23
Page 1 Joy Hirsch, Ph.D., Professor Director, fMRI Research Center Columbia University Health Sciences NI Basement www.fmri.org Neuroscience 2003 Functional Brain Imaging Hirsch, J., et al Columbia fMRI A. Hypothesis of functional specificity Hirsch, J., et al Columbia fMRI B. Brain Mapping Techniques 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission Tomography, PET 5. Magnetoencephalography, MEG 6. Electroencephalography, EEG C. Integration of Brain Mapping Techniques A Brief Outline A. Hypothesis of functional specificity Hirsch, J., et al Columbia fMRI 1. Specializations of single brain areas

Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 1

Joy Hirsch, Ph.D., ProfessorDirector, fMRI Research Center

Columbia University Health Sciences NI Basement

www.fmri.org

Neuroscience 2003Functional Brain Imaging

Hirsch, J., et alColumbia fMRI

A. Hypothesis of functional specificity

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques1. Functional Magnetic Resonance Imaging, fMRI2. Somatasensory Evoked Potential, SSEP3. Direct Cortical Stimulation4. Positron Emission Tomography, PET5. Magnetoencephalography, MEG6. Electroencephalography, EEG

C. Integration of Brain Mapping Techniques

A Brief Outline

A. Hypothesis of functional specificity

Hirsch, J., et alColumbia fMRI

1. Specializations of single brain areas

Page 2: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 2

Hirsch, J., et alColumbia fMRI

PrimaryVisual Cortex

FlashingLED Display

7 7

66

5

4 4

5

Calcarine Sulcus

PreviousSurgicallesion

BINOCULARFLASHING

LIGHTS

Left Eye Right Eye

Visual Field

Harrington, 1964

lesion

R

Hirsch, J., et alColumbia fMRI

HISTORICAL MILESTONES

1841

Aphasia and lesions in GFi

BROCA

1874

WERNICKE

Aphasia and lesions in GTs

1890

ROY & SHERRINGTONRelationship between neural activity and vascular changes

1909

BRODMANN

Cytoarchitectonic regions of cortex

1950

PENFIELDIntraoperative cortical maps

1845

FARADAYMagnetic properties of blood

1936

PAULINGMagnetic state of hemoglobin changes with oxygenationRABIDiscovery of Magnetic Resonance

1945

PURCELL BLOCK

Demonstrated NMR in condensed

matter

1971

HOUNSFIELD CORMACKInvention of Computed Tomography

Hirsch, J., et alColumbia fMRI

Page 3: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 3

Damasio, H., et al; Science 264: 1102-1105, 20 May 1994

Hirsch, J., et alColumbia fMRI

HISTORICAL MILESTONES

1977

TER-POGOSSIAN SOKOLOFF

First PET studies of brain metabolism, blood flow, and correlates of human behavior

MANSFIELD

1976

First MRI of a body part

Invented EPI (scans whole brain in secs.)

1972

LAUTERBUR

First MR image

OGAWA

Blood Oxygen dependent signal

EPI / MRI Behavior

BELLIVEAUCortical Map:human visual

system

1990

1992

fMRI1971

DAMADIAN

Discovered that biological tissues have different relaxation rates

Hirsch, J., et alColumbia fMRI

A. Hypothesis of functional specificity

Hirsch, J., et alColumbia fMRI

1. Specializations of single brain areas2. Specializations of multiple brain areas

Page 4: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 4

Functional Organization of Visual Cortex

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI

Sadek K. Hilal, M.D., Ph.D.Department of RadiologyColumbia University

Early Developments in MR Solved the Occluded-Structure Problem

Hirsch, J., et alColumbia fMRI

Page 5: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 5

R L

Hirsch, J., et alColumbia fMRI

2 minutes 24 seconds 2 minutes 24 seconds

- 40 s - - 40 s - - 40 s - - 40 s - - 40 s - - 40 s -

TIME

MR

I Sig

nal I

nten

sity

REST REST REST RESTTASK TASK

R L

From Hirsch, J., et al; An Integrated Functional Magnetic Resonance Imaging Procedure for Preoperative Mapping of Cortical Areas Associated with Tactile, Motor, Language, and Visual Functions, Neurosurgery 47: 711-722, 2000.

Current Developments in MR are focused on the structure/function problem

Left Hand - Touch

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI

a. Source of signal

Page 6: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 6

PHYSIOLOGY PHYSICSNEURAL ACTIVATIONIS ASSOCIATED WITH ANINCREASE IN BLOOD FLOW

O2 EXTRACTION ISRELATIVELY UNCHANGED

RESULT:REDUCTION IN THEPROPORTION OF DEOXY HGBIN THE LOCAL VASCULATURE

DEOXY HGBIS PARAMAGNETIC

AND DISTORTS THE LOCALMAGNETIC FIELD CAUSINGSIGNAL LOSS

RESULT:LESS DISTORTION OF THEMAGNETIC FIELD RESULTS IN LOCAL SIGNAL INCREASE

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRIa. Source of signalb. Measuremnet techniques

Imaging While Naming Objects

Hirsch, J., et alColumbia fMRI

Page 7: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 7

Block Design

Hirsch, J., et alColumbia fMRI

Event-Related Design

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRIa. Source of signalb. Measuremnet techniquesc. Computation for analysis

COMPUTATIONS FOR fUNCTIONAL IMAGE PROCESSING

RECONSTRUCTIONALIGNMENT

VOXEL BY VOXEL ANALYSIS

GRAPHICALREPRESENTATION

ScannerFunctionalBrain Map

PrimaryAuditory Cortex

Language

Hirsch, J., et alColumbia fMRI

Page 8: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 8

Penfield’sMotor

Homonculus

Left Hand: Finger Thumb Tapping

MULTI-STAGE ANALYSISWITH COINCIDENCE

Run 1(90 secs)

Run 2(90 secs)

Stage 1

Stage 2

1 and 2

COINCIDENCERun 1 AND Run 2

Hirsch, J., et alColumbia fMRI

R

Kim, Relkin, Lee, & Hirsch

+ +

+ +

0

“LATE” BILINGUAL(Separate Language Areas)

Native (English)Second (French)

+ Center-of-Mass

from Nature 388, 171-174 (1997)

Broca’s Area

R

++

++

0

Native 1 (Turkish)Native 2 (English)

Common Region+ Center-of-Mass

“EARLY” BILINGUAL(Overlapping Language Areas)

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRIa. Source of signalb. Measuremnet techniquesc. Computation for analysisd. Individual brain maps

Page 9: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 9

Before Surgery

R

Tumor

ConventionalImaging

Functional Imaging

CC 23 (AB)

Left Hand: Sensory/Motor

Tumor

Hirsch, J., et alColumbia fMRI

R

Tumor

ConventionalImaging

CC 23 (AB)

Hirsch, J., et alColumbia fMRI

Left HandMovement

Before Surgery After Surgery

R

Tumor

ConventionalImaging

Functional Imaging

CC 23 (AB)

Left Hand: Sensory/Motor

Tumor

Hirsch, J., et alColumbia fMRI

Page 10: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 10

SENSORYTouch

MOTORFinger Thumb

Tapping(active)

Standard Brain Mapping Tasks

PictureNaming

Listeningto Words

(passive)

GPoC GPrC GOi GTs

LANGUAGE

GFiGTT

(active)(passive)

From Hirsch, J., et al; Neurosurgery 47: 711-722, 2000

Hirsch, J., et alColumbia fMRI

Functional Organization of Visual Cortex

Hirsch, J., et alColumbia fMRI

QuickTime™ and a Video decompressor are needed to see this picture.

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI2. Somatasensory Evoked Potential, SSEP3. Direct Cortical Stimulation

Page 11: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 11

SSEP - SomatoSensory Evoked PotentialsCortical Stimulation

Conventional functional mapping in the OR

Based on Electrical Activity of Neurons Induced by External Stimulation

Hirsch, J., et alColumbia fMRI

Tag 3

Tag 5

Localization fMRISSEP

“Twitching in 1st three digits”

“Twitching of hand,

focal seizure involving arm ”

Direct Cortical StimulationCraniotomy

Sensory Motor Mapping

From Hirsch, J., et al; An Integrated Functional Magnetic Resonance Imaging Procedure for Preoperative Mapping of Cortical Areas Associated with Tactile, Motor, Language, and Visual Functions, Neurosurgery 47: 711-722, 2000.

Tag 3

Tag 5

Hirsch, J., et alColumbia fMRI

Hirsch, J., et alColumbia fMRI

Homonculus

Page 12: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 12

Language Mapping

From Hirsch, J., et al; An Integrated Functional Magnetic Resonance Imaging Procedure for Preoperative Mapping of Cortical Areas Associated with Tactile, Motor, Language, and Visual Functions, Neurosurgery 47: 711-722, 2000.

fMRIIntraoperative

Stimulation Response

Speech ArrestDuring Counting

Broca’s Area

Literal paraphasic

speech error during picture

naming

Wernicke’s Area

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI2. Somatasensory Evoked Potential, SSEP3. Direct Cortical Stimulation4. Positron Emission Tomography, PET

a. Source of signal

Positron Emission TomographyRadionuclides that emit positrons such as 15O and 18F are introduced into the brain.

H215O behaves like H2

16O and indicates blood flow (rCBF) (half life = 123 seconds) integration time ≈ 60 seconds.

18F – deoxyglucose behaves like deoxyglucose and indicates metabolic activity (half-life = 110 minutes) integration time ≈ 20 minutes

From: www.epub.org.br/cm/n011pet/pet.htm

PET SCANNER

Hirsch, J., et alColumbia fMRI

Page 13: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 13

Principle of PET

From: Principles of Neural Science (4th. Ed.) Kandel, Schwartz, & Jessell, p. 377.

A2 Positron and electron annihilationand emission of gamma raysPET is based on the radioactive

decay of positrons from the nucleus of the unstable atoms (15O has 8 protons and 7 neutrons)

resolutionlimit

Electron

PositronUnstableradionuclide

0-9mm

Gamma ray

Site of positron annihilation (imaged point)

Gamma rayphoton

A1 Positron emissionin the brain

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI2. Somatasensory Evoked Potential, SSEP3. Direct Cortical Stimulation4. Positron Emission Tomography, PET

a. Source of signalb. Measurement techniques

Gamma Ray Detections to Location of Function

From: Principles of Neural Science (4th. Ed.) Kandel,Schwartz, & Jessell, p. 377.

Hirsch, J., et alColumbia fMRI

Page 14: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 14

Injection of radioactive-labeled water for PET scanning

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI2. Somatasensory Evoked Potential, SSEP3. Direct Cortical Stimulation4. Positron Emission Tomography, PET

a. Source of signalb. Measurement techniquesc. Computation for analysis

From: Images of Mind by Posner, M. and Raichle, M. Scientific American Library, 1994, p. 24

Fixation

Flashing Checkerboard

Stimulation Fixation Difference

Individual difference images

Mean difference image

Analysis of PET Results

Hirsch, J., et alColumbia fMRI

Page 15: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 15

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI2. Somatasensory Evoked Potential, SSEP3. Direct Cortical Stimulation4. Positron Emission Tomography, PET5. Magnetoencephalography, MEG6. Electroencephalography, EEG

MEG: MagnetoEncephaloGraphyEEG: ElectroEncephaloGraphy

Measurement of Electromagnetic Activity

Provides Information of temporal interactions

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI2. Somatasensory Evoked Potential, SSEP3. Direct Cortical Stimulation4. Positron Emission Tomography, PET5. Magnetoencephalography, MEG

a. Source of signal

Page 16: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 16

Relationship between currents in the brain and the magnetic field outside the head.

Based on the discoverythat electrical currents generate magnetic fields: Hans Christian Oersted, a Danish physicist (early 19th. century)

A current source with strength Q causes a current flow Jv within the brain.

The current flow produces a potential difference V on the scalp: (measured by EEG)

And a magnetic field B outside of the head: (measured by MEG)

from: www.Aston.ac.uk/psychology/meg/meg/intro/magfield.htm

B

JvQ

V

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI2. Somatasensory Evoked Potential, SSEP3. Direct Cortical Stimulation4. Positron Emission Tomography, PET5. Magnetoencephalography, MEG

a. Source of signalb. Measurement techniques

Magnetoencephalography, MEG

Tiny magnetic fields produced by brain activity (10-13 Teslas) can be measured using Superconducting Quantum Interference Devices (SQUIDs).

SQUIDS operate at superconducting temperatures (-269oC). Sensors are placed in a dewar containing liquid helium.

Stimulus – evoked neuromagnetic signals

are recorded by an array of detectors.

The spatial location of the source is inferred by mathematical modeling of the magnetic field pattern.

Hirsch, J., et alColumbia fMRI

Page 17: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 17

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI2. Somatasensory Evoked Potential, SSEP3. Direct Cortical Stimulation4. Positron Emission Tomography, PET5. Magnetoencephalography, MEG

a. Source of signalb. Measurement techniquesc. Computation for analysis

Somatosensory evoked magnetic signals in response to tactile stimulation of the

contralateral index finger

Isofield contour maps at the time of maximal

response (50 msec) to the tactile stimulation

Neuro magnetic response occurs about 50 msec after

the stimulation.

The field pattern is dipolar with clearly defined regions of entering (solid lines) and

emerging (dashed lines) magnetic flux.

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI2. Somatasensory Evoked Potential, SSEP3. Direct Cortical Stimulation4. Positron Emission Tomography, PET5. Magnetoencephalography, MEG6. Electroencephalography, EEG

a. Source of signalb. Measurement techniques

Page 18: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 18

Electroencephalography

Hirsch, J., et alColumbia fMRI

B. Brain Mapping Techniques

Hirsch, J., et alColumbia fMRI

1. Functional Magnetic Resonance Imaging, fMRI2. Somatasensory Evoked Potential, SSEP3. Direct Cortical Stimulation4. Positron Emission Tomography, PET5. Magnetoencephalography, MEG6. Electroencephalography, EEG

a. Source of signalb. Measurement techniquesc. Computation for analysis

Averaged Activity profiles during bilateral finger movement

Electrode Array for EEG

Electroencephalography

Hirsch, J., et alColumbia fMRI

Page 19: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 19

Hirsch, J., et alColumbia fMRI

1. Task of specificity and conjunctions

C. Integration of Brain Mapping Techniques

CONJUNCTION OF BOLD RESPONSES DURING OBJECT NAMING TASKS

VISUAL AUDITORY TACTILE

COMMONAREAS

R. Inferior Frontal GBA (45)

L. Cingulate GBA (24)

L. Inferior Frontal GBA (44)

L. Medial Frontal GBA (6)

L. Middle Frontal G BA (6)

L. Inferior Frontal GBA (45)

R

Hirsch, R-Moreno, Kim, Interconnected large-scale systems for three fundamental cognitive tasks revealed by functional MRI. Journal of Cognitive Neuroscience, 13(3), 389-405, 2001.

Hirsch, J., et alColumbia fMRI

Hirsch, J., et alColumbia fMRI

1. Task of specificity and conjunctions2. Labels of functional areas

C. Integration of Brain Mapping Techniques

a. Atlas-Based

Page 20: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 20

Hirsch, J., et alColumbia fMRI

Hirsch, J., et alColumbia fMRI

1. Task of specificity and conjunctions2. Labels of functional areas

C. Integration of Brain Mapping Techniques

a. Atlas-Basedb. Registration methods

Labeling of Active Brain AreasFunctional Brain Atlas Brain

transferactivity labels

GPrC 4GFs 6GFd 6GFs 6GRC 4LPs 7

c,Eb,Ea,E,60,-ab,E,60c,E,60b,G,60

Name BA Sector

Hirsch, J., et alColumbia fMRI

Page 21: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 21

Hirsch, J., et alColumbia fMRI

1. Task of specificity and conjunctions2. Labels of functional areas3. Connectivity computations

C. Integration of Brain Mapping Techniques

Hirsch, R-Moreno, Kim, Interconnected large-scale systems for three fundamental cognitive tasks revealed by functional MRI. Journal of Cognitive Neuroscience, 13(3), 389-405, 2001.

Map of Human Language System

Medial Frontal Gyrus Superior Temporal GyrusInferior Frontal GyrusInferior Frontal Gyrus

6224445

9574940

-6-261025

539

258

Anatomical Region BA zyx

Center of mass

Hirsch, J., et alColumbia fMRI

Hirsch, J., et alColumbia fMRI

QuickTime™ and a Video decompressor are needed to see this picture.

Page 22: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 22

Hirsch, J., et alColumbia fMRI

1. Task of specificity and conjunctions2. Labels of functional areas3. Connectivity computation4. Models of long-range connectivity

C. Integration of Brain Mapping Techniques

Lateral Pain System

Medial Pain System

M1

MedialThalamus

LateralThalamus

Hypothalamus

AMYGPB

PAG

Brain Areas Modified by Treatment of Pain

‘After-Sensation’ Related Areas Based on Vogt and Sikes, 2000

M

CG

PF

Hirsch, J., et alColumbia fMRI

Cognitive Events are caused by Neural EventsThe Astonishing Hypothesis

Hirsch, J., et alColumbia fMRI

Page 23: Neuroscience 2003 Functional Brain Imaging · 1. Functional Magnetic Resonance Imaging, fMRI 2. Somatasensory Evoked Potential, SSEP 3. Direct Cortical Stimulation 4. Positron Emission

Page 23

MissionTo establish a collaborative and multi-investigator

neuroimaging research environment focused on education, medical applications, and the study of

brain, behavior, and therapy-induced cortical effects aimed at the systems of the brain that underlie

cognition, perception, and action.

Columbia fMRI

Functional MRI Research CenterDepartment of Radiology

Center for Neurobiology and BehaviorColumbia University

College of Physicians and Surgeons

Hirsch, J., et alColumbia fMRI