66
New Advances in CT Dosimetry John M. Boone, Ph.D., FAAPM, FSBI, FACR Professor and Vice Chairman of Radiology Professor of Biomedical Engineering University of California, Davis Chairman, AAPM Science Council Chairman, ICRU committee on CT Image Quality and Patient Dosimetry

New Advances in CT Dosimetry - Human Health Campus

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: New Advances in CT Dosimetry - Human Health Campus

New Advances in CT Dosimetry

John M. Boone, Ph.D., FAAPM, FSBI, FACR

Professor and Vice Chairman of RadiologyProfessor of Biomedical EngineeringUniversity of California, Davis

Chairman, AAPM Science Council

Chairman, ICRU committee on CT Image Quality and Patient Dosimetry

Page 2: New Advances in CT Dosimetry - Human Health Campus

New Advances in CT Dosimetry

IntroductionCTDI100

-based metricsImage Quality and CT Dosimetry PhantomCT Dose versus Scan LengthCorrection for Patient SizeCT Scanner OutputSummary

ICRU  perspectives

Page 3: New Advances in CT Dosimetry - Human Health Campus

ICRU Committee on Image Quality and Patient Dose in CT

Jacob Geleijns(Netherlands) Mike McNitt‐Gray (US) John Boone (US)

Walter Huda (US)Cynthia McCollough (US) Sue Edyvean

(UK) Wolfram Leitz

(Sweden)

Jim Brink (US)

Page 4: New Advances in CT Dosimetry - Human Health Campus

Use of CT: USA & UC Davis Trends

Boone, J M et al J Am Col Radiology, 2008;5(2): 132–138Brenner, D J et New Eng J Med, 2007;357: 2277-2284

1990: Helical CT

1998: Multi-Slice CT

Page 5: New Advances in CT Dosimetry - Human Health Campus
Page 6: New Advances in CT Dosimetry - Human Health Campus

Evolution of CT Scanners and Dosimetry

19901970 1980 2000 2010

1994: mA

modulation1994: mA

modulation

2006: Dual Source CT

2006: Dual Source CT

1989: Helical/Spiral CT1989: Helical/Spiral CT

1972: First clinical CT brain scan 1972: First clinical

CT brain scan

1974: 4th

generation CT

1974: 4th

generation CT

1974: First whole-

body CT scanner 1974: First whole-

body CT scanner

1992: Dual Slice CT1992: Dual Slice CT

1997: 4 Slice CT1997: 4 Slice CT

2000: 8-40 Slice CT2000: 8-40 Slice CT

2000: 64 Slice CT2000: 64 Slice CT

2007: Adaptive Dose Shield

2007: Adaptive Dose Shield

2004: Flying Focal Spot

2004: Flying Focal Spot

1981: CTDI1981: CTDI

1984: CTDIFDA

1984: CTDIFDA

1995: CTDI100

1995: CTDI100

1995: CTDIw

1995: CTDIw

1999: CTDIvol

1999: CTDIvol 2010: TG1112010: TG111

Page 7: New Advances in CT Dosimetry - Human Health Campus

New Advances in CT Dosimetry

IntroductionCTDI100

-based metricsImage Quality and CT Dosimetry PhantomCT Dose versus Scan LengthCorrection for Patient SizeCT Scanner OutputSummary

Page 8: New Advances in CT Dosimetry - Human Health Campus

CTDI100

(peripheral)

CTDI100

Dose Metrics and Its Derivatives 

CTDI100

(center)

16 and 32 cm  diameter PMMA

Page 9: New Advances in CT Dosimetry - Human Health Campus

CTDIw

= 1/3 CTDI100,center

+ 2/3 CTDI100,periphery

CTDIvol

= CTDIw

/ pitch

Dose Length Product (DLP) = L × CTDIvol

Effective Dose ≈

DLP ×

k

scan location k

Head

Chest

Body

Abd-Pelvis

Pelvis

0.0023

0.017

0.015

0.017

0.019

Page 10: New Advances in CT Dosimetry - Human Health Campus

32 cm

ρ

= 1.19

47”

119 cmwaistline

28 cm≈

CTDIvol

Page 11: New Advances in CT Dosimetry - Human Health Campus

New Advances in CT Dosimetry

IntroductionCTDI100

-based metricsImage Quality and CT Dosimetry PhantomCT Dose versus Scan LengthCorrection for Patient SizeCT Scanner OutputSummary

Page 12: New Advances in CT Dosimetry - Human Health Campus

Monte Carlo modeling is the most accurate

method for determining organ doses in CT IntroductionCTDI100

-based metricsImage Quality and CT Dosimetry PhantomCT Dose versus Scan LengthCorrection for Patient SizeCT Scanner OutputSummary

Proposed methods are designed to support and promote MC  methods, and to facilitate the integration of MC‐based dosimetry 

into clinical patient CT dosimetry

Page 13: New Advances in CT Dosimetry - Human Health Campus

ICRU CT phantom

spatialresolution

dosimetry

contrast resolution

contrast

Page 14: New Advances in CT Dosimetry - Human Health Campus

polyethylene phantom30 cm diameter30 cm length~14 kg

Page 15: New Advances in CT Dosimetry - Human Health Campus
Page 16: New Advances in CT Dosimetry - Human Health Campus

Modulation Transfer Function Assessment in CT

effect of kernel

effect of slice thickness

LSF(x)

Position (mm)

Page 17: New Advances in CT Dosimetry - Human Health Campus

Noise Assessment

noise power spectrum (NPS)

120 kVp200 mA, 0.5 s, 100 mAsPitch = 1.0

13.33 mGy

120 kVp200 mA, 0.5 s, 150 mAsPitch = 1.0

20.0 mGy

Page 18: New Advances in CT Dosimetry - Human Health Campus

Noise Power Spectra Assessment of Noise in CT

effect of technique

effect of kerneleffect of slice thickness

2

22

1

[ ( , )1( , )2

N i iDD

i x y

DFT DI x y DI x yNNPS u vN N N=

− Δ Δ= ∑

Page 19: New Advances in CT Dosimetry - Human Health Campus

spatial frequency (1/mm)

NPS(f) [HU2mm

2 ]

@ 20 mGy to phantom

Scanner 1

Scanner 2

low contrast test objects

$15,000 USD

$1,500 USD

Noise Power Spectra Assessment of Noise in CT

Page 20: New Advances in CT Dosimetry - Human Health Campus

CT image quality evaluationOld Era New Era

phantom

analysis

results

simple more sophisticated

2( )( )

( )

ifxLSF x e dxMTF f

LSF x dx

π∞

−∞∞

−∞

=∫

complicated basic

useful & quantitativeperfunctory

Page 21: New Advances in CT Dosimetry - Human Health Campus

New Advances in CT Dosimetry

IntroductionCTDI100

-based metricsImage Quality and CT Dosimetry PhantomCT Dose versus Scan LengthCorrection for Patient SizeCT Scanner OutputSummary

Page 22: New Advances in CT Dosimetry - Human Health Campus

dose

z-axis position

primary beam

total dose

Page 23: New Advances in CT Dosimetry - Human Health Campus

total dose

dose

z-axis position

Page 24: New Advances in CT Dosimetry - Human Health Campus

Dose profiles as a function of Scan Length

scan length

Page 25: New Advances in CT Dosimetry - Human Health Campus

Equilibrium Dose as a function of Scan Length

Page 26: New Advances in CT Dosimetry - Human Health Campus
Page 27: New Advances in CT Dosimetry - Human Health Campus

weighted bi‐exponential

dose spread functions:

Page 28: New Advances in CT Dosimetry - Human Health Campus

η =  scatter / primary

Page 29: New Advances in CT Dosimetry - Human Health Campus

Gd2

O2

S scintillator

fiber optic bundle

photodiode

electronics

Real Time X‐ray Probe

time

volta

ge

Page 30: New Advances in CT Dosimetry - Human Health Campus

ICRU Method

Page 31: New Advances in CT Dosimetry - Human Health Campus

beam profile

Page 32: New Advances in CT Dosimetry - Human Health Campus

Correction

 Factor 

Page 33: New Advances in CT Dosimetry - Human Health Campus

New Advances in CT Dosimetry

IntroductionCTDI100

-based metricsImage Quality and CT Dosimetry PhantomCT Dose versus Scan LengthCorrection for Patient SizeCT Scanner OutputSummary

Page 34: New Advances in CT Dosimetry - Human Health Campus

effective diameter

Relativ

e do

se

Page 35: New Advances in CT Dosimetry - Human Health Campus

patient size

dose

CTDIvol

32 cm PMMA

normalization point

Page 36: New Advances in CT Dosimetry - Human Health Campus

correctio

n factor

CTDIvol

32 cm

after normalization

1.0

patient size

Page 37: New Advances in CT Dosimetry - Human Health Campus

Family of physical phantomsCynthia McCollough, Mayo Clinic

standard phantomsTom Toth & Keith Strauss

Monte Carlo phantoms (1 – 50 cm)John M. Boone, UC Davis

Anthropomorphic Monte Carlo phantomsMike McNitt‐Gray, UCLA

AAPM Task Group 204 –

Pediatric CT Dose

Page 38: New Advances in CT Dosimetry - Human Health Campus

120 kVp

Page 39: New Advances in CT Dosimetry - Human Health Campus

lateral dimension

AP dimension

equivalentdiameter

same area

Page 40: New Advances in CT Dosimetry - Human Health Campus

Scout

Practical Implementation during Patient Scanning

Relationship between effective diameter & lateral width

Lateral Dimension

PA Dimension

Page 41: New Advances in CT Dosimetry - Human Health Campus

Dose Index value (CTDIvol

) is on most scanners…..

Page 42: New Advances in CT Dosimetry - Human Health Campus

Correctio

n Factor

Patient’s Lateral Width (cm)0       10      20       30       40      50       60       70  

80      90     100

Dose  ≈

Cf

×

CTDIvol

Cf

= 2.25

Page 43: New Advances in CT Dosimetry - Human Health Campus

New Advances in CT Dosimetry

IntroductionCTDI100

-based metricsImage Quality and CT Dosimetry PhantomCT Dose versus Scan LengthCorrection for Patient SizeCT Scanner OutputSummary

Page 44: New Advances in CT Dosimetry - Human Health Campus

F(θ)

F(z)

CT Scanner Output Measures along z‐axis

Influence of beam width / collimation / penumbra 

Page 45: New Advances in CT Dosimetry - Human Health Campus

dose

z-axis position

CT Scanner Output Measures

(in phantom with scatter tails)

Page 46: New Advances in CT Dosimetry - Human Health Campus

32 cm diameter • 15 cm long14.3 kg  •

31.6 pounds

16 cm diameter • 15 cm long3.6 kg  • 7.8 pounds

proposed ICRU phantoms30 cm long

25 cm dia14.0 kg 

30.8 pounds

30 cm dia20.1 kg 

44.3 pounds

30 cm dia10 kg 

22.2 pounds

Page 47: New Advances in CT Dosimetry - Human Health Campus

D(z)

z

CT Scanner Output Measures along z‐axis

Influence of beam width / collimation / penumbra 

Page 48: New Advances in CT Dosimetry - Human Health Campus

dose

(z)

CT Scanner Output Measures

z

with phantom

in air

QC / QA recommendations acceptance testing

acceptance testing& periodically

z

Page 49: New Advances in CT Dosimetry - Human Health Campus

F(θ)

F(z)

CT Scanner Output Measures versus Fan Angle

Influence of Bow Tie Filter

Page 50: New Advances in CT Dosimetry - Human Health Campus

time

signal

CT Scanner Output Measures versus Fan Angle

Influence of Bow Tie Filter

Page 51: New Advances in CT Dosimetry - Human Health Campus

time

signal

CT Scanner Output Measures versus Fan Angle

Influence of Bow Tie Filter

Page 52: New Advances in CT Dosimetry - Human Health Campus

F(θ)

F(z)

F(θ)

F(z)

CT Scanner Output Measure

Page 53: New Advances in CT Dosimetry - Human Health Campus

New Advances in CT Dosimetry

IntroductionCTDI100

-based metricsImage Quality and CT Dosimetry PhantomCT Dose versus Scan LengthCorrection for Patient SizeCT Scanner OutputSummary

Page 54: New Advances in CT Dosimetry - Human Health Campus

organ dosesCT scan & patient  parameters

Monte Carlo modeling should be

the basis for patient CT dosimetry

Monte Carlo

Page 55: New Advances in CT Dosimetry - Human Health Campus

Real time air kerma probe

CT beam profile

f(z) f(θ)

useful beam characterization

data needed for MC simulation

Page 56: New Advances in CT Dosimetry - Human Health Campus

practical methods to correct dosimetry estimates for CT scan length

Page 57: New Advances in CT Dosimetry - Human Health Campus

practical methods to correct dosimetry estimates for patient size

Page 58: New Advances in CT Dosimetry - Human Health Campus

ICRU phantom Real time air kerma probe

Page 59: New Advances in CT Dosimetry - Human Health Campus

spatial frequency (1/mm)

NPS(f) [HU2mm

2 ]

@ 20 mGy to phantom

Scanner 1

Scanner 2

Phantom combining IQ and dosimetry allows better comparisons

Page 60: New Advances in CT Dosimetry - Human Health Campus

New Advances in CT Dosimetry

IntroductionCTDI100

-based metricsImage Quality and CT Dosimetry PhantomCT Dose versus Scan LengthCorrection for Patient SizeCT Scanner OutputSummary

Page 61: New Advances in CT Dosimetry - Human Health Campus
Page 62: New Advances in CT Dosimetry - Human Health Campus
Page 63: New Advances in CT Dosimetry - Human Health Campus
Page 64: New Advances in CT Dosimetry - Human Health Campus
Page 65: New Advances in CT Dosimetry - Human Health Campus
Page 66: New Advances in CT Dosimetry - Human Health Campus