Neumann Thermalinsulation

Embed Size (px)

Citation preview

  • 7/28/2019 Neumann Thermalinsulation

    1/26

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH) www.kit.edu

    Thermal insulation

    Institute for Technical Physics

    Holger Neumann

    Dont be afraid of low temperatures

  • 7/28/2019 Neumann Thermalinsulation

    2/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    2

    Content

    Relevance of thermal insulation in cryogenics

    Overview of different insulation materials

    Multi-layer insulation (MLI) Superinsulation

    Description

    Heat transfer calculations

    Special characteristics

    Example: Thermal insulation development for a flexible cryogenic line

    Conclusions

  • 7/28/2019 Neumann Thermalinsulation

    3/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    3

    Relevance of thermal insulation in cryogenics

    Example 1:

    The efficiency of a 4.4 K-refrigerator is about 10% of the Carnot-Coefficient of Performance (COP)

    = 0.0015

    The heat load of 100 W at 4.4 K requires a power input ofabout 70 kW

    Example 2:1000 litres-vessel LHe with an evaporation rate of 1%/day

    decrease of the insulation quality of 10% (~ 30 mW)

    Increase of the operating costs of ~ 1000 /year

    or additional LHe-acquisition costs of ~ 2000 /year

    FluidtEnvironmen

    FluidC

    TT

    T

    =

    Cryogenics T = TEnvironment TFluid great value

    latent heat are very small

    needed energy input for generating low temperatures is very high

    (Carnot)

  • 7/28/2019 Neumann Thermalinsulation

    4/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    4

    Overview of different insulation materials

    10-6.0 10-5.0 10-4.0 10-3.0 10-2.0 10-1.0

    MLI

    micro-sphere

    powderwith smallpieces ofmetal foils

    fibreglas

    powder

    atmospheric pressurevacuum

    air (1 bar) ~ 2,6 10-2.

    heat conductivity [W/(m K)] between ~ 300 K - 77 K .

    foams, powdersfibres

  • 7/28/2019 Neumann Thermalinsulation

    5/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    5

    Multi-layer insulation (MLI) Superinsulation Description

    MLI consists of:

    reflecting layers reduction of heat transfer due to radiationspacer elements with low heat conductivity between the reflecting layers

    high vacuum

    prevention of convection

    minimisation of heat conduction of residual gas

    MLI is presently the most effective kind of thermal insulationdeveloped in the fifties by Peterson (Sweden)

    first established in the sixties by space industry

  • 7/28/2019 Neumann Thermalinsulation

    6/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    6

    SI-materials:

    reflecting layers: mostly aluminium metallized mylar films / pure aluminium foils

    spacer elements: mostly net of glas fibre or foils / paper or polyester / tulle or silk

    or

    unit of reflector and spacer:

    metallized mylar films, crinkled or embossed to reduce the contact surface between the

    reflecting layers without spacer elements

    attention: SI-anisotropy

    delicate regarding installation (many bugs are possible)

    Multi-layer insulation (MLI) Superinsulation Description

  • 7/28/2019 Neumann Thermalinsulation

    7/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    7

    Multi-layer insulation (MLI) Superinsulation

    Heat transfer calculations

    i1ii

    T

    i1ii

    1ii

    i

    i4

    1i4i

    TT

    1ii,overall

    ACf)T(Ts

    Af)(1)T(T)T(T8

    R2p21

    1

    Af)(1)T(T

    1

    1

    1QQ

    1ii,

    1ii

    +

    +

    ++

    +

    ==

    +

    +

    +

    ++

    +

    +

    &&

    100

    125

    150

    175

    200

    225

    250275

    300

    [K]

    5 10 15 20 25

    N

    reine Wrmestrahlung

    Wrmestrahlung und -leitung

    reine Wrmeleitung

    pure radiationradiation and conductionpure conduction

    radiation

    residual gas heat conduction

    solid heat conduction

  • 7/28/2019 Neumann Thermalinsulation

    8/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    8

    Multi-layer insulation (MLI) Superinsulation

    Heat transfer calculations

  • 7/28/2019 Neumann Thermalinsulation

    9/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    9

    Multi-layer insulation (MLI) Superinsulation

    Heat transfer calculations

  • 7/28/2019 Neumann Thermalinsulation

    10/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    10

    Multi-layer insulation (MLI) Superinsulation

    Special characteristicsinfluence ofcontact pressure

    1-3: Al layers with fibre glass paper of different thickness4: Dracon Al-metallized with glass silk tissue

    5-6: theoretical values (without solid heat conduction)

    optimum number of layers / density of layers

    x

    x

    xx

    0 10 20 30 40 50 1/cm

    N/D

    0.05

    0.10

    0.15

    mW/(m K).

    1

    2 3

    4

    56

    effectiveheatconductivity

  • 7/28/2019 Neumann Thermalinsulation

    11/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    11

    .0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 200 400 600 800

    diameter of tube [mm]

    q

    [W/m2]

    0

    0,5

    1

    1,5

    2

    2,5

    3

    q[W/m]

    empirical values for different transferlines and cryostatswith 20 - 50 layers MLI between RT and 80 K(winding technique on tubes and cylinders)

    q [W/m] = q [W/m ] d2

    . .. .

    q [W/m ] with 3 blankets (RT - 80 K)2

    .

    Multi-layer insulation (MLI) Superinsulation

    Special characteristics

  • 7/28/2019 Neumann Thermalinsulation

    12/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    12

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 50 100 150 200 250 300 350 400

    d [mm]

    q[W/m2]

    T = 280 K

    p < 2 10 mbarwarm

    -6.only one aluminium

    layer (LN )2

    1 blanket

    2blankets

    3blankets

    IR 300.12 MLI blanket techniqueopen / closed symbolsLHe / LN - experiments2

    MLI winding technique

    Multi-layer insulation (MLI) Superinsulation

    Special characteristics

  • 7/28/2019 Neumann Thermalinsulation

    13/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    13

    Multi-layer insulation (MLI) Superinsulation Special characteristics

    0 10 20 30 40 50

    N

    0

    2

    4

    6

    8

    10

    12

    14

    q

    [W/m2]

    qrad=f(ewall=0.1; eshield=0.03; TW=300 K; TC=77 K)

    IHI: Jacob

    IHI: FZK

    IHI: Ohmori [1992]

    Jehier: FZK, TESSI mit d=320 mmJehier: FZK, THISTA mit d=219 mm

  • 7/28/2019 Neumann Thermalinsulation

    14/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    14

    Multi-layer insulation (MLI) Superinsulation interim conclusion

    Important

    quasi-isothermal parting points

    Avoiding of gaps causes disproportionately high heat transfer

    Avoiding of mechanical stress

    causes exponentially increase of degradation with p

    Relation between heat conduction and radiation = f(T)

    MLI is especially effective at high temperatures

    MLI is less effective or disadvantageous at T < 100 K

    optimal layer density

    vacuum conditions

    perforated layers

    MLI with integrated getter materials

    Superinsulation only meets this expression and expenditure if severalpossibilities of errors could be avoided

  • 7/28/2019 Neumann Thermalinsulation

    15/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    15

    Multi-layer insulation (MLI) Superinsulation Example: Thermal insulation development for a flexible

    cryogenic line

    Requirements on a economic applicable HTS-cable

    compact design insulation = 20 mm

    The use of MLI is mandatory

    2K80K3002 mW2q

    mW1 &

    Km

    W102

    Km

    W101 4Isolation

    4

  • 7/28/2019 Neumann Thermalinsulation

    16/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    16

    Multi-layer insulation (MLI) Superinsulation Example: Thermal insulation development for a flexible

    cryogenic line

    superconductingcabel

    welded tube(60/66 mm)

    welded tube (100/110 mm)

    welded tube (130/143 mm)

    welded tube (198/220 mm)

    multilayerinsulation

    multilayerinsulation

    vacuum

    vacuum

    spacer

    protective outer PE-jacket

    LHe

    returnedGHe

    state of the technology

    W/m4,55/mQ =&Measurement results: corresponding2W/m8,52q =&

  • 7/28/2019 Neumann Thermalinsulation

    17/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    17

    Improvement actions

    Separation of MLI and supporting structures

    Solid heat conduction of the supporting structures

    as low as possible small contact areas and cross sections

    low heat load at the disconnecting points

    Multi-layer insulation (MLI) Superinsulation Example: Thermal insulation development for a flexible

    cryogenic line

  • 7/28/2019 Neumann Thermalinsulation

    18/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    18

    Multi-layer insulation (MLI) Superinsulation Example: Thermal insulation development for a flexible

    cryogenic line

    protective outer PE-jacket

    welded tubesHTSC-cable(cooled with LN )2

    multilayer insulation

    bars

    supporting rings

    vacuum between the

    welded tubes

    New concept

  • 7/28/2019 Neumann Thermalinsulation

    19/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    19

    Multi-layer insulation (MLI) Superinsulation Example: Thermal insulation development for a flexible

    cryogenic line

    New concept

    bar

    part of the welded tube

    contact-points

    outer welded tube

    inner welded tubewith HTSC-cable

    multilayer insulation

    floating-supportsystems

    supporting ring

  • 7/28/2019 Neumann Thermalinsulation

    20/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    20

    Multi-layer insulation (MLI) Superinsulation Example: Thermal insulation development for a flexible

    cryogenic line

    New concept

    outer weldedtube

    inner weldedtube

    supportingrings

    longitudinalbars

    vertical connectionof the longitudinal bars

    multilayerinsulation

    about 1.0 m about 0.1 m

    longitudinal cross section of the insulation of the HTSC-cable symmetry line

    evacuatedspace

    }

  • 7/28/2019 Neumann Thermalinsulation

    21/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    21

    Multi-layer insulation (MLI) Superinsulation Example: Thermal insulation development for a flexible

    cryogenic line

    Experiments

  • 7/28/2019 Neumann Thermalinsulation

    22/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    22

    10-5 10-4 10-3 10-2 10-1 100

    101

    102

    2

    3

    4

    5

    6

    78

    2

    3

    4

    5

    6

    78

    2

    Nexans: straight without weight

    Nexans: bendedwithout weightNexans: straight with weightGfK-support structure:straight with weight

    GfK- :support structure straight without weightGfK- :support structure without weightbended

    spiral :support structure straight with weightspiral support structure straight without weight:

    p [mbar]

    qk[W/m2]

    Nexans GfK-support structure spiral support structure

    straight without weight

    straight with weight

    (lead rod)

    bended without weight

    Multi-layer insulation (MLI) Superinsulation Example: Thermal insulation development for a flexible

    cryogenic line

    Experiments

  • 7/28/2019 Neumann Thermalinsulation

    23/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    23

    Multi-layer insulation (MLI) Superinsulation Example: Thermal insulation development for a flexible

    cryogenic line

    Experiments boundary condition:

    ]m/W[q 2m& Nexans

    3,70

    3,17

    2,49

    100%

    85,59%

    67,30%

    = 14,41%

    = 32,70%

    GfK-support structure

    spiral support structure

    straight without weight

  • 7/28/2019 Neumann Thermalinsulation

    24/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    24

    ]m/W[q 2m&

    6,60

    4,72

    3,10

    100%

    139,83%

    67,30%

    = 39,83%

    = 34,32%

    ~ 430 N/m

    Multi-layer insulation (MLI) Superinsulation Example: Thermal insulation development for a flexible

    cryogenic line

    Experiments

    spiral support structure

    Nexans

    GfK-support structure

    boundary condition:straight with weight(lead rod)

  • 7/28/2019 Neumann Thermalinsulation

    25/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    25

    Conclusions

    For cryogenics application (T < 120 K), vacuum insulation technology ismandatory

    For LHe (4 K) and LH2 (20 K) applications, the use of the best kind ofinsulation, so MLI, is warrantable orjust enoughrespectively

    MLI is the best kind of thermal insulation if it is used professional

    improvement factors

    factor 10 compared to other vacuum insulation materials

    factors 30 100 compared to evacuated powder insulation

    further improvement factors of ~ 30 are possible by the use of evaporationenthalpy multishield-technique

    MLI can be flexible adapted very compact if the accessibility is ensured

  • 7/28/2019 Neumann Thermalinsulation

    26/26

    Thermal insulation | H. Neumann | March 2009

    KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universitt Karlsruhe (TH)

    26

    Thank youfor yourattention