8
Cannabinoid CB1 receptors in rat medial prefrontal cortex are colocalized with calbindin- but not parvalbumin- and calretinin-positive GABA-ergic neurons Krzysztof Wêdzony, Agnieszka Chocyk Correspondence: Abstract: In the present study, we investigate putative localization of cannabinoid receptors 1 (CB1) protein on a population of cortical g-am- inobutyric acid (GABA) – positive interneurons characterized by expression of calcium-binding proteins in rat medial prefrontal cortex (MPC). Parvalbumin (PARV)/calretinin (CALR)- and calbindin (CALB)-positive neurons form two distinct populations of GABA-ergic interneurons that comprise the axo-somatic/axo-axonic and axo-dendritic inhibitory systems of pyramidal cells. It has been found that CB1 receptor-positive cells are randomly distributed across the rat MPC. All spotted neurons that were positive for CB1 receptors were positive for GABA; however, the number of GABA-positive cells drastically exceeded the number of CB1 receptor-positive neurons. Subsequent experiments with double-labelling of CB1 receptors with PARVand CALR revealed no colo- calization. CALB-positive neurons (e.g., double bouquet and bipolar cells) display colocalization: the degree of colocalization among CB1 receptor-positive cells reached 18%. The appearance of CB1 receptors in double bouquet and bipolar neurons indicates that CB1 receptors may control the activity of pyramidal neurons from presynaptic sites in axo-dendritic synapses formed on apical and basilar dendrites of pyramidal neurons, as is characteristic for CALB-positive cortical interneurons. The phenotype of GABA- and CB1 receptor-positive but CALB-negative neurons may represent a population of inhibitory neurons that allow axo-somatic control of information flow, governed by principal neurons of the MPC. Key words: cannabinoid receptors, CB1, medial prefrontal cortex, parvalbumin, calretinin, calbindin, immunocytochemistry Introduction There are several arguments that cannabinoid (CB) signalling pathways are engaged in the pathological neurotransmission responsible for the appearance of schizophrenic symptoms. Epidemiological studies sug- gest that cannabis use, especially in the adolescent pe- riod, represents a substantial environmental risk factor for the appearance of schizophrenia (for comprehen- sive review see [25]). It has also been observed that CB1 receptor binding sites are enhanced in the course of schizophrenia in the medial prefrontal cortex (MPC) and striatum [8, 34]. Increased levels of anan- damide and palmitylethanolamide, endogenous ligands of CB1 receptor binding sites, have been observed in 1000

New Cannabinoid CB1 receptors in rat medial prefrontal cortex are …rabbit.if-pan.krakow.pl/pjp/pdf/2009/6_1000.pdf · 2010. 1. 7. · CB1 receptor binding sites are enhanced in

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Cannabinoid CB1 receptors in rat medial

    prefrontal cortex are colocalized with calbindin-

    but not parvalbumin- and calretinin-positive

    GABA-ergic neurons

    Krzysztof Wêdzony, Agnieszka Chocyk

    ���������� �� ��������� ��� ����� ������������� ��������� �� ���������� ��������� �� ����������

    ����� ������ �� ��������� ����� ��� �� ���� � !��"#$� ������

    Correspondence: !�%��%��� &��%���� �����' ��$��%��(����"�)���)��

    Abstract:

    In the present study, we investigate putative localization of cannabinoid receptors 1 (CB1) protein on a population of cortical �-am-

    inobutyric acid (GABA) – positive interneurons characterized by expression of calcium-binding proteins in rat medial prefrontal

    cortex (MPC). Parvalbumin (PARV)/calretinin (CALR)- and calbindin (CALB)-positive neurons form two distinct populations of

    GABA-ergic interneurons that comprise the axo-somatic/axo-axonic and axo-dendritic inhibitory systems of pyramidal cells. It has

    been found that CB1 receptor-positive cells are randomly distributed across the rat MPC. All spotted neurons that were positive for

    CB1 receptors were positive for GABA; however, the number of GABA-positive cells drastically exceeded the number of CB1

    receptor-positive neurons. Subsequent experiments with double-labelling of CB1 receptors with PARV and CALR revealed no colo-

    calization. CALB-positive neurons (e.g., double bouquet and bipolar cells) display colocalization: the degree of colocalization

    among CB1 receptor-positive cells reached 18%. The appearance of CB1 receptors in double bouquet and bipolar neurons indicates

    that CB1 receptors may control the activity of pyramidal neurons from presynaptic sites in axo-dendritic synapses formed on apical

    and basilar dendrites of pyramidal neurons, as is characteristic for CALB-positive cortical interneurons. The phenotype of GABA-

    and CB1 receptor-positive but CALB-negative neurons may represent a population of inhibitory neurons that allow axo-somatic

    control of information flow, governed by principal neurons of the MPC.

    Key words:

    cannabinoid receptors, CB1, medial prefrontal cortex, parvalbumin, calretinin, calbindin, immunocytochemistry

    Introduction

    There are several arguments that cannabinoid (CB)

    signalling pathways are engaged in the pathological

    neurotransmission responsible for the appearance of

    schizophrenic symptoms. Epidemiological studies sug-

    gest that cannabis use, especially in the adolescent pe-

    riod, represents a substantial environmental risk factor

    for the appearance of schizophrenia (for comprehen-

    sive review see [25]). It has also been observed that

    CB1 receptor binding sites are enhanced in the course

    of schizophrenia in the medial prefrontal cortex

    (MPC) and striatum [8, 34]. Increased levels of anan-

    damide and palmitylethanolamide, endogenous ligands

    of CB1 receptor binding sites, have been observed in

    1000 �������������� ������ ����� ��� ���������

    �������������� �����

    ����� ��� ���������

    � ��������

    ��������� � ����

    �� ��������� �� ���� �!�"���

    ��"��� #!�$� � �� !���!��

  • cerebrospinal fluid of patients suffering from schizo-

    phrenia [15, 21]. An increase in the number of bind-

    ing sites was also observed, followed by decreased

    expression of mRNA-encoding synthesis of CB1 re-

    ceptors and a decrease in the level of CB1 receptor

    protein, measured post-mortem in dorsolateral MPC

    in schizophrenics [10]. It has also been noted that

    phencyclidine, which in humans evoked schizo-

    phrenic symptoms and in rats is used to model nega-

    tive and positive symptoms of schizophrenia [32], re-

    duces the concentration of arachidonoylglycerol – an-

    other endogenous ligand for CB1 receptors in rat

    MPC [30]. It has also been observed that the psy-

    choactive ingredient of marijuana, �9-tetrahydro-

    cannabinol, worsened phencyclidine-induced cogni-

    tive impairment in rats [30]. Long-lasting intake of

    cannabis leads to deficits of working memory similar

    to those observed in schizophrenia [12, 26]. Since the

    efficacy of working memory greatly depends on cor-

    rect inhibitory control of pyramidal neurons in the

    MPC [7, 22], we sought to investigate whether CB1

    receptors are present in the MPC and whether they are

    present in defined populations of �-aminobutyric acid

    (GABA)-positive interneurons. GABA-ergic inhibi-

    tory neurons can be classified according to their ex-

    pression of calcium-binding protein [e.g., calbindin

    (CALB), parvalbumin (PARV) or calretinin (CALR)]

    [1, 6, 9]. CALB-positive and PARV-positive/CALR-

    positive inhibitory interneurons represent two distinct

    subpopulations of GABA-ergic interneurons with re-

    spect to cell morphology, type of contacts with py-

    ramidal neurons and firing pattern [6, 33]. PARV-

    positive and CARL-positive interneurons correspond,

    respectively, to basket or chandelier cells. They make

    axo-somatic and axo–axonic contacts with the soma

    or initial axonal segments of pyramidal neurons [1, 4,

    6, 9, 13, 20, 33]. PARV-positive neurons have physio-

    logical properties characteristic of fast-spiking inter-

    neurons [20, 33]. CALB-positive cell morphology is

    typically that of a double bouquet cell but can also be

    that of a bipolar neurons. These cells make axo-den-

    dritic inhibitory synapses on the apical and basilar

    dendrites of pyramidal neurons and exhibit a slow

    spiking interneuronal pattern of electrophysiological

    activity [4, 9, 13, 20, 33]. This inhibitory circuitry is

    impaired in the course of schizophrenia, on both the

    pre- and post-synaptic levels. Presynaptic deficits are

    associated with decreased expression of: glutamic

    acid decarboxylase isoform of 67 kDa (GAD67),

    PARV and the GABA transporter – GAT1 [22]. Post-

    synaptic changes are also observed, such as an in-

    crease in the expression of GABA receptor subunit

    GABA 2�2 [22]. Thus a description of CB1 receptor

    localization in inhibitory circuitry of the MPC may be

    useful for further attempts to develop pharmacologi-

    cal therapy for schizophrenia based on the modulation

    of cannabinoid signalling pathways.

    Materials and Methods

    Subjects

    Twenty-two male Wistar rats (200–250 g) were used:

    four for each set of staining and two for Western blot.

    The experimental protocol was approved by the Com-

    mittee for Laboratory Animal Welfare and Ethics at

    the Institute of Pharmacology, Polish Academy of

    Sciences in Kraków and met the criteria of the Guide

    for the Care and Use of Laboratory Animals of the In-

    ternational Council for Laboratory Animals.

    Western Blotting

    The brains were removed after decapitation, cooled

    on ice, and sliced into 1 mm coronal sections using

    a rodent brain matrix (Ted Pella, INC). The MPC was

    punched out from coronal sections with a 15-gauge

    punching tube. The isolated brain region was ho-

    mogenized in 10 vol (w/vol) of lysis buffer: 50 mM

    Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA,

    1 mM EGTA, 50 mM NaF, 0.5% Triton X-100, 0.5%

    SDS, and protease inhibitors (1:200, Sigma). Protein

    levels were determined using a BCA Protein Assay

    Kit (a modification of the Lowry assay, Sigma). Sam-

    ples of equal protein contents were adjusted to an

    equal volume with 50 mM Tris (pH 6.8), containing

    2% SDS, 8% glycerol, and 2% 2-mercaptoethanol

    with bromophenol blue as a marker. Samples were

    then boiled for 5 min. Protein extracts (10 µg/lane

    were separated by 7.5% SDS-PAGE and transferred

    to nitrocellulose membranes using an electrophoretic

    transfer system (BioRad). The membranes were stained

    with Ponceau S to confirm equal loading and transfer

    of the gels. The blots were then incubated overnight at

    4°C with the polyclonal rabbit anti-CB1 receptor pri-

    mary antibody, which recognizes 1–14 N-terminal

    �������������� ������ ����� ��� ��������� 1001

    Cannabinoid CB1 receptors and rat Medial Prefrontal Cortex��������� ����� �� �������� ������

  • residues (Alexis), diluted 1:1000. Immune complexes

    were detected using appropriate peroxidase-conjugated

    secondary antibodies: anti-rabbit IgG (1:1000, Roche).

    The reaction was visualized by ECL (Enhanced

    Chemiluminescence) (Lumi-LightPlus Western Blotting

    Kit, Roche). Chemiluminescence was recorded and

    evaluated with a luminescent image analyzer (Fuji-

    film LAS-1000). Molecular weights of immunoreac-

    tive bands were calculated on the basis of the migra-

    tion of molecular weight markers (Roche) using Im-

    age Gauge (Fujifilm) software (for further details see

    Maækowiak et al. [23]).

    Euthanasia and perfusion

    Rats were deeply anesthetized with sodium pentobar-

    bital (100 mg/kg) and transcardially perfused with sa-

    line (0.9% NaCl), followed by ice-cold 4% parafor-

    maldehyde in 0.1 M phosphate-buffered saline (PBS,

    pH 7.4). However, for double-labelling of CB1 receptor

    with GABA, a mixture of 4% paraformaldehyde and

    0.1% glutaraldehyde in 0.1 M PBS was used as a fixa-

    tive after perfusion with saline (as described above).

    Sectioning

    Three to four hours after fixation (with 4% parafor-

    maldehyde in 0.1 M PBS or 4% paraformaldehyde

    and 0.1% glutaraldehyde in 0.1 M PBS), 50 µm-thick

    sections were cut at the level of the MPC, using a vi-

    bratome (Leica VT1000S).

    Non-fluorescent labelling of CB1 receptors

    The free-floating brain sections were rinsed three

    times in 0.01 M PBS, followed by 1 h of incubation in

    a blocking buffer containing 5% normal goat serum

    and 0.2% Triton X-100 in 0.01 M PBS. Then the sec-

    tions were incubated (48 h, 4°C) with a rabbit poly-

    clonal primary antibody which recognizes the 1–14

    N-terminal residues of CB1 receptor (Alexis), diluted

    1:1000 in a blocking buffer (the concentration of nor-

    mal goat serum was reduced to 3%). After rinsing, the

    sections were incubated for 1 h with biotinylated goat

    anti-rabbit secondary antibody (Vector Lab) in a block-

    ing buffer. The reaction was visualized using the Vec-

    tastain Elite ABC kit and the Vector SG kit (Vector

    Lab), which stains the immunopositive material blue.

    All reagents were used at concentrations suggested by

    the manufacturer, with the exception of the dilution

    used with the SG kit, which was diluted by half ac-

    cording to the manufacturer’s suggestions.

    Double immunofluorescence

    The sections, obtained as described above, were

    washed in 0.01 M PBS and then placed for 1 h in the

    blocking buffer, which contained 5% normal goat se-

    rum in 0.01 M PBS (staining for GABA) or 5% nor-

    mal goat serum and 0.1% Triton X-100 in 0.01 M PBS

    (staining for CB1 receptors, PARV, CALR and CALB).

    Subsequently, the sections were placed in a mixture of

    primary antibodies in adequate blocking buffer as

    above; however, the concentration of goat serum was

    reduced to 3%. The sections labelled for the presence

    of CB1 receptors and GABA, PARV, CALR, and

    CALB were incubated in a mixture of two primary

    antibodies for 48 h. After incubation with the primary

    antibodies, the sections were washed (as above) and

    placed for 2 h (at room temperature, in total darkness)

    in a mixture of secondary antisera (diluted to the final

    concentrations of 1:100 with 0.01 M PBS containing 3%

    normal goat serum and 0.1% Triton X-100). Table 1 in-

    cludes the manufacturers of the secondary antibodies (for

    further details see Wedzony et al. [31]).

    1002 �������������� ������ ����� ��� ���������

    Tab 1. � ���� �� ������ ��� ��������� ���������� ���� �� �

    �������������� ��������%����� �������

    Primary antibody dilution and manufacturers Secondary antibody Jackson Immuno Research Lab. Inc.

    1 Polyclonal, rabbit anti-CB1 receptor 1:1000 Alexis Cy��2-conjugated Affinity Pure Goat Anti-Rabbit IgG (1:100)

    2 Monoclonal, mouse, anti-GABA 1:500, Swant Texas Red-conjugated Affinity Pure Goat Anti-Mouse IgG (1:100)

    3 Monoclonal, mouse anti-parvalbumin 1:1000, Sigma

    4 Monoclonal, mouse anti-calretinin 1:1000, Sigma AMCA – conjugated Affinity Pure Goat Anti-Mouse IgG (1:100)

    5 Monoclonal, mouse anti-calbindin 1:1000, Sigma

  • Data analysis

    For colocalization analysis, approximately 200 CB1-

    positive cells (± 20) were captured under the 100×

    lens in layer V and II/III for each staining, from three

    sections of the MPC obtained from four animals. Im-

    ages were focused on immunopositive elements in

    CB1 receptors, which were photographed using ap-

    propriate narrow band filters for the CY2 fluorescent

    marker. Then, to determine colocalization of CB1 re-

    ceptor protein with GABA, PARV, CALR and CALB,

    the fluorescent filter cubes appropriate for AMCA or

    Texas Red excitation/emission were changed without

    altering the focal plane in order to count and photograph

    the cells. Double-labelling was verified by overlaying

    the captured images from both channels.

    Data presentation

    For data presentation and mapping of non-fluorescent

    immunopositive material, digital images were cap-

    tured using a Leica DMLB microscope (Nomarski

    phase contrast, objective PlanApo 100×; oil condenser)

    and Photometrics Coolsanp FX camera equipped with

    ImagePro Plus image analysis software. Camera Lu-

    cida drawings of immunoreactive material were made

    using a Leica DMLB microscope, 20× objective and

    drawing tube. Drawings were scanned and further

    processed using the Corel Draw program. Sections la-

    belled with fluorescent markers were examined and

    photographed using the Leica DMLB microscope

    with the epifluorescent attachment, equipped with

    CyTM2, AMCA, and Texas Red narrow band filters

    (objective PlanApo 100×). Images were captured us-

    ing a Photometrics Coolsanp FX camera and Meta-

    Morph software was used for colocalization analysis.

    Results

    To demonstrate the specificity of the CB1 receptor an-

    tibody, Western blotting was performed on brain

    lysate obtained from samples of the MPC. The anti-

    CB1 receptor antibody specifically detected a band at

    64 kDa, consistent with the molecular weight of the

    monomeric form of the receptor (Fig. 1). Two addi-

    tional bands (46 and 57 kD) may correspond to CB1

    receptors under degradation (Fig. 1). The lack of spe-

    cific control peptide compelled us to investigate

    whether applied antibody can bind to fractions of bo-

    vine serum albumin. We did not observe any protein

    bands and therefore suppose that the antibody applied

    �������������� ������ ����� ��� ��������� 1003

    Cannabinoid CB1 receptors and rat Medial Prefrontal Cortex��������� ����� �� �������� ������

    BSA MPC

    64

    57

    46

    Fig. 1. *+���� �� &������ ���� �������� �� �+�������� �� ,�� ���������� �� ��� ����� ���������� �����+ -.�,/) 0� ������� ��������������%�� ���� �1�� ����� �� ������� �� �� .�, �������������� �������� �� 2 � 34 ��� 2 !� -��� ����/) ���� ���� 5 ���������� ����6��� ���� ������ -���/ �� �� ��� �������������� ��������� ���� �� ��� ���� 5 ����� ���" �� ��� �������) 7� �� ���� ����$� ������� �� ,�� �������� �����8 �������� $��� �� !� �� �6��

    CBA

    EF

    DM2

    fmi

    PrLCPu

    DP

    Acb

    Cg1

    IL

    Fig. 2. 0� ������������ ��� �� ������� �� ,�� ��������� ��

    ���������6� ������� �� ��� ����� ���������� �����+ -.�,/) -A/ ,����� ������ ���$��� ����������� �� ������������ �� ,�� ���������������6� ����� �� �� .�,) *�� ��� ����������� �� ��� ,�����������������6� ����) -B5E/ ������� �� ,�� ���������������6�������� �� �� .�, -��1����6� ��99� ����� ��� : �9 ;/) ����$� ������� �� ���� ������� $��� ����$���� ����� �� �+���

  • was specific (Fig. 1). We identified CB1 receptor-

    positive cells in all layers of the MPC, without any

    specific stratification, although particular attention

    should be paid to layer II/III. There were no CB1

    receptor-positive cells in layer I (Fig. 2A). The mor-

    phology of CB1 receptor-positive neurons resembled

    the morphology of bipolar or double bouquet cells

    (Fig. 2B–E). Immunopositive material was observed

    in cytoplasm of the cell body as well as in axons or

    dendrites emanating from the cell body (Fig. 2B-E).

    Occasionally, we observed processes that displayed

    CB1 receptors with prominent boutons (Fig. 2F).

    Double-labelling for GABA and CB1 receptors re-

    vealed that all CB1 receptors-positive cells were posi-

    tive for GABA, which rules out the presence of this

    receptor on cortical principal neurons (Fig. 3). Fur-

    thermore, more than 18% of CB1 receptor-positive

    cells were positive for CALB (Fig. 5). We did not ob-

    serve colocalization of CB1 receptor protein with

    CALR or PARV (Fig. 4).

    Discussion

    The results of the present study indicate that in the rat

    MPC the CB1 receptor is almost exclusively ex-

    pressed by GABA-positive neurons. The above data

    are in line with the previous studies indicating, for ex-

    ample, that in the rodent cortex approximately 100%

    of neurons that express high levels of CB1 mRNA

    also express mRNA encoding glutamic acid decar-

    boxylase 65, an enzyme that synthesises GABA [24].

    It is, however, difficult at the moment to exclude the

    possibility that CB1 receptors are present in the py-

    1004 �������������� ������ ����� ��� ���������

    0

    400

    800

    1200

    1600

    0

    400

    800

    1200

    1600

    0

    20

    40

    60

    80

    100

    0

    20

    40

    60

    80

    100

    %of

    colo

    cali

    zed

    CB1 PARV

    Num

    ber

    of

    neu

    rons

    0

    400

    800

    1200

    1600

    0

    400

    800

    1200

    1600

    0

    20

    40

    60

    80

    100

    0

    20

    40

    60

    80

    100

    %of

    colo

    cali

    zed

    CB1 CALR

    Num

    ber

    of

    neu

    rons

    PARVALBUMINPARVALBUMINPARVALBUMIN

    CALRETININCALRETININCALRETININ

    F

    CBA

    D E F

    NO

    NO

    Fig. 4. 0� ������� �� ��������������� �+�������� �� �������� ���

    ��� ����� ���������� �����+ �����%�� �� ��������%����� �� ���6�����

    �� -��=>/ ��� ���������� -,��=/ $�� ,�� ���������������6� ����

    ���� -����� ��� ��$�� ���� �� ����� ��������6���/) ���� �������� ������� �� ,�� ��������� ��� ��=>���-B/ ,�� ���������������6� ������� ��� -C/ ������������%�� �6������� A ��� B) -D/ ,��=� -E/ ,�� ���������������6� ������� ��� -F/������������%�� �6����� �� D ��� E) ��=> -C/ �� ,��= -F/ �� ������������ �� ����� $��� ,�� ��������� ��� ����������� �� ���� -C ���F/

    A B C

    0

    20

    40

    60

    80

    100

    0

    20

    40

    60

    80

    100

    0

    400

    800

    1200

    1600

    0

    400

    800

    1200

    1600

    %of

    colo

    cali

    zed

    CB1 GABA

    Nu

    mb

    ero

    fn

    euro

    ns

    Fig. 3. 0� ������� �� ��������������� �+�������� �� �������� ���

    ��� ����� ���������� �����+ �����%�� �� ��������%����� �� A��� ���,�� ���������������6� �������) -A/ A���� -B/ ,�� ���������������6������� ��� -C/ ������������%�� �6����� �� A ��� B) A��� �� ������������ �� ����� $��� ,�� �������� ��� �������� �� ����) ����� �� C ��������� ��������� �� ������ ������� �� A�B ��� C) ���� ����$ ��������� �� ����� �� ,�� ���������� ��� A����������6� ������� -������ ���" ���� ��������6���/ ���� �� ��������� $��� ����" ��� ����������� �� ���������� ��������� �� ��������%�����) ���� ��������� ��

    ���� @ �*.8 � :

    Num

    ber

    of

    neu

    ron

    s

    0

    100

    200

    300

    400

    500

    0

    100

    200

    300

    400

    500

    CB1 CALB

    %of

    colo

    cali

    zed

    0

    20

    40

    60

    80

    100

    0

    20

    40

    60

    80

    100

    A CB

    ED F

    Fig. 5. 0� ������� �� ��������������� �+�������� �� �������� ���

    ��� ����� ���������� �����+ �����%�� �� ��������%����� �� ���������-,���/ ��� ,�� ���������������6� �������) -A� D/ ,���8 -B� E/,�� ���������������6� �������8 -C� F/ ������������%�� �6����� �� A�B ��� D� E) ,��� �� �������� �� ����� $��� ,�� �������� ��� ������������ �� ����) A-C ��� D-F ��������� ������ ���B��� ��� ��������������� ��������6���) ���� ����$ �������� �� ����� �� ,�� ���������� ��� ,����������6� ������� -��� ��� ���" ���� ��������6���/���� �� ��������) ����" ��� ���������� �� ��������� �� ��������%������) ���� ��������� �� ���� @ �*.8 � :

  • ramidal cells, since mRNA encoding their synthesis

    has been observed through in situ hybridization and

    single-cell PCR studies [18, 24]. It is conceivable that

    the level of CB1 receptor protein in principal neurons

    of the MPC stained with immunocytochemistry tech-

    niques is below the limit of detection for that method.

    With respect to the calcium-binding proteins that

    characterize different populations of GABA-ergic in-

    terneurons, we found substantial co-expression of

    CB1 receptors and CALB, but not CALR or PARV.

    Similar colocalization of CALB and CB1 receptors

    has been also observed in rat sensory cortex [2]. The

    cytoplasmic localization of CB1 receptors that we ob-

    served is in line with the electron microscopic data

    showing that CB1 receptors are not only axon/soma

    membrane-bound but are also present in endoplasmic

    reticulum, Golgi apparatus, multivesicular bodies, and

    the endosome-lysosome system. The presence of CB1

    receptor protein in the endosome-lysosome system

    may explain the appearance of two additional protein

    bands in our Western blot (around 46 and 57 kD).

    These bands may represent CB1 receptors under deg-

    radation – the fraction bound to the endosome-

    lysosome fraction. In the context of cellular expres-

    sion, a fraction around 64 kD should be recognized as

    a fraction of a newly synthesized pool of receptors, or

    a fraction that is membrane-bound. Apart from obvi-

    ous similarities in morphology, localization and the

    GABA-ergic nature of neurons expressing CB1 re-

    ceptors in the MPC observed in the current study and

    other studies performed in rats [2, 29], the differences

    should also be noted. Under our staining conditions,

    we observed cells with proximal axons and dendrites

    positive for CB1 receptor and a relatively low number

    of neuronal processes, which has been observed in

    other studies performed on rat, primate and human

    cortex [2, 10, 11, 29]. The discrepancy between our

    study and other published works remains to be eluci-

    dated. The apparent lack of visualization of CB1

    receptor-positive neuronal processes may be responsi-

    ble for the failure of our study to observe the clear

    laminar distribution of CB1 receptor-positive ele-

    ments that were observed by others [2, 10, 11, 29]. In

    addition, the type of antibody (directed to N-terminal

    vs. C-terminal), tissue preparation and analysis in spe-

    cific brain regions should be considered. In our study,

    only 18% of CB1 receptor-positive cells were

    CALB-positive neurons. Recent findings indicate that

    the rest are present on cholecystokinin (CCK)-pos-

    itive neurons [2, 9, 10]. CCK and CALB are ex-

    pressed on separate populations of cortical interneu-

    rons [2, 9, 10]. Thus, our study is limited to only one

    pool of CB1 receptor-positive neurons; the other

    populations will require additional investigation. Im-

    portantly, both types of interneurons belong to differ-

    ent inhibitory systems of principal cortical neurons.

    Interneurons expressing CALB are known to repre-

    sent dendrite-targeting inhibitory cells in the hippo-

    campus and likely also in the neocortex. On the other

    hand, CCK and CB1 receptor-positive cells furnish

    perisomatic inhibitory inputs to pyramidal neurons [2,

    14, 18]. Indeed, recent physiological experiments in-

    dicated that, in the neocortex, perisomatic inhibition

    was more susceptible to cannabimimetics than den-

    dritic inhibition [27, 28]. Furthermore, that type of in-

    hibitory control, in terms of propagation of informa-

    tion by the principal neuron, is superior to that of the

    dendritic inhibition [7]. Thus, the population defined

    in the present study as CB1 receptor-positive GABA-

    ergic interneurons that are negative for CALB should

    represent the future target for pharmacological treat-

    ment [3] of cognitive deficits associated with the

    MPC during the course of schizophrenia. It has been

    proposed by Eggan et al. [10] that CB1 receptors on

    CALB-negative (CCK-positive) interneurons may at-

    tenuate GABA release and alter the activity of py-

    ramidal neurons, with subsequent reduction of the �

    power band in the frontal lobe, which is fundamental

    for the correct function of working memory [5, 19].

    Experiments with agonists and antagonists of CB1 re-

    ceptors performed on rat hippocampus and entorhinal

    cortex confirm this conclusion [16, 17]. It will be of

    interest to extrapolate in the future the data acquired in

    the hippocampus and entorhinal cortex on the MPC.

    Acknowledgments:

    0�� $��" $�� ��������� �� �� .?�& ���� ��� !& -!�? ����

    �73� �� �C/ ��� ��������� ����6��� �� �� ��������� ��

    ���������� ����� ������ �� ��������� !��"#$)

    References:

    1. Baimbridge KG, Celio MR, Rogers JH: Calcium-binding

    proteins in the nervous system. Trends Neurosci, 1992,

    15, 303–308.

    2. Bodor AL, Katona I, Nyiri G, Mackie K, Ledent C, Ha-

    jos N, Freund TF: Endocannabinoid signaling in rat so-

    matosensory cortex: laminar differences and involve-

    ment of specific interneuron types. J Neurosci, 2005, 25,

    6845–6856.

    �������������� ������ ����� ��� ��������� 1005

    Cannabinoid CB1 receptors and rat Medial Prefrontal Cortex��������� ����� �� �������� ������

  • 3. Budzyñska B, Kruk M, Bia³a G: Effects of the cannabi-

    noid CB1 receptor antagonist AM 251 on the reinstate-

    ment of nicotine-conditioned place preference by drug

    priming in rats. Pharmacol Rep, 2009, 61, 304–310.

    4. Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N,

    Tsuzuki K, Hestrin S, Rossier J: Molecular and physio-

    logical diversity of cortical nonpyramidal cells. J Neuro-

    sci, 1997, 17, 3894–3906.

    5. Cho RY, Konecky RO, Carter CS: Impairments in frontal

    cortical � synchrony and cognitive control in schizophre-

    nia. Proc Natl Acad Sci USA, 2006, 103, 19878–19883.

    6. Conde F, Lund JS, Jacobowitz DM, Baimbridge KG,

    Lewis DA: Local circuit neurons immunoreactive for

    calretinin, calbindin D-28k or parvalbumin in monkey

    prefrontal cortex: distribution and morphology. J Comp

    Neurol, 1994, 341, 95–116.

    7. Daskalakis ZJ, Fitzgerald PB, Christensen BK: The role

    of cortical inhibition in the pathophysiology and treatment

    of schizophrenia. Brain Res Rev, 2007, 56, 427–442.

    8. Dean B, Sundram S, Bradbury R, Scarr E, Copolov D:

    Studies on [�H]CP-55940 binding in the human central

    nervous system: regional specific changes in density of

    cannabinoid-1 receptors associated with schizophrenia

    and cannabis use. Neuroscience, 2001, 103, 9–15.

    9. DeFelipe J: Types of neurons, synaptic connections and

    chemical characteristics of cells immunoreactive for

    calbindin-D28K, parvalbumin and calretinin in the neo-

    cortex. J Chem Neuroanat, 1997, 14, 1–19.

    10. Eggan SM, Hashimoto T, Lewis DA: Reduced cortical

    cannabinoid 1 receptor messenger RNA and protein ex-

    pression in schizophrenia. Arch Gen Psychiatry, 2008,

    65, 772–784.

    11. Eggan SM, Lewis DA: Immunocytochemical distribu-

    tion of the cannabinoid CB1 receptor in the primate neo-

    cortex: a regional and laminar analysis. Cereb Cortex,

    2007, 17, 175–191.

    12. Elvevag B, Goldberg TE: Cognitive impairment in

    schizophrenia is the core of the disorder. Crit Rev Neuro-

    biol, 2000, 14, 1–21.

    13. Gabbott PL, Dickie BG, Vaid RR, Headlam AJ, Bacon

    SJ: Local-circuit neurones in the medial prefrontal cortex

    (areas 25, 32 and 24b) in the rat: morphology and quanti-

    tative distribution. J Comp Neurol, 1997, 377, 465–499.

    14. Galarreta M, Erdelyi F, Szabo G, Hestrin S: Electrical

    coupling among irregular-spiking GABAergic interneu-

    rons expressing cannabinoid receptors. J Neurosci, 2004,

    24, 9770–9778.

    15. Giuffrida A, Leweke FM, Gerth CW, Schreiber D, Ko-

    ethe D, Faulhaber J, Klosterkotter J, Piomelli D: Cere-

    brospinal anandamide levels are elevated in acute schizo-

    phrenia and are inversely correlated with psychotic

    symptoms. Neuropsychopharmacology, 2004, 29,

    2108–2114.

    16. Hajos M, Hoffmann WE, Kocsis B: Activation of

    cannabinoid-1 receptors disrupts sensory gating and neu-

    ronal oscillation: relevance to schizophrenia. Biol Psy-

    chiatry, 2008, 63, 1075–1083.

    17. Hajos N, Katona I, Naiem SS, Mackie K, Ledent C,

    Mody I, Freund TF: Cannabinoids inhibit hippocampal

    GABAergic transmission and network oscillations. Eur

    J Neurosci, 2000, 12, 3239–3249.

    18. Hill EL, Gallopin T, Ferezou I, Cauli B, Rossier J,

    Schweitzer P, Lambolez B: Functional CB1 receptors are

    broadly expressed in neocortical GABAergic and gluta-

    matergic neurons. J Neurophysiol, 2007, 97, 2580–2589.

    19. Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lis-

    man J, Aschenbrenner-Scheibe R, Schulze-Bonhage A,

    Kahana MJ: Gamma oscillations correlate with working mem-

    ory load in humans. Cereb Cortex, 2003, 13, 1369–1374.

    20. Kawaguchi Y, Kubota Y: Correlation of physiological

    subgroupings of nonpyramidal cells with parvalbumin-

    and calbindinD28k-immunoreactive neurons in layer V

    of rat frontal cortex. J Neurophysiol, 1993, 70, 387–396.

    21. Leweke FM, Giuffrida A, Wurster U, Emrich HM, Pio-

    melli D: Elevated endogenous cannabinoids in schizo-

    phrenia. Neuroreport, 1999, 10, 1665–1669.

    22. Lewis DA, Gonzalez-Burgos G: Neuroplasticity of neo-

    cortical circuits in schizophrenia. Neuropsychopharma-

    cology, 2008, 33, 141–165.

    23. Maækowiak M, Dudys D, Chocyk A, Wêdzony K: Re-

    peated risperidone treatment increases the expression of

    NCAM and PSA-NCAM protein in the rat medial prefron-

    tal cortex. Eur Neuropsychopharmacol, 2009, 19, 125–137.

    24. Marsicano G, Lutz B: Expression of the cannabinoid re-

    ceptor CB1 in distinct neuronal subpopulations in the adult

    mouse forebrain. Eur J Neurosci, 1999, 11, 4213–4225.

    25. Moore TH, Zammit S, Lingford-Hughes A, Barnes TR,

    Jones PB, Burke M, Lewis G: Cannabis use and risk of

    psychotic or affective mental health outcomes: a system-

    atic review. Lancet, 2007, 370, 319–328.

    26. Solowij N, Stephens RS, Roffman RA, Babor T, Kadden

    R, Miller M, Christiansen K et al.: Cognitive functioning

    of long-term heavy cannabis users seeking treatment.

    JAMA, 2002, 287, 1123–1131.

    27. Trettel J, Fortin DA, Levine ES: Endocannabinoid sig-

    nalling selectively targets perisomatic inhibitory inputs

    to pyramidal neurones in juvenile mouse neocortex.

    J Physiol, 2004, 556, 95–107.

    28. Trettel J, Levine ES: Endocannabinoids mediate rapid

    retrograde signaling at interneuron right-arrow pyramidal

    neuron synapses of the neocortex. J Neurophysiol, 2003,

    89, 2334–2338.

    29. Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker

    JM: Immunohistochemical distribution of cannabinoid

    CB1 receptors in the rat central nervous system. Neuro-

    science, 1998, 83, 393–411.

    30. Vigano D, Guidali C, Petrosino S, Realini N, Rubino T,

    Di M, V, Parolaro D: Involvement of the endocannabi-

    noid system in phencyclidine-induced cognitive deficits

    modelling schizophrenia. Int J Neuropsychopharmacol,

    2009, 12, 599–614.

    31. Wedzony K, Chocyk A, Maækowiak M: A search for

    colocalization of serotonin 5-HT2A and 5-HT1A recep-

    tors in the rat medial prefrontal and entorhinal cortices-

    immunohistochemical studies. J Physiol Pharmacol,

    2008, 59, 229–238.

    32. Wêdzony K, Fija³ K, Maækowiak M, Chocyk A: Detri-

    mental effect of postnatal blockade of N-methyl-D-

    aspartate receptors on sensorimotor gating is reversed by

    neuroleptic drugs. Pharmacol Rep, 2008, 60, 856–864.

    33. Zaitsev AV, Gonzalez-Burgos G, Povysheva NV, Kroner

    S, Lewis DA, Krimer LS: Localization of calcium-

    1006 �������������� ������ ����� ��� ���������

  • binding proteins in physiologically and morphologically

    characterized interneurons of monkey dorsolateral pre-

    frontal cortex. Cereb Cortex, 2005, 15, 1178–1186.

    34. Zavitsanou K, Garrick T, Huang XF: Selective antago-

    nist [�H]SR141716A binding to cannabinoid CB1 recep-

    tors is increased in the anterior cingulate cortex in

    schizophrenia. Prog Neuropsychopharmacol Biol Psy-

    chiatry, 2004, 28, 355–360.

    Received:

    ����� �4� �99D8 �� ��6���� ���' 7������ ��� �99D)

    �������������� ������ ����� ��� ��������� 1007

    Cannabinoid CB1 receptors and rat Medial Prefrontal Cortex��������� ����� �� �������� ������

    957Review Œ Nicotine dependence Œ human and animal studies, current pharmacotherapies and future perspectives.Magdalena Zaniewska, Edmund Przegaliñski, Ma³gorzata Filip

    966Review Œ Methamphetamine-induced neurotoxicity: the road to Parkinson™s disease.Bessy Thrash, Kariharan Thiruchelvan, Manuj Ahuja, Vishnu Suppiramaniam, Muralikrishnan Dhanasekaran

    978Review ΠTramadol as an analgesic for mild to moderate cancer pain.Wojciech Leppert

    993Review Œ Polymer-based non-viral gene delivery as a concept for the treatment of cancer.Anna Halama, Micha³ Kuliñski, Tadeusz Librowski, Stanis³aw Lochyñski

    1000Cannabinoid CB1 receptors in rat medial prefrontal cortex are colocalized with calbindin- but not parvalbumin- and calretinin-positive GABA-ergic neurons.Krzysztof Wêdzony, Agnieszka Chocyk

    1008ERK signalling pathway is not involved in PSA- NCAM-dependent alterations of hippocampal plasticity evoked by CB1 receptor activation.Marzena Maækowiak, Dorota Dudys, Krzysztof Wêdzony

    1017Influences of chronic venlafaxine, olanzapine and nicotine on the hippocampal and cortical concentrations of brain-derived neurotrophic factor (BDNF).Anna Czubak, El¿bieta Nowakowska, Krzysztof Kus, Kinga Burda, Jana Metelska, Wanda Baer-Dubowska, Micha³ Cichocki

    1024Role of silent polymorphisms within the dopamine D1 receptor associated with schizophrenia on D1ŒD2 receptor hetero-dimerization.Katarzyna Grymek, Sylwia Lukasiewicz, Agata Faron-Górecka, Magdalena Tworzydlo, Agnieszka Polit, Marta Dziedzicka-Wasylewska

    1034Impact of postnatal dexamethasone on psychotomimetic effects of MK-801 measured on adult rats.Krzysztof Wêdzony, Katarzyna Markowicz-Kula, Agnieszka Chocyk Katarzyna Fija³, Aleksandra Przyborowska, Marzena Maækowiak

    1042Effects of GABAB receptor agonists on cocaine hyperlocomotor and sensitizing effects in rats.Ma³gorzata Frankowska, Ewa Nowak, Ma³gorzata Filip

    1050Effect of co-administration of fluoxetine and amantadine on immunoendocrine parameters in rats subjected to a forced swimming test.Zofia Rogó¿, Marta Kubera, Katarzyna Rogó¿, Agnieszka Basta-Kaim, Bogus³awa Budziszewska

    1061Gestational manganese intoxication and anxiolytic-like effects of diazepam and the 5-HT1A receptor agonist 8-OH-DPAT in male Wistar rats.Adam Kwieciñski, Przemys³aw Nowak

    1069Concomitant administration of fluoxetine and amantadine modulates the activity of peritoneal macrophages of rats subjected to a forced swimming test.Adam Roman, Zofia Rogó¿, Marta Kubera, Dominika Nawrat, Irena Nalepa

    1078Effect of N-methyl-D-aspartate (NMDA) receptor antagonists on a-synuclein-evoked neuronal nitric oxide synthase activation in the rat brain.Agata Adamczyk, Grzegorz A. Czapski, Anna Ka�mierczak, Joanna B. Strosznajder

    1086Peripheral antinociceptive effects of MC4 receptor antagonists in a rat model of neuropathic pain Œ a biochemical and behavioral study.Katarzyna Starowicz, Shaaban A. Mousa, Ilona Obara, Agnieszka Chocyk, Ryszard Przew³ocki, Krzysztof Wêdzony, Halina Machelska, Barbara Przew³ocka

    1105Inhibitory effects of amantadine on the production of pro-inflammatory cytokines by stimulated in vitro human blood.Marta Kubera, Michael Maes, Bogus³awa Budziszewska, Agnieszka Basta-Kaim, Monika Leœkiewicz, Beata Grygier, Zofia Rogó¿, W³adys³aw Lasoñ

    1113Age-dependent stimulatory effect of desipramine and fluoxetine pretreatment on metastasis formation by B16F10 melanoma in male C57BL/6 mice.Marta Kubera, Beata Grygier, Beatriz Arteta, Krystyna Urbanska, Agnieszka Basta-Kaim, Boguslawa Budziszewska, Monika Leskiewicz, Elzbieta Kolaczkowska, Michael Maes, Marian Szczepanik, Monika Majewska, Wladyslaw Lason

    1127m-Trifluoromethyl-diphenyl diselenide attenuates pentylenetetrazole-induced seizures in mice by inhibiting GABA uptake in cerebral cortex slices.Marina Prigol, César A. Brüning, Benhur Godoi, Cristina W. Nogueira, Gilson Zeni

    1134Effect of atorvastatin and fenofibric acid on adipokine release from visceral and subcutaneous adipose tissue of patients with mixed dyslipidemia and normolipidemic subjects.Robert Krysiak, Krzysztof £abuzek, Bogus³aw Okopieñ

    1146Sildenafil increases the force of right atrial contractions in vitro via the NO-guanylyl cyclase pathway involving b-adrenoceptor linked mechanisms.Sadhana Kanoo, Shripad B. Deshpande

    1153Tumor anti-initiating activity of some novel 3,4-dihydropyrimidinones.Hanaa A. Tawfik, Fatma Bassiuni, Amira M. Gamal-Eldeen, Mona A. Abo-Zeid, Wageeh S. El-Hamouly

    1163Study of the cytotoxicity and antioxidant capacity of N/OFQ(1Œ13)NH2 and its structural analogues.Margarita Kirkova, Rositsa Zamfirova, Monika Leœkiewicz, Marta Kubera, W³adys³aw Lasoñ, Simeon Todorov

    SHORT COMMUNICATIONS1173Potentiation of the antidepressant-like effect of desipramine or reboxetine by metyrapone in the forced swimming test in rats.Zofia Rogó¿

    contentcontcontents_3'2005contentsabstractindex6spis tresciAAdamczyk Agata1223,1230Albrecht Jan1245,1250Aschner Michael1245

    BBa³kowiec Agnieszka1236Ba³kowiec-Iskra Ewa1236Bany-Laszewicz Urszula1243Barcikowska Maria1223 - 1225Barczak Anna1225Berdyñski Mariusz1224 - 1225Berêsewicz Ma³gorzata1237Bernacki Jacek1241Bia³opiotrowicz Emilia1224,1237Bielarczyk Hanna1229,1233Bielecka Anna1241Biernacka-£ukanty Justyna1238Bizon-Zygmañska Dorota1229Brodacki Bogdan1239Bu¿añska Leonora1253

    CC¹ka³a Magdalena1226Chabik Grzegorz1242Chalimoniuk Ma³gorzata1239Chodakowska-¯ebrowska Ma³gorzata1224 - 1225Cieœlik Magdalena1226,1239Colpo Pascal1253Czapski Grzegorz A1240Czapski Grzegorz A.1226,1230,1245Czernicki Zbigniew1231Cz³onkowska Anna1242

    DDezor Mateusz1241Domañska-Janik Krystyna1243 - 1244,1249,1253Domasiewicz Anna1231Domek- £opaciñska Katarzyna1245Dorszewska Jolanta1241Dyœ Aleksandra1233Dziubina Anna1227

    FFlorczak Anna1241Florczak Jolanta1241Florczak Ma³gorzata1241Friedman Andrzej1227Frontczak-Baniewicz Ma³gorzata1231

    GGabryel Bo¿ena1241Gabryelewicz Tomasz1224Gadamski Roman1231Gajkowska Barbara1226,1248 - 1249Gêbarowska Jolanta1247Golan Maciej 1243Go³embiowska Krystyna1227,1251Górecki Dariusz C.1237Grieb Pawe³1228,1247Gromadzka Gra¿yna1242Grygorowicz Tomasz1243Grzywaczewska El¿bieta1247Gul-Hinc Sylwia1233

    HHabich Aleksandra1243,1249

    JJab³oñska Anna1244,1249Jacewicz Maria1226,1239,1245Jankowska-Kulawy Agnieszka1229,1233Janowski Miros³aw1249Jêœko Henryk1226Jiang Haiyan1245Juszczak Ma³gorzata1246

    KKabziñska Dagmara1250Kachamakova-Trojanowska Neli1224,1237Kamiñska Bo¿ena1229Karaszewska Anna1247Katkowska Inna1245Ka�mierczak Anna1223,1230Klimczak-Jajor Edyta1243Kobryœ Ma³gorzata1224Kochañski Andrzej1250Kolasiewicz Wac³aw1251Kowalska Anna1231,1247Koz³owska Hanna1237,1244Kozubski Wojciech1241Ko�niewska Ewa1231Krajewska Dorota1244Kratochvil F. James III1236Kuter Katarzyna1251Ku�nicki Jacek1224,1237Ku�niewska Bo¿ena1224,1237

    LLangfort Józef1239,1241Langner Ewa1246Lorenc-Koci El¿bieta1232

    !£ukomska Barbara1244,1249

    MMa³gorzata Ziemka-Na³êcz1252Matyja Ewa1247Matysiak Joanna1246Mehn Dora1253Michalik Rados³aw1231Micha³owska-Wender Gra¿yna1238Morelli Micaela1227Muller Christa E.1251

    NNagañska Ewa1247

    OObara-Michlewska Marta1245Orzechowski Arkadiusz1249Ossowska Krystyna1232

    PPaj¹k Beata1248 - 1249Pawlak El¿bieta1249Piotrowski Piotr1231

    RRadecka Urszula1240Rafa³owska Janina1231,1247Rajewski Andrzej1247Ronowska Anna1229,1233Rosmanowska K1231Rossi Francois1253Rudnicka Magdalena1242Ruiz Ana1253Rzeski Wojciech1246

    SSienkiewicz B.1224Sikora Ewa1234Sikorska Jolanta1225Sinkiewicz-Darol Elena1250Skowroñska Marta1250S³owik Agnieszka1234Sobów Tomasz1224Soko³owska Anna1251Songin Martyna1248 - 1249Staszewski Jacek1239Steinborn Barbara1247Stolecka Anna1241Strosznajder Joanna B1249Strosznajder Joanna B.1223,1226,1230,1232,1239 - 1240,1245,1248Strosznajder Robert1226,1245Struzynska Lidia1243Sulejczak Dorota1243Sulkowski Grzegorz1243Sypecka Joanna1251Szutowicz Andrzej1229,1233Szymczak Patrycja1251

    TTarsa Leila1236Tokarz-Kupczyk El¿bieta1238

    WWalczak Katarzyna1246Walski Micha³1231Wanacka El¿bieta1244Wardas Jadwiga1251Wender Mieczys³aw1238Weso³owska Jowita1239Wojda Renata1231Wojda Urszula1224,1237Wójcik Luiza1252Wygl¹dalska-Jernas Halina1238

    ZZab³ocka Barbara1237Zab³ocki Krzysztof 1235Zalewska Teresa1251 - 1252Zapa³a Ma³gorzata1251Zieliñska Magdalena1250Zychowicz Marzena1253

    ¯¯ekanowski Cezary1224

    Adamczyk A 1223, 1230Albrecht J 1245, 1250Aschner M 1245Ba³kowiec A 1236Ba³kowiec-Iskra E 1236Bany-Laszewicz U 1243Barcikowska M 1223Œ1225Barczak A 1225Berdyñski M 1224Œ1225Berêsewicz M 1237Bernacki J 1241Bia³opiotrowicz E 1224, 1237Bielarczyk H 1229, 1233Bielecka A 1241Biernacka-£ukanty J 1238Bizon-Zygmañska D 1229Brodacki B 1239Bu¿añska L 1253C¹ka³a M 1226

    Chabik G 1242Chalimoniuk M 1239Chodakowska-¯ebrowska M 1224Œ1225Cieœlik M 1226, 1239Colpo P 1253Czapski GA 1226, 1230, 1240, 1245Czernicki Z 1231Cz³onkowska A 1242Dezor M 1241Domañska-Janik K 1243Œ1244, 1249, 1253Domasiewicz A 1231Domek-£opaciñska K 1245Dorszewska J 1241Dyœ A 1233Dziubina A 1227Florczak A 1241

    Florczak J 1241Florczak M 1241Friedman A 1227Frontczak-Baniewicz M 1231Gabryel B 1241Gabryelewicz T 1224Gadamski R 1231Gajkowska B 1226, 1248Œ1249Gêbarowska J 1247Golan M 1243Go³embiowska K 1227, 1251Górecki DC 1237Grieb P 1228, 1247Gromadzka G 1242Grygorowicz T 1243Grzywaczewska E 1247Gul-Hinc S 1233Habich A 1243, 1249Jab³oñska A 1244, 1249

    Jacewicz M 1226, 1239, 1245Jankowska-Kulawy A 1229, 1233Janowski M 1249Jêœko H 1226Jiang H 1245Juszczak M 1246Kabziñska D 1250Kachamakova-Trojanowska N 1224, 1237Kamiñska B 1229Karaszewska A 1247Katkowska I 1245Ka�mierczak A 1223, 1230Klimczak-Jajor E 1243Kobryœ M 1224Kochañski A 1250Kolasiewicz W 1251Kowalska A 1231, 1247Koz³owska H 1237, 1244Kozubski W 1241Ko�niewska E 1231Krajewska D 1244Kratochvil FJ III 1236Kuter K 1251Ku�nicki J 1224, 1237Ku�niewska B 1224, 1237Langfort J 1239, 1241

    Langner E 1246Lorenc-Koci E 1232£ukomska B 1244, 1249Matyja E 1247Matysiak J 1246Mehn D 1253Michalik R 1231Micha³owska-Wender G 1238Morelli M 1227Müller ChE 1251Nagañska E 1247Obara-Michlewska M 1245Orzechowski A 1249Ossowska K 1232Paj¹k B 1248Œ1249Pawlak E 1249Piotrowski P 1231Radecka U 1240Rafa³owska J 1231, 1247Rajewski A 1247Ronowska A 1229, 1233Rosmanowska K 1231Rossi F 1253Rudnicka M 1242Ruiz A 1253Rzeski W 1246Sienkiewicz B 1224Sikora E 1233Sikorska J 1225Sinkiewicz-Darol E 1250Skowroñska M 1250S³owik A 1234Sobów T 1224Soko³owska A 1251Songin M 1248Œ1249Staszewski J 1239Steinborn B 1247Stolecka A 1241Strosznajder R 1226, 1245Stru¿yñska L 1243Sulejczak D 1243Sulkowski G 1243Sypecka J 1251Szutowicz A 1229, 1233Szymczak P 1251Tarsa L 1236Tokarz-Kupczyk E 1238Walczak K 1246Walski M 1231Wanacka E 1244Wardas J 1251Wender M 1238Weso³owska J 1239Wojda R 1231Wojda U 1224, 1237Wójcik L 1252Wygl¹dalska-Jernas H 1238Zab³ocka B 1237

    Zab³ocki K 1234Zalewska T 1251Œ1252Zapa³a M 1251Zieliñska M 1250Zychowicz M 1253¯ekanowski C 1224ContentsAAdamczyk Agata1225,1232Albrecht Jan1247,1252Aschner Michael1247

    BBa³kowiec Agnieszka1238Ba³kowiec-Iskra Ewa1238Bany-Laszewicz Urszula1245Barcikowska Maria1225 - 1227Barczak Anna1227Berdyñski Mariusz1226 - 1227Berêsewicz Ma³gorzata1239Bernacki Jacek1243Bia³opiotrowicz Emilia1226,1239Bielarczyk Hanna1231,1235Bielecka Anna1243Biernacka-£ukanty Justyna1240Bizon-Zygmañska Dorota1231Brodacki Bogdan1241Bu¿añska Leonora1255

    CC¹ka³a Magdalena1228Chabik Grzegorz1244Chalimoniuk Ma³gorzata1241Chodakowska Ma³gorzata1226Chodakowska-¯ebrowska Ma³gorzata1227Cieœlik Magdalena1228,1241Colpo Pascal1255Czapski Grzegorz A1242Czapski Grzegorz A.1228,1232,1247Czernicki Zbigniew1233Cz³onkowska Anna1244

    DDezor Mateusz1243Domañska-Janik Krystyna1245 - 1246,1251,1255Domasiewicz Anna1233Domek- £opaciñska Katarzyna1247Dorszewska Jolanta1243Dyœ Aleksandra1235Dziubina Anna1229

    FFlorczak Anna1243Florczak Jolanta1243Florczak Ma³gorzata1243Friedman Andrzej1229Frontczak-Baniewicz Ma³gorzata1233

    GGabryel Bo¿ena1243Gabryelewicz Tomasz1226Gadamski Roman1233Gajkowska Barbara1228,1250 - 1251Gêbarowska Jolanta1249Golan Maciej 1245Go³embiowska Krystyna1229,1253Górecki Dariusz C.1239Grieb Pawe³1230,1249Gromadzka Gra¿yna1244Grygorowicz Tomasz1245Grzywaczewska El¿bieta1249Gul-Hinc Sylwia1235

    HHabich Aleksandra1245,1251

    JJab³oñska Anna1246,1251Jacewicz Maria1228,1241,1247Jankowska-Kulawy Agnieszka1231,1235Janowski Miros³aw1251Jêœko Henryk1228Jiang Haiyan1247Juszczak Ma³gorzata1248

    KKabziñska Dagmara1252Kachamakova-Trojanowska Neli1226,1239Kamiñska Bo¿ena1231Karaszewska Anna1249Katkowska Inna1247Ka�mierczak Anna1225,1232Klimczak-Jajor Edyta1245Kobryœ Ma³gorzata1226Kochañski Andrzej1252Kolasiewicz Wac³aw1253Kowalska Anna1233,1249Koz³owska Hanna1239,1246Kozubski Wojciech1243Ko�niewska Ewa1233Krajewska Dorota1246Kratochvil F. James III1238Kuter Katarzyna1253Ku�nicki Jacek1226,1239Ku�niewska Bo¿ena1226,1239

    LLangfort Józef1241,1243Langner Ewa1248Lorenc-Koci El¿bieta1234

    !£ukomska Barbara1246,1251

    MMa³gorzata Ziemka-Na³êcz1254Matyja Ewa1249Matysiak Joanna1248Mehn Dora1255Michalik Rados³aw1233Micha³owska-Wender Gra¿yna1240Morelli Micaela1229Muller Christa E.1253

    NNagañska Ewa1249

    OObara-Michlewska Marta1247Orzechowski Arkadiusz1251Ossowska Krystyna1234

    PPaj¹k Beata1250 - 1251Pawlak El¿bieta1251Piotrowski Piotr1233

    RRadecka Urszula1242Rafa³owska Janina1233,1249Rajewski Andrzej1249Ronowska Anna1231,1235Rosmanowska K1233Rossi Francois1255Rudnicka Magdalena1244Ruiz Ana1255Rzeski Wojciech1248

    SSienkiewicz B.1226Sikora Ewa1236Sikorska Jolanta1227Sinkiewicz-Darol Elena1252Skowroñska Marta1252S³owik Agnieszka1236Sobów Tomasz1226Soko³owska Anna1253Songin Martyna1250 - 1251Staszewski Jacek1241Steinborn Barbara1249Stolecka Anna1243Strosznajder Joanna B1251Strosznajder Joanna B.1225,1228,1232,1234,1241 - 1242,1247,1250Strosznajder Robert1228,1247Struzynska Lidia1245Sulejczak Dorota1245Sulkowski Grzegorz1245Sypecka Joanna1253Szutowicz Andrzej1231,1235Szymczak Patrycja1253

    TTarsa Leila1238Tokarz-Kupczyk El¿bieta1240

    WWalczak Katarzyna1248Walski Micha³1233Wanacka El¿bieta1246Wardas Jadwiga1253Wender Mieczys³aw1240Weso³owska Jowita1241Wojda Renata1233Wojda Urszula1226,1239Wójcik Luiza1254Wygl¹dalska-Jernas Halina1240

    ZZab³ocka Barbara1239Zab³ocki Krzysztof 1237Zalewska Teresa1253 - 1254Zapa³a Ma³gorzata1253Zieliñska Magdalena1252Zychowicz Marzena1255

    ¯¯ekanowski Cezary1226

    spis tresci NAAdamczyk Agata1225,1232Albrecht Jan1247,1252Aschner Michael1247

    BBa³kowiec Agnieszka1238Ba³kowiec-Iskra Ewa1238Bany-Laszewicz Urszula1245Barcikowska Maria1225 - 1227Barczak Anna1227Berdyñski Mariusz1226 - 1227Berêsewicz Ma³gorzata1239Bernacki Jacek1243Bia³opiotrowicz Emilia1226,1239Bielarczyk Hanna1231,1235Bielecka Anna1243Biernacka-£ukanty Justyna1240Bizon-Zygmañska Dorota1231Brodacki Bogdan1241Bu¿añska Leonora1255

    CC¹ka³a Magdalena1228Chabik Grzegorz1244Chalimoniuk Ma³gorzata1241Chodakowska Ma³gorzata1226Chodakowska-¯ebrowska Ma³gorzata1227Cieœlik Magdalena1228,1241Colpo Pascal1255Czapski Grzegorz A1242Czapski Grzegorz A.1228,1232,1247Czernicki Zbigniew1233Cz³onkowska Anna1244

    DDezor Mateusz1243Domañska-Janik Krystyna1245 - 1246,1251,1255Domasiewicz Anna1233Domek- £opaciñska Katarzyna1247Dorszewska Jolanta1243Dyœ Aleksandra1235Dziubina Anna1229

    FFlorczak Anna1243Florczak Jolanta1243Florczak Ma³gorzata1243Friedman Andrzej1229Frontczak-Baniewicz Ma³gorzata1233

    GGabryel Bo¿ena1243Gabryelewicz Tomasz1226Gadamski Roman1233Gajkowska Barbara1228,1250 - 1251Gêbarowska Jolanta1249Golan Maciej 1245Go³embiowska Krystyna1229,1253Górecki Dariusz C.1239Grieb Pawe³1230,1249Gromadzka Gra¿yna1244Grygorowicz Tomasz1245Grzywaczewska El¿bieta1249Gul-Hinc Sylwia1235

    HHabich Aleksandra1245,1251

    JJab³oñska Anna1246,1251Jacewicz Maria1228,1241,1247Jankowska-Kulawy Agnieszka1231,1235Janowski Miros³aw1251Jêœko Henryk1228Jiang Haiyan1247Juszczak Ma³gorzata1248

    KKabziñska Dagmara1252Kachamakova-Trojanowska Neli1226,1239Kamiñska Bo¿ena1231Karaszewska Anna1249Katkowska Inna1247Ka�mierczak Anna1225,1232Klimczak-Jajor Edyta1245Kobryœ Ma³gorzata1226Kochañski Andrzej1252Kolasiewicz Wac³aw1253Kowalska Anna1233,1249Koz³owska Hanna1239,1246Kozubski Wojciech1243Ko�niewska Ewa1233Krajewska Dorota1246Kratochvil F. James III1238Kuter Katarzyna1253Ku�nicki Jacek1226,1239Ku�niewska Bo¿ena1226,1239

    LLangfort Józef1241,1243Langner Ewa1248Lorenc-Koci El¿bieta1234

    !£ukomska Barbara1246,1251

    MMa³gorzata Ziemka-Na³êcz1254Matyja Ewa1249Matysiak Joanna1248Mehn Dora1255Michalik Rados³aw1233Micha³owska-Wender Gra¿yna1240Morelli Micaela1229Muller Christa E.1253

    NNagañska Ewa1249

    OObara-Michlewska Marta1247Orzechowski Arkadiusz1251Ossowska Krystyna1234

    PPaj¹k Beata1250 - 1251Pawlak El¿bieta1251Piotrowski Piotr1233

    RRadecka Urszula1242Rafa³owska Janina1233,1249Rajewski Andrzej1249Ronowska Anna1231,1235Rosmanowska K1233Rossi Francois1255Rudnicka Magdalena1244Ruiz Ana1255Rzeski Wojciech1248

    SSienkiewicz B.1226Sikora Ewa1236Sikorska Jolanta1227Sinkiewicz-Darol Elena1252Skowroñska Marta1252S³owik Agnieszka1236Sobów Tomasz1226Soko³owska Anna1253Songin Martyna1250 - 1251Staszewski Jacek1241Steinborn Barbara1249Stolecka Anna1243Strosznajder Joanna B1251Strosznajder Joanna B.1225,1228,1232,1234,1241 - 1242,1247,1250Strosznajder Robert1228,1247Struzynska Lidia1245Sulejczak Dorota1245Sulkowski Grzegorz1245Sypecka Joanna1253Szutowicz Andrzej1231,1235Szymczak Patrycja1253

    TTarsa Leila1238Tokarz-Kupczyk El¿bieta1240

    WWalczak Katarzyna1248Walski Micha³1233Wanacka El¿bieta1246Wardas Jadwiga1253Wender Mieczys³aw1240Weso³owska Jowita1241Wojda Renata1233Wojda Urszula1226,1239Wójcik Luiza1254Wygl¹dalska-Jernas Halina1240

    ZZab³ocka Barbara1239Zab³ocki Krzysztof 1237Zalewska Teresa1253 - 1254Zapa³a Ma³gorzata1253Zieliñska Magdalena1252Zychowicz Marzena1255

    ¯¯ekanowski Cezary1226