.4 1.4 1.5 1.4

2013 2020 p1 2020 p2 2025

min 30.0 31.7 34.0 4.7

avg 44.6 47.6 47.2 12.3

95% 51.7 55.3 54.0 16.0

99% 55.0 58.7 56.7 18.0

max 62.0 65.0 61.3 21.3

stdev 4.2 4.5 4.0 2.2

peak/avg. 1.4 1.4 1.3 1.7

Logo-4c-originalgrosse

Page 37University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

ResultsData message size distribution:- Strong asymmetry between frequency and volume: Smallest

messages are most frequent, but (infrequent and) large messages contribute most to the traffic volume.

37

Logo-4c-originalgrosse

Page 38University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

NEWSKY Goals: Networking the Sky

NEWSKY co-funded by the European Commission:Development of a concept and preliminary design of an integrated aeronautical communication network with focus on air-ground communications and IPv6 technologies

INTERNET in the Sky !

Air/Ground(terrestrial)

via Satellite

direct Air/Air Comms

Logo-4c-originalgrosse

Page 39University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

NEWSKY: Integration of Different Data Links

newsk...

newsky ...

newsk...Kopie 3

nK4

news...Kopie

news...Kopie

newsky_... newsky_...

newsky ...

ground network

air-air links

satellite links (Inmarsat, Iridium NEXT, ESA Iris, DVB-S2, …)

airport links (Aero-WiMAX)

point-to-point air-ground links (VDL2, L-DACS-1/2)

Several data links are required to fulfil the ATM communication requirements (SESAR / Eurocontrol, NextGen / Federal Aviation Administration (USA))Further data links are foreseen for APC

Airport TMA/Enroute

ADS-B, Wake

Cellular,terrestrial

Oceanic, Remote, Polar

(ORP)

Logo-4c-originalgrosse

Page 40University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

NEWSKY and SESAR

SESAR networking technology roadmap:- Ground-ground network: Pan-European IP Network (PENS)- Air-ground network: No clear statement regarding roadmap

for networking technology (ATN/ISO vs. ATN/IPS):

- NEWSKY as input to SESAR WP9 (Aircraft System) and WP15 (Communication/Navigation/Surveillance System)

Source: SESAR D5

Development: 2008 – 2013+

Implementation: 2013 – 2020+

Logo-4c-originalgrosse

Page 41University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

NEWSKY Overall & Security Architecture

ATS CNATS CN

AOC CN

AOC LFNATS LFN

ATS LFN

SAGSAG

SAGSAG

SAG SAG

ATS Services AOC Services

ATS Services

MRMR

MR

ANSP w/o ACCESS NETWORK

ANSP with ACCESS NETWORK

Access Router

GACSPNETWORK

DiffServ DomainMobility TunnelSecurity TunnelDSCP Tagging

LFN: Local Fixed NodeSAG: Security Access GatewayMR: Mobile RouterCN: Correspondent Node

ANSP: Aeronautical Navigation Service ProviderGACSP: Global Aeronautical Communication Service ProviderAOC: Aeronautical Operational ServiceATS: Air Traffic Service

Logo-4c-originalgrosse

Page 42University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

NEWSKY Mobility Management

Access Network A

Access Router

Core Network

Home Agent

Layer 2 Mobility

Local Mobility

Global Mobility

Access Network B

Node - based mobility signallingNetwork - based mobility signalling

Mobility Management Framework

Mobile Router

ATS AOC Based on Mobile IPv6

Key Mobile IPv6 extensions:- Network Mobility (NEMO)- Network-based Localized Mobility- Multihoming

NEMO Route Optimization (RO)- Global HA – HA Protocol- Optimized Route Cache Protocol

Logo-4c-originalgrosse

Page 43University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

NEWSKY Simulations of future air traffic and data traffic in seamless integrated network

Logo-4c-originalgrosse

Page 44University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

NAVSIM: Validation of SESAR Concepts

Source; SESAR / D3 page 35

Pilot (Future Cockpit)

Controller(new ATC procedures)

Airport(Operations Center)

Airline(Operations Control Center)

NAVSIMSimulation of Data

Communications (SWIM) andnew ATM/ATC Concepts: Business 4D-Trajectories,

Mission Trajectories, CDM, Self-Separation,

etc.

Military(Air Operations Center)

Logo-4c-originalgrosse

Page 45University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

NAVSIM: European/worldwide Simulation of Air Traffic

based upon around 1 million navigation data

Detailed simulationof today's / future

worldwide air traffic

based on worldwide navigation data,

several thousands of aircraft are simulated

simultaneously

Logo-4c-originalgrosse

Page 46University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>

UniSBG: Simulation Service Architecture & Components

RadioCoverage

StatisticsService

Visualization

Airspace Scenario

Data-Link Service

Application Service

Logo-4c-originalgrosse

Page 47University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

Conclusions (1 of 3)

Aero-WiMax communication technologies will provide high-speed data communications at airports

Terrestrial ATM communication technologies(L-DACS) are currently being specified and will provide digital data/voice communications in TMA/En-route areas with high performance fulfilling specified communication requirements (COCRv2)

Satellite-based ATM communication technologies will be operated - as dual link in parallel to terrestrial systems –supporting all relevant ATS/AOC/AAC applications

Logo-4c-originalgrosse

Page 48University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

Conclusions (2 of 3)

Within NEWSKY (and follow-up projects, e.g. SANDRA) concepts are developed for a seamless integrated aeronautical communication network based on IPv6technologies

Detailed performance evaluations of future technologiesand SESAR ATM concepts are based on simulation of future air traffic scenarios (up to year 2025) and future data applications

Logo-4c-originalgrosse

Page 49University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

Conclusions (3 of 3)

To support assessment of SESAR concepts/developments:- integrated comms technologies (AeroWiMax, L-DACS, SatCom)- extended system-wide information management (SWIM)- new ATM concepts (e.g. airborne/self-separation, etc.), based on:- Business 4D-trajectories / Mission trajectories, and- Collaborative Decision Making (CDM) between key players:

Controllers, Pilots, Airports,Airline/Military

will be evaluated in integrated simulation scenarios using powerful tools (e.g. SESAR JU WP3, NAVSIM/USBG, etc.).

Note: DEMO of NAVSIM/USBG Simulation Tools during Coffee Break

Logo-4c-originalgrosse

Page 50University of Salzburg / CoWi / ADC – Ehammer, Gräupl, Jandl, Rokitansky <[email protected]>prepared by: M. Ehammer

Thank you for your attentionContact:

Carl-Herbert Rokitansky

[email protected] Phone: +43-664-85 25 347