17
PROGRAMME DE COOPÉRATION TRANSFRONTALIÈRE GRENSOVERSCHRIJDEND SAMENWERKINGSPROGRAMMA Cofinancie ring AVEC LE SOUTIEN DU FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL MET STEUN VAN HET EUROPEES FONDS VOOR REGIONALE ONTWIKKELING AVEC LE SOUTIEN DU FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL MET STEUN VAN HET EUROPEES FONDS VOOR REGIONALE ONTWIKKELING 1 New biobased TPEs developped during the ELASTOPLAST project Adrian Gainar, Wim Thielemans (KULAK) Stijn Corneillie (Centexbel) Julien Cayuela (Materia Nova) Robert Mundil, Franck Kayser, Julie Meimoun, Audrey Favrelle, Grégory Stoclet, Philippe Zinck (ULille)

New biobased TPEs developped during the ELASTOPLAST project

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

PROGRAMME DE COOPÉRATION TRANSFRONTALIÈRE

GRENSOVERSCHRIJDEND

SAMENWERKINGSPROGRAMMA

Cofinancie

ring

AVEC LE SOUTIEN DU FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL

MET STEUN VAN HET EUROPEES FONDS VOOR REGIONALE ONTWIKKELING

AVEC LE SOUTIEN DU FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL

MET STEUN VAN HET EUROPEES FONDS VOOR REGIONALE ONTWIKKELING 1

New biobased TPEs developped

during the ELASTOPLAST project

Adrian Gainar, Wim Thielemans (KULAK)

Stijn Corneillie (Centexbel)

Julien Cayuela (Materia Nova)

Robert Mundil, Franck Kayser, Julie Meimoun, Audrey Favrelle, Grégory Stoclet,

Philippe Zinck (ULille)

2

Why biobased TPE ?

• Use of renewable feedstock - Depletion of fossil resources

• Consumers pressure

• New / alternative building blocks provide new structures

Oilseed biomass based monomers

Cyclic ester

Building Blocks for BiobasedSynthetic Elastomers

-decalactone Laurylmethacrylate

Long chain (meth)acrylate

Castor oil

Lauryl alcohol fromPalm kernel oil

Coconut oil

4

New biobased TPE’s :

Background and strategy

• Implementation

• Using commercial biobased monomers

• PMMA as the hard block

• Reasonnably high Tg around 110°C

• Immiscible with PDL and PLMA (checked)

• Feasibility in terms of chemistry

• One pot approach : block copolymerization

-decalactone

Tg PDL -60°C

Lauryl methacrylate

Tg PLMA -55°C

Higher temperature of use than

e.g SBS (partial miscibility)

5

New decalactone based TPE

• Organocatalysis : an old tool brought up to date

• Phosphazene bases as catalyst for PMMA synthesis

• Recent progress : also for lactones

• Our idea : Use this chemistry with the biobased decalactone to make

block copolymer with PMMA

Seebach et al.

Angew. Chem. 1993 32 716

Hadjichristidis et al.Polym. Chem. 2014 5 5471

6

• First step : can phospazenes polymerize DL ?

• Yes they can !

New decalactone based TPE

DL ROH P=N

Catalyst

Conversion

(%)

Mn SEC

g/mol

D Mn calc.

g/mol

100 1 0.2 2 nd nd -

100 1 0.4 35 8 300 1.26 6 000

100 1 0.6 65 11 300 1.31 11 100

100 1 0.8 100 14 400 1.39 17 000

100 1 1 100 12 200 1.54 17 000

1h reaction

THF

25°C

7

• Optimization

• Kinetic study

• Very fast reaction : less than 5 min at room temperature

New decalactone based TPE

0 1 2 3 4 5 6 7 80

20

40

60

80

100

co

nve

rsio

n [

mo

l %

]

t [min]

1.0 eq. t-BuP4

0.8 eq. t-BuP4

8

New decalactone based TPE

• Second step : can we block copolymerize DL with MMA ?

• Yes we can !

• Full conversion for both steps

ε-DL

homopol.

100 eq.

ε-DL

MMA

homopol.

100 eq.

MMA

16 18 20 22 24 26 28

RI dete

cto

r

t [min]

PDL

PDL-b-PMMA

Mn = 24k

Ð = 1.58

Mn = 38k

Ð = 1.94

ε-decalactone content : 66 wt%

5 min

RT !

35 min

RT

9

SAXS analysis

(Small Angle X-Ray)

Nanostructuration is clearly confirmed

0.01 0.10.1

1

10

100

Inte

nsit

y [

a.u

.]

q [Å-1]

New decalactone based TPE

10

AFM analysis

(Atomic Force Microscopy)

Separation of 2 phases

New decalactone based TPE

Mechanical tests

0 50 100 150 200

0.2

0.4

0.6

0.8

1.0

1.2

1.4

no

rma

l s

tre

ss [

MP

a]

strain [%]

a)

0 25 50 75

0.1

0.2

0.3

0.4

0.5

no

rma

l s

tre

ss [

MP

a]

strain [%]

b)

tensile testing

tensile modulus 8.5 MPastrain at break 200%

recovery experiment

recovery ratio of 50%

New decalactone based TPE

• Work published in Chem. Com. 2020, 56, 8067

Manuscript available online :

https://interreg-elastoplast.eu/sites/default/files/2021-01/Publicatie_ULille_2020_3.pdf

12

• PMMA – PLMA – PMMA TPEs shows a very low elongation at break, range 10-100%

Attributed to strain-induced crystallization (Mandal et al., Macromolecules, 2006, 39, 91920)

• Our idea to improve :

to insert a low fraction of MMA in the soft PLMA block to hamper cristallisation

New lauryl methacrylate based TPE

Background and strategy

PLMA – Poly(lauryl methacrylate)

Tg -55°C

-0,01

0,04

0,09

0,14

0,19

0,24

0,29

0,34

0,39

0,44

17 18 19 20 21 22 23 24

RI d

etec

tor

time [min]MMA pol.

Lauryl methacrylate content : 75 wt%

P(LMA/MMA)-b-

PMMA

RM041_2

Mn = 34.5 k

Ð = 1.18

100% conversion

RT; 15 min

P(LMA/MMA)

RM041_1

Mn = 27.8 k

Ð = 1.20

100% conversion

RT; 120 min

LMA/MMA

pol.

70 eq. MMA

Catalyst

LMA

80 eq.

Catalyst

MMA

30 eq.+

New lauryl methacrylate

based TPE

14

AFM analysis

New lauryl methacrylate

based TPE

15

• Klik om de stijl van de tekst te wijzigen

– Tweede niveau

• Derde niveau

– Vierde niveau

» Vijfde niveau

New lauryl methacrylate

based TPE

Tensile tests

• Elongation at break > TPE with pure PLMA as the soft block (literature)

• Concept of hampering the cristallisation validated ?

• WAXS Analyses to be done

16

DMA

Dynamical mechanical analyses

• Good damping properties

• High tackiness : Potential applications for patch, PMMA adhesion

New lauryl methacrylate

based TPE

Projectl

eider

Chef de

file

Partners

Partenaires

Geassocieerde

partners

Partenaires

associés

17

Thank you for your attention !