26
Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of Phoenix

Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Embed Size (px)

DESCRIPTION

What is fMRI Functional MRI machines sense or measure changes in the local magnetic field that happen because of changes in the ratio of deoxygenated to oxygenated hemoglobin in arterial blood vessels within precise brain regions during some cognitive task. Active neurons within the brain require energy and use more oxygen than non- active neurons. They get the increased oxygen from an increased blood flow.

Citation preview

Page 1: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Neural persuasion: A persuasion model for technologically

structured individualsSusan Shepherd Ferebee

Kaplan UniversityJames W. Davis

University of Phoenix

Presented at Persuasive 2011, Ohio State University

Page 2: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Neuroscience BreakthroughHow we understand learning, social connection, and decision-making is changing as breakthroughs in neuroscience allow scientists to view and measure how brain neurons respond and how they are altered in response to stimuli.

Functional Magnetic Resonance Imaging (fMRI) is the tool used to view these changes in the brain (Churchland, 2008; Ramachandran, 2011; Wang, Conner, Rickert, & Tuszynski, 2011)

Page 3: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

What is fMRIFunctional MRI machines sense or measure changes in the local magnetic field that happen because of changes in the ratio of deoxygenated to oxygenated hemoglobin in arterial blood vessels within precise brain regions during some cognitive task.

Active neurons within the brain require energy and use more oxygen than non-active neurons. They get the increased oxygen from an increased blood flow.

Page 4: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of
Page 5: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

fMRI Example

06/03/11

Subjects told to look at and remember a face

Occipital Lobe -Visual Processing

Subjects told to think about the face later

Hippocampus – Memory Area

Frontal Lobe – Decision Making Area

Occipital Lobe - VisualProcessing

Subjects told to compare another face to the remembered face

Page 6: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

fMRI – Another Example

Reading out loud

Normal male subject

Reading out load

Dyslexic male subject

Abnormal or unexpectedarea of activity

Page 7: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

fMRI Shows Generational Differences in the Brain

Individuals born after 1982 respond to stimuli differently than other age groups and show brain activity in different regions of the brain due to their technology exposure and use (Green, C.S., Pouget, A., & Bavelier, D., 2010; Kawashima, 2005; Small & Vorgan, 2009)

Page 8: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Technologically Structured Individuals (TSI)

We identify these people born after 1982 as technologically structured individuals (TSI), referring to their altered brain structure related to intense technology exposure.

The frequency and proportion of information received from non-human sources alters the neural assemblies in permanent ways and It is this alteration that sets the TSI apart from others (Small & Vorgan 2009).

Page 9: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

The Need for a Persuasion Model for TSIs

Significantly different brain structure, brain activity, and neuron development that has been scientifically documented with regard to TSI suggests new ways to look at persuasion and persuasive technology.

Page 10: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Factors of TSI Persuasion

We propose that the intense use of technology and the related changes to brain structure and activity suggest differences in several areas relevant to persuasion:

1.reward and decision-making

2.control

3.habituation

4.time pressure

Page 11: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Reward and Decision-Making

Page 12: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Decision made for instant gratification engages the brain’s limbic system(emotional brain – emotion, fear, memory, hunger) (Small and Vorgan, 2009)

Decision to put off reward requires engaging the frontal lobe and parietal cortex(Small & Vorgan, 2009).

Page 13: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

TSI Brain – Reduced Frontal Lobe Activity

Sustained decrease in brain activity in the frontal lobe during and after video games and multitasking with technology (Matsuda & Hinake, 2006; Mori, 2002; Small & Vorgan, 2009).

Page 14: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Non game playerPlaying video game

Habitual game playerPlaying video game

Frontal Lobe Frontal Lobe

Mathews, Wang, Lowe, Lurito, Dzemidzic, Kronenberger, Dunn, & Phillips (2006).

Non game playerPerforming Go-NoGo Decision

Habitual game playerPerforming Go-NoGo Decision

Page 15: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Non game playerPlaying video game

Habitual game playerPlaying video game

Frontal Lobe Frontal Lobe

Mathews, Wang, Lowe, Lurito, Dzemidzic, Kronenberger, Dunn, & Phillips (2006).

Non game playerPerforming Go-NoGo Decision

Habitual game playerPerforming Go-NoGo Decision

Page 16: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

The question we have to ask is whether decision-making is impaired for TSIs or if decision-making occurs differently by TSIs.

Page 17: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Two Research TracksfMRI Research (Matsuda & Hinake, 2006; Mori, 2002; Small & Vorgan, 2009; Kawashimam 2005)

Reaction Time/Accuracy Research (Green, Pouget, and Bavelier (2010))

Shows experienced video game players (age 18-24) have an increase in making more rapid and accurate real-world decisions over non video game players

Non video game players trained with 50 hours of action video game playing, shows same increase in making faster, accurate decisions, including probabilistic inference decisions.

Demonstrates brain activity during action video game playing

No frontal lobe activity during action video game playing

Occipital lobe (Visual) and Cerebellum (motor) activity only

Frontal lobe activity not present for game players when making decisons

Page 18: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

How is Decision-Making different for TSI?

Green, Pouget, and Bavelier (2010) explain this more rapid decision-making as occurring because the game players have increased efficiency for processing audio and visual information.

Since they process the input faster, they make faster decisions.The two research tracks when viewed together support that decision-making for TSIs is effective, but may occur in different ways, using different parts of the brain, than how decisions are made by non-TSIs.

Page 19: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Habituation

Page 20: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Habituation and TSIs

Randomly occurring rewards have been found to have the highest motivational value, and this type of randomness is supported through Internet interactions like email and text messaging (Small & Vorgan). These types of interactions are common for the TSI,

individual is unsure what they will see in their email, so they keep checking, hoping that they will have a reward of good news of some sort.

TSIs are more attuned to this type of random positive reward and this suggests that a positive result from use of random positive reward will occur with TSIs. It will be familiar to them and might allow habits to form more quickly.

Page 21: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Control

Page 22: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Control

What is the TSI accustomed to:

Digital technology responds instantly to commands.

Immediate access to large amounts of data (instant gratification)

Page 23: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

Time Pressure

Page 24: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

How Do TSIs Respond to Time Pressure?

While nothing in the literature particularly addresses how a TSI might respond to time pressure, their neural circuitry supports a tendency toward instant gratification and fast information processing which leads to rapid decision-making,

The TSI might be more accepting of time pressure as they process information quickly anyway.

Page 25: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

New Persuasion Model

We support the perspective that because TSIs have instant access to information and very large stores of information memories, they rely less on logical thought process and more on rapid information filtering and processing.

.

Page 26: Neural persuasion: A persuasion model for technologically structured individuals Susan Shepherd Ferebee Kaplan University James W. Davis University of

New Persuasion Model

Additionally, we suggest that for the TSIs, long term planning may not be a priority

Part of the information TSIs have access to informs them that they live in a complex, rapidly changing world.

Perhaps many short-term decisions that continually respond to changes in the environment are better suited to the TSI’s world.