Click here to load reader

NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS 1/09 The Newsletter of. Southwest Asian Neolithic Research Special Issue on. Rubble

  • View
    17

  • Download
    2

Embed Size (px)

Text of NEO-LITHICS 1/09 - ex oriente › repository › NEO-LITHICS › NEO-LITHICS_2009_1.pdfNEO-LITHICS...

  • Editorial

    Weninger Introduction Weninger YarmoukianRubbleSlides Rollefson LateNeolithicRubbleLayerintheSouthernLevant Barzilai NaturalorAnthropogenicAgents?SomeExamples Kafafi, Lucke and Bäumler ChangeattheNeolithicSiteof‘AinGhazal Gebel IntricacyofNeolithicRubbleLayers Rollefson Commentary

    NEO-LITHICS1/09The Newsletter ofSouthwest Asian Neolithic Research

    Special Issue on Rubble Slides and Rapid Climate Change

  • 2Neo-Lithics1/09

    Contents

    Editorial

    RubbleSlidesandRapidClimateChange

    Editorial 2

    Special Issue on Rubble Slides and Rapid Climate Change

    Bernhard Weninger Introduction 3 Bernhard Weninger YarmoukianRubbleSlides.EvidenceforEarlyHoloceneRapidClimateChangein SouthernJordan 5 Gary O. Rollefson SlipperySlope:TheLateNeolithicRubbleLayerintheSouthernLevant 12 Omry Barzilai NaturalorAnthropogenicAgents?SomeExamplesfortheVarietyofStoneSurface

    inLatePrehistoricSitesinCisjordan 19 Zeidan Kafafi, Bernhard Lucke and Rupert Bäumler EnvironmentandArchitecturalChangeattheNeolithicSiteof‘AinGhazal 24 Hans Georg K. Gebel TheIntricacyofNeolithicRubbleLayers.TheBa‘ja,Basta,and‘AinRahubEvidence 33 Gary O. Rollefson Commentary 49

    Masthead 51

    Rubblelayers,Yarmoukianlandslide,the8.2kacal.B.P.RCC–theseandothercatchwordshavebeenusedsince1984foranintriguingphenomenonknownfrommany7thmillenniumBCsitesintheLevantandTurkey:substantialaccumulationsofstonerubblethatcoversarchitecturalremainsandsometimesevensuggestthattheymightbethereasonfordesertingalocation.Discussedsincethemid-1980s,rubblelayersbecamethesubjectofvariousexplanations,includingtheunderstandingthataquaticslopeerosionmusthaveplayedanimportantroleintheirdeposition.Butithastakenuntilthemiddleofthecurrentdecadethatitbecameunderstoodthatrapidclimaticchangewasresponsibleforsuchrubbledeposits.Ittookanotherfiveyearstounderstandthattherubbleeventsmayhavequitepolygeneticandmulticausalorigins(albeitclimateandwaterstillappearstobeamajorfactoroftheirdeposition),andthatthereweremoresuchdepositionalperiodsthanhithertoanticipated.Likenooneelse,BernieWeningerhaspromotedthetopicoverthepastseveralyearswithregardtoradiocarbonchronologyandclimate,startingdiscussionswithoneofus(G.O.R.)for‘AinGhazal.Thuswearehappytohaveenlistedhishelpforthis(delayed)specialissueofNeo-Lithicsasguesteditor.ItaimstoexpandthedeeplyneededdiscussionofrubbledepositsrepresentingtestimoniesfordiscontinuitiesintheLevant’s7thmillenniumBCsettlementhistoryandsubsistencemodes.

    Rubblelayerawarenessisrequiredinallrespects.

    HansGeorgK.GebelandGaryO.Rollefson

  • Neo-Lithics1/09

    Introduction

    3RubbleSlidesandRapidClimateChange

    TheEasternMediterraneanhas longbeenone of theworld‘s major areas for archaeological research onearlysedentarysocieties.Due toexcitingnewresultsfrom palaeoclimatology (see below), we are nowexpectingthisregiontobecomeakeysceneforsomeunusuallycloseandintensiveinterdisciplinaryresearchbetweenprehistoriansandpalaeoclimatologists,aswellasinvolvingscientistsfromtheneighbouringfieldsofgeomorphology, geoarchaeology, archaeoseismologyandbioarchaeology.Bethisasitmay,thepurposeofthisspecialissueofNeo-Lithicsistofurtherencourageall such interdisciplinary research. The particulartopic, towhich the following issue ofNeo-Lithics isdedicated,hasbeennamed:RubbleSlidesandRapidClimateChange.

    What are Rubble Slides? Field Observations

    In Jordan, as well as in other regions in the easternMediterranean,alargenumberofarchaeologicalsitesare covered to some extreme depth (often severalmetres) by massive rubble and gravel slides. TheJordanian list of Neolithic sites with rubble slidesincludes:‘AinGhazal,AbuSuwwan,es-Sifiya,Ba‘ja,Basta,WadiShu‘eiband‘AinJammam.FromTurkeywealsoknowofpebbleslidesandsoilflows(KuruçayHöyük,Burdurprovince),aswellasriverinefloodingofarchaeologicalsites(e.g.Çayönü).Themajorityoftheseslidesappeartohavehadnaturalcauses,suchashighenergyflashfloodsorearthquakes.

    Whereas in some cases preliminary observationsindicate that the slides are associatedwith collapsedand abandoned Neolithic buildings, in others therubble flows appear stratified and probably representindependent events distinguishable on the basis ofvariations in stone size and orientation. Further,while secondary levelling of room fill, sometimeswithhumanoranimalburials, isalsoobserved,otherrubbledepositsmightrepresentintentionalbackfilling,aimed at garbage management or resulting fromstone-robbing.Moreover,thereexistsomesensationalcasesofmaterialmovementsonNeolithicsiteswhererecent research has identified the deliberate burial ofentire buildings, presumably marking the end of anarchitectural or socio-religious life-cycle. Finally, inaddition to these intra-site observations, where theunderlying causes can be studied by archaeologicalmeans,weobservemajordebris and soilmovementsin thewider landscape linked to suchevents as riverflooding,slopeslides,orheavyrainfalls.

    All in all, there is an impressive spectrum of

    environmental, climatic, and cultural conditionsleadingtorubbleslides,asobservedonalargenumberofarchaeologicalsitesinJordan.

    Rubble Slides: Environmental and Climatic Background

    Quite remarkably– and the following statements arealreadypart of our call for independent confirmation– it appears that a highly significant number of theNeolithicrubbleslides(atleastthosepresentlyknownfrom Jordan) occurred during the time interval 8.6-8.0 ka calBP (6.6-6.0 ka calBC). In archaeologicalterms, these Jordanian rubble slides are dated to theYarmoukian period, or, expressed more generally,to the transition from to the earlyPN.Accepting forthemoment that at least some of these rubble slidesoccurredsimultaneously,theymayevenhaveidenticalcauses,suchasonelargeearthquake.Ontheotherhand,thereareplausiblealternativeexplanations, includingwidespread environmental degradation due to over-grazingbylargeherdsofgoats/sheep,anddeforestationdue to such factors as housing requirements, fuelconsumption for domestic purposes, aswell as lime-plasterproduction.

    However,perhaps themost remarkablepossibilityis that there might exist a direct causal connectionbetween at least some of the rubble slides andwhatwesimplifyincallingRapidClimateChange(RCC).In brief, the time-interval at stake for the end of thePPNB/Cisentirelysimultaneouswithoneofthefourmajorperiods[(i)10.2-10.0ka,(ii)8.6-8.0ka,(iii)6.2-6.0 ka and (iv) 4.3-4.0 ka calBP] that were recentlyidentifiedbyamajorworkinggroup(16internationalauthors) asoneof the fourkeyglobal time-windowsforRapidClimateChange(RCC)duringtheHolocene(Mayewskietal.2004).

    In short, during each of these four time-windowsforRCC(andinthisrespectquitesimilartothemorerecent“LittleIceAge”)thereappearstohavebeenananomalouslystronginflowofintensivelycoldpolarandcontinentalairmasses into theeasternMediterraneanbasin, ultimately deriving from the coldest air masstobefoundanywhereontheglobe, i.e.,fromSiberia(Meeker andMayewski, 2002). Since the underlyingatmosphericpatternsareinferredfromGreenlandice-core records (particularlyGISP2K+- andNa+-ions),theHoloceneRCCeventsequencesareestablishedwithhighestpossible(quasi-annual)temporalprecision.

    However,atthepresentstate-of-researchitisequallypossible that the observed rubble slideswere caused

    Introduction

    Bernhard Weninger UniversityofCologne,InstituteofPrehistoricArchaeology [email protected]

  • Introduction

    Neo-Lithics1/094

    RubbleSlidesandRapidClimateChange

    byother agentse.g. human impact on the landscape,earthquakes,orflashfloods,oracombinationof suchagents.Tobegin,inthisNeo-Lithicsissuewedescribeanddiscusssomeofthemanyofthesiteswithrubblelayers. In perspective,we now have hope thatmanymore sites with rubble layers may be recorded, inmaybeevennewregions.

    This Special Issue of Neo-Lithics 1/09

    ThepresentspecialissueofNeo-Lithics1/09,clearly,cannot provide a complete description, let alone anyuniversal (or monocausal) explanation for the largenumberofobserved“rubbleslides“.Whatwecandoistoprovideageneralreviewoftheclimatologicalissuesat stake, alongwith somepapers that focus on someof the (surelymulticausal) associated archaeological,geomorphological and environmental issues. Themain corpus of the newsletter covers on a site-by-site basis someof the presently known rubble layersin the southernLevant.As such,however, the readershould remain aware of the fact that other regionsremain largely unexplored:weknownext to nothingabout thepotentialoccurrenceof suchphenomena inthe wider eastern Mediterranean. Notwithstandingsuch prevailing limitations in available data, for thiswider perspective the interested readermay considerthe recentlypublishedstudybyWeningeretal.2009ontheeffectsofRapidClimateChangeintheeasternMediterranean (sensuMayewski et al. 2004) to be ausefulstartingpointforfurtherresearch.

    Altogether,under“RubbleSlides”wesubsumedthefollowingarchaeologicalandgeomorphologicaltopics:

    Sites with Natural Rubble/ Soil Movements●Sitesburiedpartially,orentirely,bylargeorsmall

    rubble/gravel/pebbleslides●Sitescoveredpartially,orentirely,byflood

    sedimentsfromrivers

    Sites with Human-Induced Rubble/ Soil Movements●Individualrooms(orentirebuildings)with

    intentionalrubbleorsoilbackfilling●In-filledrooms(orentirebuildings)with

    intentionalburial.

    Sites with Rubble/ Soil Movements but Unclear Agents●Anykindofon-sitestoneorsoilcoverage,

    clearlycatastrophic,butunclearagents

    Acknowledgements:IwouldliketothankGaryO.Rollefsonforalongcooperationinrubbleslidere-search,andforhelpingtopreparethisspecialissueofNeo-Lithics.IthankHansGeorgK.GebelandGaryRollefsonforinvitingmeasNeo-Lithicsguesteditoronthistopic.

    References

    Mayewski P.A., Rohling E.E., Stager J.C., KarlenW.,MaaschaK.A., Meeker L.D., Meyerson E.A., Gasse F., van Kreveld S.,HolmgrendK.,Lee-ThorphJ.,RosqvistG.,RackiF.,StaubwasserM.,SchneiderR.R.,andSteigE.J.2004 HoloceneClimateVariability.QuaternaryResearch 62:243-255.

    MeekerL.D.andMayewskiP.A.2002 A1400YearLongRecordofAtmosphericCirculation OvertheNorthAtlanticandAsia.TheHolocene 12(3):257-266.

    WeningerB.,Alram-SternE.,BauerE.,ClareL.,DanzeglockeU.,JörisO.,KubatzkiC.,RollefsonG.,TodorovaH.2005 NeolithisierungvonSüdosteuropaalsFolgedes abruptenKlimawandelsum8200calBP.In D.Gronenborn(ed.),Klimaveränderungund KulturwandelinneolithischenGesellschaften Mitteleuropas,6700-22200v.Chr.RGZMTagungen 1:75-117.

    Weninger B.,Alram-Stern E., Bauer E., Clare L., DanzeglockeU.,JörisO.,KubatzkiC.,RollefsonG.,TodorovaH.,vanAndelT.2007 AbruptClimateForcingObservedatEarlyNeolithic sitesinSouth-EastEuropeandtheNearEast.In H.Todorova,M.Stefanovich,G.Ivaniv(eds.),Inthe StepsofJamesHarveyGaul,2.TheStruma/Strymon RiverValleyinPrehistory.Proceedingsofthe InternationalSymposium‚StrymonPraehistoricus‘, Kjustendil-Blagoevgrad(Bulgaria)andSeres- Amphipolis(Greece),27.09-01.10.2004,Sofia:7-28.

    Weninger B., Clare L., Rohling E.J., Bar-Yosef O., Böhner U.,Budjar M., Bundschuh M., Feurdean A., Gebel H.G.K., JörisO.,Linstädter J.,MayewskiP.,MühlenbruchT.,ReingruberA.,RollefsonG.,SchyleD.,ThissenL.,TodorovaH.,andZielhoferC.2009 TheImpactofRapidClimateChangeonPrehistoric SocietiesDuringtheHoloceneintheEastern Mediterranean.DocumentaPraehistorica26:1-53.

  • Neo-Lithics1/09

    YarmoukianRubbleSlides

    5RubbleSlidesandRapidClimateChange

    Introduction

    In Jordan, a largenumber of archaeological sites arecovered by massive rubble slides and gravel flows,oftentosomeextremedepth(severalmetres).ThankstotherecentreviewbyRollefson,whichiscirculatedheretogetherwiththepresentpaperasacontributionto the‘RubbleSlide’ issue(2009)ofNeo-Lithics,wenow have a first description of the Jordanian rubbleslides.ThelistofNeolithicsitesthatareknowntohaverubble slides is indeed impressive, and includes (inalphabeticalorder):‘AinGhazal,‘AinJammam,‘AinRahub,AbuSuwwan,Ba‘ja,Basta,es-Sifiya,JebelAbuThawwab,UmmMeshratIandII,andWadiShu‘eib.

    ThemajorityoftheseslidesaredatedbyincorporatedpotterytotheYarmoukianperiodor,expressedinmoregeneralterms,theslidesaredatedtothetransitionfromlate-PPNB/C to earlyPN.Accepting for themomentthat many of these slides occurred ‘simultaneously’,in principle they could all have been caused by onelarge earthquake.This is not even unlikely, since alllisted sites are situated in close vicinity (e.g. ‘AinGhazal: 40 km) to the activeDeadSea Fault,whichis the seismic boundary between the African andArabianplates.GeologicalobservationsshowslipratesbetweentheseplatesintheJordanValleyintherangeof1to20mmperyear(Klingeretal.2000).Moderninstrumental observations supply mean recurrenceintervals for major destructive earthquakes in thisregion between 400 years (Richter Scale MagnitudeMR>6)and3,000years(MR>7)(Begin2005).Suchearthquake magnitudes and recurrence rates appearquite sufficient to trigger theobserved slope failures,perhapsnoteverywhere,butsurelyon thosesites forwhich Rollefson (this issue) has documented slopedeclinationsbeyond12°.

    However, beyond earthquakes, there exist otherplausible explanations for the rubble slides, none ofwhichwewould like toexcludeapriori.Acceptableexplanations (and combinations of such) includeregionalenvironmentaldegradationduetoover-grazingbylargeherdsofgoats/sheep,anddeforestationduetoNeolithichousingrequirements,fuelconsumptionfordomestic purposes, and less importantly, lime-plastermanufacture.Finally,wemakenosecretofourpresentfavouriteexplanation,evenifproofforthisisyetlacking,thatthemajorityofslideswerecausedbyslopefailureduetotorrentialrainfallandcorrespondinglarge-scalewater-liftingoftheslopematerial.AsRollefson(2009) putsit,inthiscasethecauseoftherubbleslideswouldbe“slipperyslopes.”Whetherthisproposaliscorrect

    ornotremainstobeestablished.However,whatmakesthis specific hypothesis (we think) more interestingthanmanyothersisthepossibilitythattheYarmoukianrubble slides represent the local manifestation of abroaderclimatesignal.Ultimately, itmaybedifficulttodifferentiatebetweenthesealternativeexplanations(climate or earthquake), as will be argued below.However,wefocusontheclimaticexplanation,first.

    Table 1 shows all available 14C-ages for theYarmoukian period (Böhner and Schyle 2009).Excepting a few outliers (AA- 25424, AA-5204;GrN-15192), the remaining samples supply us witha small but consistent set of tree ring calibrated14Cagesfor theYarmoukianperiod,andbyinferenceforthe Yarmoukian Rubble Slides. Surely, not all siteswithYarmoukian settlementhave a rubble slide (e.g.Sha‘arHagolan).Nevertheless,theotherwayaround,it isencouragingtoobservethatallYarmoukiansiteshave14Creadingswithinthesametimeinterval6300-5900 cal. B.C. (8300-7800 cal. B.P). To facilitatecomparisonwithclimaterecords, in thefollowingallcalibrated14Cagesaregivenonbothtimescales(cal.B.C.,cal.B.P.).

    Toachieveadeeperunderstandingofthisdating,inthefollowingweaddstepbystepaseriesofclimaterecords.These records lead us first to theDeadSea,wherewegaininsightonrainfallhistoryduringtheEarlyHoloceneintheJordanValley.WethenhopovertotheAegean,tolookataninterestingmarinerecordcalledLC21,withinformationpertainingtocontemporaneoussurfacewater temperatures.AtLC21we learnof the

    Yarmoukian Rubble Slides. Evidence for Early Holocene Rapid Climate Change in Southern Jordan

    Bernhard Weninger UniversityofCologne,InstituteofPrehistoricArchaeology [email protected]

    Lab code 14C Age BP Material Site cal. B.C. cal. B.P.

    Ly-4927 7330 ± 70 charcoal Munhata 6200 ± 100 8150 ± 100

    M-1792 7370 ± 400 charcoal Munhata 6310 ± 420 8260 ± 420

    RT-1544 7050 ± 78 charcoal Qanah 5920 ± 80 7870 ± 80

    RT-861D 6980 ± 180 charcoal Qanah 5870 ± 160 7820 ± 160

    OxA-7884 6980 ± 100 charcoal Sha‘ar Hagolan 5870 ± 100 7820 ± 100

    OxA-7885 7270 ± 80 charcoal Sha‘ar Hagolan 6140 ± 80 8090 ± 80

    OxA-7917 7410 ± 50 charcoal Sha‘ar Hagolan 6300 ± 60 8250 ± 60

    OxA-7918 7465 ± 50 charcoal Sha‘ar Hagolan 6340 ± 60 8290 ± 60

    OxA-7919 7495 ± 50 charcoal Sha‘ar Hagolan 6350 ± 70 8300 ± 70

    OxA-7920 7245 ± 50 charcoal Sha‘ar Hagolan 6130 ± 70 8080 ± 70

    OxA-9417 7285 ± 45 seed Sha‘ar Hagolan 6150 ± 53 8100 ± 53

    AA-25424 8030 ± 65 charcoal ‘Ain Ghazal 6940 ± 110 8890 ± 110

    AA-5204 2880 ± 95 charcoal ‘Ain Ghazal 1090 ± 130 3040 ± 130

    GrN-14539 7480 ± 90 charcoal ‘Ain Rahub 6340 ± 80 8290 ± 80

    GrN-15192 5540 ± 110 charcoal Abu Thawwab 4390 ± 110 6340 ± 110

    Table 1 RadiocarbonAgesfortheYarmoukianPeriod. Tree-RingCalibrated14CAges[cal.B.C.] [cal.B.P.,0=AD1950]

  • YarmoukianRubbleSlides

    Neo-Lithics1/096

    RubbleSlidesandRapidClimateChange

    existence of some strong coolingwinds that blow infromSiberia,notallthetime,butsignificantlyduringspecialperiodsthatclimatescientistscall‚RCCevents‘(Rapid Climate Change events). We will not arguewith anybody about the difference between eventsandperiods.Interdisciplinarydiscussionsaredifficultenough, on other scales. Each of these RCC events/periodsisassociatedwithclimaticconditionssimilartorecent‘LittleIceAge’.Welearnthis,inthenextstep,by turning toGreenlandicecoresfromSiberia.Eachofthesestationssuppliesinformationthataddstoourunderstanding,hopefully,oftheunderlyingpenultimate‘global’ causes for the observed Yarmoukian rubbleslides.

    Dead Sea Lake Levels

    The Holocene Dead Sea lake level record (Fig.1)recentlypublishedbyMigowskietal.(2006)providesa rain gauge (Enzel et al. 2003) with tremendousforecastingcapabilitiesforNearEasternarchaeology,and especially for the Jordan Valley with its richcultural heritage. In combination with other lowerlatitude climate proxies, the Dead Sea record takeson a central position in the present studies. Prior tousingthisrecordfor‘rubbleslideresearch’,thereareseveral aspects to acknowledge. First, the Dead Sealevel responds primarily to precipitation changes inthenorthernJordanValley,whicharechanneleddownthe valley from the Lake Kinneret basin. Due to itshighsalinity,theDeadSeaitselfdoesnotprovidethefreshwaternecessarytosupportfarmingcommunities.But the level ofwater in theDeadSea does provideasensitivesupra-regional recordofpastprecipitationchangesinthisregion.Thisisduetoitslocationataterminal position in an extended basin (GlacialLakeLisan),with its large, closed drainage area (Enzel etal.2003).

    Secondly, it is important to acknowledge theexistence of a major non-linearity in the relationbetween (hypothetical) Levantine precipitation and(measured)DeadSealakelevel.Thisnon-linearity isbecausetheDeadSeaconsistsoftwocloselyconnectedsub-basins thatareseparatedbyasillat~402-403mmbsl[metersbelowsealevel](Migowskietal.2006:

    422). The deep northern basin is fed mainly by theJordanRiverandtosomeextentbylocalrunoff(Enzelet al. 2003).When the northern basinwaters rise tolevelsabovethesill,theoverflowingwatersfloodtheshallowersouthernbasin.Inthiscasethecombinedlakeareaissignificantlyenlarged,andthetotalevaporationthenalsorisessignificantly.Veryhighprecipitationisnecessarytosimultaneouslyraisethewaterlevelofthenorthernbasinabovethesillandtomaintainthishighlevelagainsttheenhancedevaporation.

    Conversely, when the northern basin dropssignificantlybelowthesillduringextremearidperiods,saltisdepositedinthecentreofthelake.Thisprocessis not evident in the level graph (Fig.1). To supportinterpretationoftheDeadSearecordvis-à-visthisnon-linearity, we have drawn a dashed horizontal line inFig.1 atthesillheightof~402.5m.Allowingforsuchscalingcomplicationsduetotheexistenceofthesillat~402.5mbsl,theDeadSealevelrepresentsawonderfuldocument for all climate-related archaeologicalresearchintheLevant.ItremainstobementionedthattheDeadSearecordisderivedfrommultiplecoresandissupportedbyalargesetofhighlypreciseofAMS14CdatesbytheKiellaboratory(Migowskietal.2006).

    Marine Core LC21 (35.66°N, 26.48°W, -1522 m water depth)

    Of further interest to our studies, due to its centralpositionintheSoutheastAegeanSeaandsituationtothe east of Crete, is core LC21 (35.66°N, 26.48°W,-1522mwaterdepth).At this location,with selectedmarine fauna used as sea-surface temperature (SST)proxies, it ispossibletoobservesensitiveexpansionsand contractions of the cooler Aegean waters inrelation to the warmer Levantine waters (Rohling etal. 2002).Inparticular,ithasbeenestablishedthattheratioofwarm/coldsurface-livingforaminiferacanbeusedtodescribeaseriesofrapidSSTvariationsduringthe Holocene. The LC21 record reveals a patternof (presently) three major temperature drops in thesoutheastern Aegean, dating to 8.6-8.0 ka cal. B.P.,6.5-5.8kacal.B.P. and3.5-2.8kacal.B.P. (Rohlingetal.2002).Moderncalibrationoffauna-derivedSSTvariations shows that these temperature drops occur,withastrongseasonalcomponent,inwinterandearlyspring(Rohlingetal.2002).

    Greenland Ice-Core GISP2 (72.6°N, 38.4°W, +3200 m height)

    One of the most remarkable results of LC21 corestudies was the demonstration that these rapid SSTvariations are caused by extremely cold air masses,moving rapidly over theAegean ocean surface withcorrespondingenergytransferviaevaporationfromthewarmer ocean surface to the coldermoving air.Thisoceancoolingmechanismwasidentifiedinanunusually

    Fig. 1 HoloceneDeadSeaLakeLevels(here:schematic), accordingtoMigowskietal.(2006)

    11 10 9 8 7 6 5 4 3 2 1 0[ka calBP]

    -390

    -400

    -410

    -420

    -430

    -440

    -380

    sill at 402.5 m

    [mbsl]

    50 m

    Levantine Moist Period

  • Neo-Lithics1/09

    YarmoukianRubbleSlides

    7RubbleSlidesandRapidClimateChange

    highcorrelationbetweenLC21SSTvariationsandnon-sea-salt(nss)[K+]andsea-salt-derived[Na+]chemicalionconcentrationsmeasured in theGreenlandGISP2ice-core(72.6°N,38.4°W,+3200mheight).Highnss[K+]iscoincidentwithanintensificationofthesemi-permanentSiberianhighpressurezone,whereashigh[Na+] values coincide with an intensification of thehighly dynamic North Atlantic low pressure zones(Mayewskietal.1997).

    Correlation of Aegean Sea Surface Temperature and Siberian High Pressure

    The correlation between the Aegean SST and theGreenland GISP2 nss [K+] is of major importancefor our understanding of the Holocene RCCs. Asmentionedabove,coreLC21islocatedclosetoCreteinapositionreactivetoexpansionsandcontractionsofthecoolerAegeanwaters.TheLC21positionishighlysensitive towards suchwind-induced SST variations,and especially towards the cooling effects of windssweeping down from the Balkans. Before reachingtheLC21core location, thenortheasterlywindsmusthavetraversedtheopenoceansurfaceoveradistanceofsome700km.Sincethesewindsarepredominantlywinter/early spring phenomena, and typically onlyoccur fora fewdaysatone time, theenergy transferbetween surface water and windmust proceed quiterapidly.WhenreachingthelocationofcoreLC21,thefactthatsuchrapidSSTvariationsareobservedforsuchalargewatercolumn(~300meterdepth)–thehabitatofthefaunalspeciesunderstudy–meansthatduringRCCtimesahugeamountofcoldairmustdissipateitsenergyintothewatercolumninaveryshorttime.

    Comparison of Climate Records

    Let us now take a closer look at all these records incombination (Fig.2). Of principal interest for ourstudies– since this record is closest to the Jordanianrubbleslides–istheDeadSearecord.AscanbeseeninFig.2,therewasanabruptriseinDeadSealakelevelaround 10.1 ka cal. B.P. from below ~ 430 mbsl toheights~380mbslinessentiallyonlyonebigstep.Thehighstandat~380mbslismaintainedforca.500yrs,beforeitdropsbyca.10mtoasecondhighstandat~370mbslaroundca.9.5kacal.B.P.AlthoughMigowskietal.(2006) attachanumberofquestionmarkstomanyoftheheightmeasurements(forsimplicitywehavelefttheseoutofFig.2),eventhequestionablelevelsareallhigherthanthesill.Then,aroundca.8.6kacal.B.P.,thelakeleveldropssignificantlyforthefirsttimesome10mbelow the sill. In a second step, around8.1kacal.B.P.,thelevelplungesanother15mtovalues~428mbsl,thelowestleveltohavebeenreachedatanytimeintheHolocene.Afterrisingagainaround7.5kacal.B.P.to~405mbsl, therelativelylowlevelconditionscontinue until 5.6 ka cal.B.P. From then on, several

    risesanddropsareobserveduntilasecondconspicuousmaximum at 370mbsl is reached.Thismaximum ismaintainedforperhaps300yrsbetween4.0kaand3.6kacal.B.P..Then,onceagain,asignificantdropby60misobserved,downtoalakelevelwellbelowthesill,at around3.2ka cal.B.P. (Fig.2;cf.Migowskiet al.2006).

    Comparisonswithotherclimaterecords,alsoshowninFig.2, indicatethattheabruptriseinDeadSealevelat10.2kacal.B.P.correspondswell(withinerrorlimitsof ± 100 yrs)with the onset of Sapropel S1.This isitselfofmajorinteresttoarchaeologicalresearchintheLevant,sincetheformationofsapropelsintheEasternMediterraneanduringtheEarlyHoloceneisrelatedtoastrong increase insummerrainfall (e.g.,DeRijketal.1999;Arizteguietal.2000).Sinceanychangefromdrytohumidconditionscanbeexpectedtohavestronginfluenceonthedevelopmentofvegetation,andtherebyimpactpracticallyallkindsofhumanfoodresources,inarchaeologicalstudieswemayuse(marine)sapropelsasimportantgeneralindicatorsfor(terrestrial)rainfallvariations. As such, we now have independent andconsistentevidencefromtwodifferentsources(Dead

    13 12 11 10 9 8 7 6 5 4 3 2 1 0[ka calBP]

    13 12 11 10 9 8 7 6 5 4 3 2 1 0 [ka calBP]

    -40

    -42

    -41

    -39

    -38

    -37

    -36

    -390

    -400

    -410

    -420

    [mb

    sl]

    Dead Sea Level

    Soreq Cave-10

    -8

    -6

    -4

    -12

    GRI

    P δ

    O

    (‰

    , VSM

    OW

    )

    ice

    18

    δ C

    ‰ (P

    DB

    )

    [GIC

    C05

    )

    -430

    -440D

    ead

    Sea

    Lak

    e Le

    vel

    GIS

    P2 n

    ss [K

    ] (

    pp

    b)

    +

    Gau

    ssia

    n S

    mo

    oth

    ed (2

    00 y

    r)

    1.0

    2.0

    1.5

    0.5

    0.0

    -380

    13

    sill at 402.5 m

    ‘Ain Ghazal

    N=67 P

    [rel]

    Little Ice Age3.0 ka RCC

    Levantine Moist Period

    8.6-8.0 ka RCC 6.0-5.2 ka RCC

    Flash

    flood

    s

    Yarm

    oukia

    n

    Rubb

    le Sli

    des (

    ?)

    Fig. 2 Top:14Csequencefrom‘AinGhazal(MPPNB-LPPNB/C: youngest14CageisYarmoukian). Bottom:DeadSea(Jordan)LakeLevelsasproxyforHolocene precipitationinthesouthernLevant(Migowskietal.2006), incomparisontoGreenlandGISP2ice-corestableoxygen isotopesδ18O(Grootesetal.1993),GreenlandGISP2 ice-corenonsea-salt[K+]chemicalionsasproxyforRapid ClimateChange(Mayewskietal.,1997;2004),andSoreq Cave(Israel)δ13Crecord(Bar-Matthewsetal.2003)asproxy forsouthernLevantineHoloceneprecipitationlevelsand flashfloodintensity.Alsoshown(shadedintervals)isthe extentofSapropelS1(9.8-6.8kacal.B.P.;dates:cf. Casfordetal.2007)withestimatedinterruptionS1ab (8.6-8.0kacal.B.P.)duringthecorrespondingRCCmajor globalcoldinterval. Note:IntheLevant,simultaneously,extremedrought(cold- RCC)andflashfloodscanbeexpectedduringaretime-interval 8.6-8.0kacal.B.P.(seetext).

  • YarmoukianRubbleSlides

    Neo-Lithics1/098

    RubbleSlidesandRapidClimateChange

    SealakelevelsandSapropelformation)fortheonsetataround10kacal.B.P.ofamajorandextendedperiodwithenhancedrainfallintheLevant.

    Perhaps not directly expected, but surely in goodagreement with general biological expectations,the beginning of this moist period shows hightemporal correlation to the very first use of selecteddomesticated cereals, essentially simultaneously (seebelow)everywhere(seebelow)intheNearEast.Thisis demonstrated in Fig. 3,wherewe show calibrated14CdatesforthetableinwhichNesbitt (2002:Tab.1) differentiates between archaeological sites witharchaeobotanicalevidence for theearliest appearanceof domesticated (genetically changed) cereals incomparisontowildcereals(butwhichremaininuseforalongtime).InourunchangedadoptionofNesbitt’sdata(Fig.3)thesesitesareshownhereincontextwiththe

    Dead-SealakelevelrecordofMigowskietal. (2006). Withindatingerrors,theonsetofgeneticallychangedcereals coincides everywhere in the Near East (i.e.,southeasternAnatolia,northernSyria,Jordan)exactly(withinca.±100yrs,68%)with theabrupt increaseinprecipitation,asdocumentedintheDeadSea.Othercorrelationsfollow,suchasthesimultaneousonsetoflargevillagesthatmarkthebeginningoftheMPPNB,asshowninFig.3.

    Let us now turn from the highest to the lowestwater level that is registered in theDeadSea record.This low level (at~428mbsl) isfirst reachedat8.6kacal.B.P.,andisclearlysynchronouswiththewellknowninterruptionintheSapropelS1formationthatisindicativeoflowrainfallintheeasternMediterranean,simultaneouslywithlowlevelsofNilewaters(e.g.,DeRijketal.1999;Arizteguietal.2002),aswellas tothe dry spell known from theSoreqCave stalagmite(further indicative for extended flash floods; cf. Bar-Matthews et al., 2003). Together these records givestrongsupportfortheexistenceofamajoraridperiodin the JordanValley, which is synchronous with the8.2 ka cal. B.P. RCC period (Mayewski et al. 1997;Rohlingetal.2002).

    In combination, these records provide tantalizingevidenceforanextendedperiod(10.1-8.6kacal.B.P.)with enhanced rainfall in southern Jordan and, byinference, in theentireLevant.Thiswetperiodstartsabruptly, shortly following the 10.2 ka cal.B.P. coldevent,andfinishesabruptly,withtheonsetofthenextcoldRCCat8.6kacal.B.P..

    Discussion

    Let us recapitulate our present understanding of theclimate system in theNearEast and theAegean.BycomparativestudyofclimaterecordsfromtheJordanValley (Dead Sea Lake Levels), the Aegean ocean(marinecoreLC21),theRedSea(coreGeoB5844-2),andGreenlandGISP2ice-corenss[K+]records(Fig.2),wehavelearntthat:

    The JordanValley was very moist from ca. 10.0- 8.6 ka cal.B.P..We use the term ‘LevantineMoistPeriod’ (LMP) to characterize the high levels ofprecipitationinthistime-interval.TheLMPispresentlybest-documented by local records in high Dead Sealevels(Migowskietal.2006)andlowRedSeasalinity(Arzetal.2003).IntheDeadSearecord,theLMPisrecognisable as a ca. 1400 yr long periodwith highlake levels that remain, continuously, above the sillbetween the northern and southern basin.During theLMP,itappears,bothbasinswerefilled.

    TheLMPstartsabruptly,immediatelyfollowingashort(maximum~200yr)butextremelycoldanddryperiod(10.2-10.0kacal.B.P.)ofRapidClimateChange(RCC).

    The LMP ends abruptly, immediately before theonset of the nextRCC (8.6-8.0 ka cal.B.P.).DuringbothRCCperiods (whichwe abbreviate as “10.2 kaGISP2 RCC” and “8.2 ka GISP2 RCC’) the eastern

    Fig. 3 Archaeobotanicalrecordsforcereals(cropstatus:wild, domesticated,orunclear),arrangedaccordingtositeageand culturalperiodsaccordingtoNesbitt(2002)incomparisonto GreenlandGRIPstableoxygenisotopes(Grootesetal.1997), GreenlandGISP2nss[K+]values(Mayewskietal.,1997, 2004)andDeadSeaLakeLevels(Migowskietal.,2006). Note:Thearchaeobotanicaldatashownherearetaken unchangedfromNesbitt(2002:Tab.1),butwithreplacementof conventional14Cagevaluesbytree-ringcalibrated14Cdates.

    13 12 11

    13 12 11

    10

    10

    9

    9

    8

    8

    7 6 5

    7 6 5

    14 12 11 10 9 8 7 6 5

    13 12 11 10 9 8 7 6 5[ka calBP]

    [ka calBP]

    Iraq ed-DubbHayonim CaveAbu HureyraMureybit (I-III)Qermez DereNetiv HagdudM‘lefaatIraq ed-DubbJerf al AhmarTell AswadJericho (VIIA-X)Dja’de

    Nevali CoriWadi el-Jilat 7

    Cayönü (grill-cobble)Nahal Hemar (3-4)Cafer Höyük (XIII-IX)‘Ain GhazalBeidhaGanj DarehAbdul HoseinAbu Hureyra (2A)Cafer Höyük (III-IV)Tell Aswad (II)Asikli HöyükJericho (Tr.I:XII-XXIII)Wadi el-Jilat 7GhoraifeJarmoAli Kosh (BM)HalulaSabi Abyad IIWadi Fidan ARas Shamra (Vc)GritilleCan Hasan IIIAzraq 31Dhuweila (I)Tell BouqrasTell Ramad (I)Abu Hureyra (2B)Wadi Fidan CEl Kowm II-CaracolAtlit-Yam

    Epipal./Natufian

    PPNA

    Early PPNB

    Middle PPNB

    Late/Final PPNB

    Crop Status: Domesticated According to Nesbitt (2002) Wild Unclear

    -380

    -390

    -400

    -410

    -420

    -430

    -440

    -380

    -390

    -400

    -410

    -420

    -430

    -440

    [mbsl]

    1310.2 ka

    RCC8.6-8.0 ka

    RCC

    G

    ISP2

    nss

    [K

    ] (p

    pb

    )

    +

    Gau

    ssia

    n S

    mo

    oth

    ed (2

    00 y

    r)

    1.0

    1.5

    0.5

    0.0

    -34

    -36

    -38

    -40

    -42GRI

    P δ

    O

    (‰

    , VSM

    OW

    )

    [G

    ICC

    05]

    ice

    18

    Dea

    d S

    ea L

    ake

    Leve

    l [m

    bsl

    ]

  • Neo-Lithics1/09

    YarmoukianRubbleSlides

    9RubbleSlidesandRapidClimateChange

    Mediterranean was regularly punctuated by winter/spring outbreaks of extremely cold polar airmasses.DuringtheseRCCperiods,fordaysonendandmaybeeven weeks in winter and early spring, the easternMediterranean would have been regularly ‘bathed’withairmassescomingdirectlyfromSiberia.

    Quite consistent with this modelling expectation,and independently confirmed by the major dropobserved inDead Sea LakeLevels (Migowski et al.2006), during the entire 8.2 ka GISP2 RCC event(8.6-8.0kacal.B.P.)theJordanValleyexperiencedanextendeddrought.

    Not unexpectedly, therefore, and independentlyconfirmedby the absenceof archaeological 14Cdata,it appears that immediately with the onset of the8.6-8.0 ka cal.B.P.RCC themajority of sites in thesouthernJordanValleywereabandoned.Animportant

    exceptionisthelargesettlementatSha‘arHagolan,inthenorthernJordanValley,whichwasfoundedatthistime.Interestingly,Sha‘arHagolanwasequippedwithawell(Garfinkeletal.2006).AlthoughSha‘arHagolanisalargesettlementwithwell-constructedhousesandamajorcommunalbuilding(GarfinkelandMiller2001),thesiteactuallydoesnotshowmuchrebuilding.Pointingin the samedirection, thequite thin stratigraphyalsoshowslittleevidenceforanextendedoccupation,nordotheavailableradiocarbondates(Table1)supportalongtimespan(althoughthesederivemainlyfromthewell).To conclude, the settlement at Sha‘arHagolanwasitselfsoonabandoned.Apparently,inthelongrun,thedroughtbecametoosevereforhumanoccupation,eveninthenorthernJordanValley.

    14000 13000 12000 11000 10000 9000 8000 7000 6000

    14000 13000 12000 11000 10000 9000 8000 7000 6000

    14000 13000 12000 11000 10000 9000 8000 7000 6000

    14000 13000 12000 11000 10000 9000 8000 7000 6000

    14000 13000 12000 11000 10000 9000 8000 7000 6000

    14000 13000 12000 11000 10000 9000 8000 7000 6000

    [ cal B P ] [ cal B P ] [ cal B P ] [ cal B P ] cal B P ca P

    Yarmukian

    LPPNB

    MPPNB

    EPPNB

    PPNA

    NATUFIAN

    N=14

    N=67

    N=64

    N=56

    N=123

    N=106

    -380

    -400

    -420

    -440

    [m b

    msl

    ]

    Lake Level

    High Dead Sea Level

    SAPROPEL S1a

    GISP2 nss [K ] smoothed

    2

    1

    0

    15000 14000 13000 12000 11000 10000 9000 8000 7000 6000 5000 15000 14000 13000 12000 11000 10000 9000 8000 7000 6000 5000

    15000 14000 13000 12000 11000 9000 8000 7000 6000 5000

    15000 14000 13000 12000 11000 9000 8000 7000 6000 5000

    [calBP]

    10000 [calBP]

    +

    P

    GIS

    P2 n

    ss [K

    ] (

    pp

    b)

    +

    Gau

    ssia

    n S

    mo

    oth

    ed (2

    00 y

    r)

    G

    RIP

    δ

    O

    (‰, V

    SMO

    W)

    ice

    18 [G

    ICC

    05)

    10.2 ka RCC 8.6-8.0 ka RCC

    YarmoukianRubble Slides (?)

    Fig. 4 EarlyHoloceneCulturalChronologyintheLevant,basedonasubstantialarchaeological14Cdatabaseandculturaldesignationof14Cdates suppliedbyBöhnerandSchyle(2009)incomparisontoprecipitationproxiesinthesouthernLevant(DeadSeaLakeLevels:Migowskietal., 2006).GreybandsindicateperiodsofRapidClimateChange(RCC)asdefinedbyMayewskietal.,2004,withbestmeteorologicalanalogyin therecentLittleIceAges(Rohlingetal.2002).TheGreenlandicecorestableoxygenδ18Orecord(Grootesetal.1997;withGICC05agemodel: Andersonetal.2005)isonlyshownforpurposesofchronologicalorientation.Note:(i)theonsetoftheMPPNB(ca.10kacal.B.P.)is synchronouswithanabruptmajor(50m)riseinDeadSeaLakeLevels,(ii)theendoftheLPPNB/C(ca.8.6kacal.B.P.)issynchronouswithan abruptdropinDeadSeaLevels,and(iii)theYarmoukianRubbleSlides(8.6-8.0kacal.B.P.)occurduringtheequivalent(8.6-8.0kacal.B.P.) RCCglobalcoldperiod,duringwhichextremedroughtisregisteredinthesouthernLevant,asindicatedbyDeadSealevellowstands(seetext).

  • YarmoukianRubbleSlides

    Neo-Lithics1/0910

    RubbleSlidesandRapidClimateChange

    Conclusions

    Asaresultofthesestudies,thefollowingscenarioforJordanian Rubble Slides is proposed. During RCCtimes, and especially for times dwith exceptionallyhighGISP2 nss [K+] values,we expect circum-polarair pressure anomalies similar to the Little IceAge.Theseatmosphericpressureanomalies(record:GISP2nss [K+]) rapidly transmit large amounts of cold anddryairfromAsiaintotheBalkansandadjacentregionson the northern edge of the Aegean, from wherethey are channelled southwards across the Aegeanocean.Thecoldairmassesareregisteredasrapidseasurfacetemperature(SST)variationsinamarinecoreto the east of Crete (record: LC21). Consequently,during this RCC interval (8.6-8.0 ka cal. B.P.), wemayexpectextremelycoldandaridconditionsintheeasternMediterranean,alongwithstrongwindsintheAegean. This is confirmed by the extreme droughtfor thisperiod,asdocumented in theDeadSeaLakeLevel record.However, due to the still relatively farnorth position of the moisture-bringing IntertropicalConvergenceZone,atleastatstochasticintervals,thecoldSiberianwindswillhaveinteractedstronglywiththemoistMediterranean airmasses to produce someextremelyflashyandintensiveprecipitation.

    Thiscanberecognised,perhapsmostclearly,fromwhatwecall theflashflood record, that is theSoreqcavestalagmiteδ13Crecord (Fig.2).Since thecorrectinterpretation of isotopic stalagmite data is no easymatter,itisperhapsbest,inthiscase,tocitetheauthorsdirectly(Bar-Matthewsetal.2003):’...analternativeexplanation for the extremely high δ13C values,consistentwiththeinterpretationofenhancedrainfallduring sapropel intervals, is that the strippingof thesoilcoverwascausedbydelugeevents,whichresultedinwaterreachingthecaveafterlittleinteractionwithsoilCO2’(Bar-Matthewsetal.2003:3193).

    Thankstothehighlyprecise(U/Th)datingfortheSoreqδ13Crecord,incomparisonwiththearchaeologicalobservations(Rollefson2009)andfinallyalsothe14Cdata for the Yarmoukian period (Table 1), such anintriguing‘deluge’explanationwouldreadilysupportour hypothesis that the Yarmoukian rubble slideswerecausedby torrentialepisodic rainfallduring theotherwise arid 8.6-8.0 ka cal. B.P. RCC period.Wetherefore confidently conclude that the Yarmoukianrubble slides in the southern Jordan valley, althoughmaybeincombinationwithwidespreadhuman-inducedenvironmental degradation, had essentially naturalcauses.

    Acknowledgements:Ithankfullyacknowledgesupportfrommanyfriendsandcollegues,aboveallLeeClare(Köln), Hans Georg Gebel (Berlin), Jörg Linstädter(Köln), Paul Mayewski (Maine), Eelco Rohling(Southampton), Gary Rollefson (Walla Walla), andDanielSchyle(Köln).

    References

    Andersen K.K., Svensson A., Johnsen S.J., Rasmussen S.O.,BiglerM.,RöthlisbergerR.,RuthU.,Siggaard-AndersenM.-L.,SteffensenJ.P.,Dahl-JensenD.,VintherB.M.,andClausenH.B.2006 TheGreenlandIceCoreChronology2005,15-42ka. Part1:Constructingthetimescale,Quaternary ScienceReviews25.(ShackletonSpecialIssue24,2006)

    Ariztegui D., Asioli A., Lowe J.J., Trincardi F., Vigliotti L.,TamburiniF.,ChondrogianniC.,AccorsiC.A.,BandiniMazzantiM.,MercuriA.M.,VanderKaarsS.,McKenzieJ.A.,andOldfieldF.2000 PalaeoclimateandtheformationofSapropel S1:inferencesfromLateQuaternarylacustrineand marinesequencesinthecentralMediterraneanregion. Palaeogeography,Palaeoclimatology,Palaeoecoogy 158:215-240.

    ArzH.W.,LamyF.,PätzoldJ.,MüllerP.J.,andPrinsM.2003 MediterraneanMoistureSourceforanEarly-Holocene HumidPeriodintheNorthernRedSea. Science300:118-121.

    Bar-MatthewsM.,AyalonA.,KaufmanA.,andWasserburgG.J.1999 TheEasternMediterraneanpaleoclimateasareflection ofregionalevents:SoreqCave,Israel.Earthand PlanetaryScienceLetters166:85-95.

    Bar-Matthews M., Ayalon A., Gilmour M., Matthews A., andHawkesworthC.J.2003 Sea-landoxygenisotopicrelationshipsfrom planktonicforaminiferaandspeleothemsinthe EasternMediterraneanregionandtheirimplication forpaleorainfallduringinterglacialintervals. GeochimicaetCosmochimicaActa67(17):3181-3199.

    Bar-YosefO.1989 ThePPNAintheLevant-AnOverview.Paléorient 15/1:57-63.

    BeginZ.B.2005 DestructiveEarthquakesintheJordanValleyandthe DeadSea-theirRecurrenceIntervalsand theProbabilityoftheirOccurrence.GeologicalSurvey ofIsrael,ReportGSI/12/05,JerusalemJune2005.

    BöhnerU.andSchyleD.2009 OnlineRadiocarbonDatabase(http://context-database. uni-koeln.de),registeredasdoi:10.1594/GFZ. CONTEXT.Ed)

    CasfordJ.S.L.,Abu-ZiedR.,RohlingE.J.,CookeS.,FontanierC.,LengM.,MillardA.,andThomsonJ.2007 Astratigraphicallycontrolledmultiproxy chronostratigraphyfortheeastern Mediterranean.Paleoceanography22,PA4215, doi:10.1029/2007PA001422,2007.

    DeRijkS.,HayesA.,andRohlingE.J.1999 EasternMediterraneansapropelS1interruption:an expressionoftheonsetofclimaticdeterioratiotn aroundkaBP.MarineGeology153:337-343.

  • Neo-Lithics1/09

    YarmoukianRubbleSlides

    11RubbleSlidesandRapidClimateChange

    EnzelY.,Bookman(KenTor)R.,SharonD.,GvirtzmanH.,DayanU.,ZivB.,andSteinM.2003 LateHoloceneclimatesoftheNearEastdeducedfrom DeadSealevelvariationsandmodernregionalwinter rainfall.QuaternaryResearch60:263-273.

    GarfinkelY.andMillerM.2001 Sha‘arHagolanI:NeolithicArtinContext.Oxbow Books,London:272.

    GarfinkelY.2004 TheGoddessofSha‘arHagolan.Excavationsata NeolithicSiteinIsrael.Jerusalem,IsraelExploration Society.

    GarfinkelY.,VeredA.,andBar-YosefO.2006 TheDomesticationofWater:TheNeolithicWellof Sha‘arHagolan,JordanValley,Israel. Antiquity80:686–696.

    GrootesP.M.,StuiverM.,WhiteJ.W.C.,JohnsenS.,andJouzelJ.1993 ComparisonofOxygenIsotopeRecordsfromthe GISP2andGRIPGreenlandIceCore. Nature366:552-554.

    KenyonK.M.andHollandT.A.(eds.)1981 ExcavationsatJericho.Vol.III.London,TheBritish SchoolofArchaeologyinJerusalem.

    KlingerY.,AvouacJ.P.,AbouKarakiN.,DorbathL.,BourlesD.,andReyssJ.L.2000 SliprateontheDeadSeatransformfaultin northernArabavalley(Jordan).GeophysicalJournal International:755-768.

    MayewskiP.,MeekerL.D.,TwicklerM.S.,WhitlowS.,YangQ.andPrenticeM.1997 Majorfeaturesandforcingofhighlatitudenorthern hemispherecirculationusinga110000-year-long glaciochemicalseries.JournalofGeophysicsResearch 102:26345-26366.

    Mayewski P.A., Rohling E.E., Stager J.C., KarlenW.,MaaschaK.A., Meeker L.D., Meyerson E.A., Gasse F., van Kreveld S.,HolmgrendK.,Lee-ThorphJ.,RosqvistG.,RackiF.,StaubwasserM.,SchneiderR.R.,andSteigE.J.2004 Holoceneclimatevariability.QuaternaryResearch62: 243-255.MeekerL.D.andMayewskiP.A.2002 A1400yearlongrecordofatmosphericcirculation overtheNorthAtlanticandAsia.TheHolocene12(3): 257-266.

    MigowskiC.,SteinM.,PrasadS.,NegendankJ.F.W.,and AgnonA.2006 Holoceneclimatevariabilityandculturalevolutionin theNearEastfromtheDeadSeasedimentaryrecord. QuaternaryResearch66:421-431.

    NesbittM.2002 Whenandwherediddomesticatedcerealsfirstoccur insouthwestAsia?InR.T.J.CappersandS.Bottema (eds.).TheDawnofFarmingintheNearEast.Studies inEarlyNearEasternProduction,Subsistence,and Environment6:113-132Berlin,exoriente.

    RohlingE.andPälikeH.2005 Centennial-scaleclimatecoolingwithasuddencold eventaround8,200yearsago.Nature434:975-979.

    RohlingE.J.,MayewskiP.A.,Abu-ZiedR.H.,CasfordJ.S.L.,andHayesA.2002 Holoceneatmosphere-oceaninteractions:recordsfrom GreenlandandtheAegeanSea.ClimateDynamics18: 587-593.

    RollefsonG.O.2009 SlipperySlope:TheLateNeolithicRubbleLayerinthe SouthernLevant.Neo-Lithics1/09(thisvolume).

  • Neo-Lithics1/09

    LateNeolithicRubbleLayerintheSouthernLevant

    12RubbleSlidesandRapidClimateChange

    Introduction

    Inthefirsttwoseasonsofexcavationat‘AinGhazal,oureffortsfocusedprincipallyonarescuearchaeologyapproachtorecoverburialsandarchitecturalinformationexposed on a bulldozer terrace associated with theconstructionofamajorhighway thatcut through thelowerslopeofthesite.Whentheemergencynatureofthefieldwork subsided,wewere able to expandourgoals to sample other areas of the immense expanseof ‘Ain Ghazal, which involved placing excavationtrenchesinotherareasofthesettlement,andcontrarytowhat surface artifacts indicated,we encountered asubstantiallayerofinsituoccupationalmaterialfromthe Yarmoukian Pottery Neolithic. One element inthese ceramic Neolithic layers was the presence ofverydenseconcentrationsofangularlimestonerubblemixedinwithmostoftheYarmoukiansediments.Thequantityofrubblewasstunninglydenseandabundant,andsinceitwasclearlycharacteristicoftheYarmoukianperiod,wenamed it “theYarmoukianRubbleLayer”(RollefsonandKafafi1994:11).

    What follows is a sample of Late Neolithicsettlements that manifest the rubble layer as well asothercontemporaneoussiteswheretherubblelayerisnotpresent.SincethedebrisflowhasbeenrecognizedatapparentlycontemporaneoussiteswithJerichoIXorother PN culturalmaterial,wewill hereafter refer tothephenomenonasthe“LateNeolithicRubbleLayer.”

    The Late Neolithic Rubble Layer at ‘Ain Ghazal

    Our first encounter with the Late Neolithic RubbleLayerwasintheSouthFieldinthe1984season(Fig.1),where the thicknessof thedepositwasmore thanameter inmany places, reachingmore than ameterandahalfinsomegullies.Anexampleofthegeneralsequence of events is provided in Fig. 2, a sectiondrawing(southbalk)oftheexcavationinSquare4655intheSouthField.Allofthestratabelowloci000-002areYarmoukianuntil,intheleftside,PPNClayerswerereachedatLoci041and045.Thewallintheleftcenterofthesection(Locus019)wasaYarmoukiandomesticdwelling that became abandoned, and subsequentlyfilledtomuchofitsheightwith“normal”slopewash(Locus042).Sometimelater,ahugepitwasexcavatedby the Yarmoukian residents, which later becameinundated with debris (Locus 011) characterized byangular limestone rubble of extraordinary density.A later rubble slide is representedbyLocus010 (therubbleofwhichwaslargerinsizethaninLocus011).ThephysicalcharacteroftherubbleeventsisshowninFigs.3-4.

    A “platform” or wall foundation, Yarmoukian inage, is represented by Locus 006 and Floor 029, ayoungerstructurebuiltatopthesecondrubbledeposit.Locus009,justtotheleftofWall019,iswallfallandmight be associated with the eventual abandonmentof the structure represented by Loci 006 and Floor029,andLocus009ispossiblycontemporaneouswithLocus005,awallcollapsefromtheyoungerbuilding.Locus003isprincipallyan“insitu”slopewashwithabundantangulardebris,althoughtheupper10cmalsocontains post-Neolithic pottery. Locus 002 is a post-abandonment mix ofYarmoukian materials but withrelativelycommonByzantinesherdsaswell,probablyreworked sediments from higher up the slope near aByzantinestructure.

    Asour excavationsgrew inarea, the same rubblelayer phenomenon was noted in the Central Field,where Yarmoukian architecture was usually filledwith angular debris washed from above. Near theundefined boundary between the Central and NorthFields,Yarmoukianpotterydisappeared,probablyasaconsequence of 20th century agricultural disturbanceoftheupperlayersofsoil,andnoceramicswerefoundintheNorthFieldeither,possiblyforthesamereason.The rubble nature of theYarmoukian deposits in thewesternCentralFieldwasnotnotedintheeasternpartof the Central Field; There was substantial angulardebrisintheupperreachesofthestratigraphicsequencein the North Field, but this appears to be related toanthropogenic causes associated with industrial uses

    Slippery Slope: The Late Neolithic Rubble Layer in the Southern Levant

    Gary O. Rollefson WhitmanCollege,WallaWalla [email protected]

    Fig. 1 Topographicmapof‘AinGhazal,showingthelocationofthe severalfieldsofexcavation(Drawing:AliOmariandG. Rollefson)

  • LateNeolithicRubbleLayerintheSouthernLevant

    Neo-Lithics1/0913

    RubbleSlidesandRapidClimateChange

    ofchalkandsoftlimestoneinthearea(cf.KafafiandRollefson1995:20-21).

    The Late Neolithic Rubble Layer was a curiousfeatureof theYarmoukian layersat ‘AinGhazal,butthe presence of such angular debris was not novelat the site. In the MPPNB layers, especially, therewere widespread dense deposits of sharply fracturedstones,almostallofthempoorqualityflint.Theywereassociatedwithfire,andthesefire-crackedrockswereprobably associatedwithoutdoorprocessingof plantor animal resources and not related to any particularclimaticevents.ThisMPPNBrockydebriscontrastedsharplywith theYarmoukianRubble, since the latterwas principally limestone fragments that seemed tohave eroded downslope from exposures of bedrockhigheruphill.

    AcrosstheWadiZarqa,whichwasapermanentriverduringtheearlyNeolithic,therearenoindicationsofanyYarmoukiandwellings.Infact,theonlyindicationoftheuseoftheeasternsideoftheWadiZarqaduringthePNisapotteryproductionareahighontheeasternescarpment, just above the higher LPPNB large cultbuilding (cf. Rollefson 1998; Rollefson and Kafafi1997: 36). The East Field is much steeper than theareatothewestoftheWadiZarqa:agreaterthan30%slopeisthecurrentdeclination,andthemodernslopeis probably not much different than in the Neolithicperiod.Becauseofthissteepness,thereislittletocatchdownslope erosion before sloughing into the WadiZarqaitself,soitisnotsurprising,perhaps,thataLateNeolithicRubbleLayerhasnotbeenpreserved.

    OneaspectoftheYarmoukianlayersat‘AinGhazalthatmightbe correlatedwith theprocess responsiblefor theRubbleLayer is thecoatingofartifacts (flint,pottery,andbone)withathickandresistantcalcareouscoating; only treatmentwith hydrochloric acidmadeitpossible todetermine the statusof tool/debitageor

    ceramictypeoranimalspecies.OnesuspectsthattheconcretionisrelatedtofreechemicalradicalsinthesoilthatwerenotpresentduringtheMPPNB,LPPNB,andPPNCsoilregimes.

    The Late Neolithic Rubble Layer Elsewhere in the Southern Levant

    Wadi Shu‘eibFor some time, we were not aware that the LateNeolithicRubbleLayerwasafeaturethatoccurredinothersites,anditwasnotuntilwebeganworkingatoursistersiteatWadiShu‘eibthatitbecameclearthattheRubbleLayerwasamorewidespreadevent,occurringatanotherYarmoukiansitesome25kmtothewestof‘AinGhazal.AtWadiShu‘eib,allalong the roadcutofahighwaylinkingal-SaltwiththeJordanValleyatSouth Shuna, “a massive sorted layer of cobbles…thatroughlyseparatesportionsofthePre-PotteryandPotteryNeolithiclayers”wasobservable(Simmonsetal.2001:7).ThephotographinFig.5showstwoclearrubbleevents.

    Jebel Abu ThawwabNotfarfrombothWadiShu‘eiband‘AinGhazal,thesiteatJebelAbuThawwabalsoproducedasubstantialLateNeolithicRubbleLayer.KafafinotedthattheEarlyBronze andYarmoukian layers “were separated by afill containing large quantities of small stone debris”(Kafafi1988:453;cf.Kafafi200117,32andPlate8B).

    ‘Ain RahubEastofIrbidat‘AinRahub,athick(1.0-1.5m)layeroflimestonerubblecontainedYarmoukianpottery,anditispossible that theYarmoukianoccupationcontinuedbelowtherubblelayer(Muheisenetal.1988:493).

    Fig. 2 DrawingoftheSouthBalkofSquare4655intheSouthField.Loci010and011arerubblelayersassociatedwiththe 8.2k.y.a.event.(Drawing:G.Rollefson).

  • Neo-Lithics1/09

    LateNeolithicRubbleLayerintheSouthernLevant

    14RubbleSlidesandRapidClimateChange

    al-ShalafThe preliminary report on excavations at al-Shalaf,near‘AinRahub,didnotprovidedetailsofthenatureofthestrataatthesite,butitwasnotedthatalloftheYarmoukianpotterysherdswere“coveredbyalayerofsinter thatwasinsomecases thick”andwhichcouldonly be studied once that layer was removed usinghydrochloricacid(BienertandVieweger1999:57),anobservation that echoed the situation at ‘AinGhazalandWadiShu‘eib.

    Tell Abu SuwwanExcavations at Tell Abu Suwwan, on the southernoutskirts of Jerash, have recently revealed amassivelayer of rubble, approaching a meter in thickness,containing Yarmoukian pottery (an-Nahar, pers.comm.,2007)overlyingextensivePPNarchitecture.

    Umm Meshrat I & IIFarther south, the survey connected with the Wadial-ThamadprojectsouthofMadaba locatedanbroaddistribution ofYarmoukian pottery and typical stonetools; twoconcentrationswerenamedUmmMeshratI and II, and test excavationswere carriedout at thebeginning of the current millennium. The terrace onwhich the sites were situated includes deposits of“fieldstones and grayish sediment, suggestive of theYarmoukian‘debrisfields’thatmaybeassociatedwiththe 8thmillenniumBP climate shift… identified byRossignol-Strick”(Cropperetal.2001:18).

    WHS 524In the surveys conducted by MacDonald in the late1970s and early 1980s (cf. MacDonald 1988), oneNeolithicsite(WHS524)ascribabletothePNA/JerichoIX cultural tradition was identified. A later intensiveexamination of the site’s surface and of the bulldozercutalongthehighwayrevealedthat“thearchaeologicallayeristhick…andatitstop[thereis]morethanameterofcoarsecolluvium”(Bossutetal.1988:131).

    BastaAtBasta,asedimentunitup to2mthick inplaces iscomprised of “tremendous amounts of detritus andmudflows”that“passedthroughandabovetheLPPNBlayers”(Gebel2004:100;cf.Table1andPlates2Band2C),datedto theearlyormiddle7thmillenniumcal.B.C. Ironically, it was the sudden transport thatwasresponsiblefortheexcellentarchitecturalpreservationat the site, at least in someareas (Gebel 2004: 104).Thepotteryassociatedwith this rubbleeventhasnotbeenascribed toeither theYarmoukianorJerichoIXculturalspheres.

    Ba‘jaThe situationatBa‘japresentsdifferent facetsof therubble slide phenomenon. Wall stone rubble layersat the site probably represent earthquake-causeddebris,possiblytwiceneartheendoftheoccupation.Later, the site experienced a thick flow (asmuch as

    1.5m in thickness) of coarse rubble andgravelwithinterdigitated fine gravels, all transported by water.However, the water-borne sediments came not fromslopecollapsebutfromflashfloodingdownthenarrowgorge whose floor was much higher than at present(Gebel and Kinzel 2007: 32). There is evidently nomaterialincludedinthefinegravelsthatissuitablefordatingtheevents.

    Abu GoshThe settlement at Abu Gosh, at the northwesternedge of Jerusalem, produced evidence for both Pre-Pottery and Pottery Neolithic occupations. ThreedecadesagoRonensuggestedthatthepost-PPN“stonylayer” indicated increased precipitation during the(uncalibrated)6-4thmillennia(Ronen1971).Farrand,who was the geologist working with Lechevallier,disagreed, claiming that the climate was insteaddrier during these times.More recent analysis of thegeomorphological situation suggests that the stonylayerisconfinedtothehabitationareaitselfandisnotpresentinthenearbyareas,suggestingananthropogenicoriginforthematerial(Barzilay2003:7).

    Topography and the Rubble Slide Event(s)

    ThesheermassofstoneintheLateNeolithicRubbleLayer at ‘Ain Ghazal and Wadi Shu‘eib impressedusgreatlyduringourexcavations there.But thehighenergy necessary to move such enormous quantitiesof rubble was understandable in view of the slopesdownwhichtherubblewasmovedbywater.At‘AinGhazaltheaverageslopeintheSouthField(wheretherubblewasmostclearlyvisible)wasbetween25-26°,measured from the top of the hill to the edge of theWadi al-Zarqa.The conditions atWadiShu‘eibwerenotassteep,withtheslopeangleaveragingabout12-14°on theuphill sideof sampledAreas I, II, and III(Simmonsetal.2001:Fig.2).

    AinJammamhasamarkedlysteepslope,not lessthan20°(cf.Gebel2008:Fig.3).Thereisadecidedlystrong Pottery Neolithic occupation here (cf. Fino

    Fig. 3 PhotoofabulldozersectionintheSouthFieldca. 50msouthofFig.2.(PhotobyCurtBlair).

  • LateNeolithicRubbleLayerintheSouthernLevant

    Neo-Lithics1/0915

    RubbleSlidesandRapidClimateChange

    1996;Gebel2008:21).FinonotedthreePNoccupationlayers (Occupations Five, Six and Seven), the lasttwo of which, according to Kafafi, are Late PotteryNeolithic,similartoJerichoPNBforOccupation6andWadiRabahandQatifianforOccupationSeven(Fino1996).TheolderOccupationFive,ontheotherhand,contains dark brown friable potsherdswith sand andstrawtemper,asortnotnotedatotherarchaeologysites(Fino1996).

    Unfortunately, there is no published informationconcerningthepossiblepresenceofarubbleslidehereby any of the people associatedwith research at thesite for anyof the strata (e.g.Waheeb1996;WaheebandFino1997;Gebeln.d.;2008).Itmightbepossiblethat debris layers of the nature of theLateNeolithicevidenceat‘AinGhazal,WadiShu‘eib,andBastadidnot form at ‘Ain Jammam because of the sandstonebedrockinthisareaasopposedtolimestone.

    The slope angles at Basta were much shallower,averagingabout7-8°(Kamp2004:Fig.14),so“mostofthedrainagesappeartoorestrictedfortheamountoftransportedflow”(Gebel2006:20).Withdebrislayers

    asthickastheywereatBasta,theenergytotransporttherubbledownsuchshallowslopesmusthavebeentremendous and indicates that rainfall occasionallyamounted to very strong cloudbursts and consequentflashflooding, as also appears to have been the caseat Ba‘ja. Though there is no available publishedinformation,theslopesatUmmMeshratI&IIareasshallowasatBasta,possiblyevenshallower(personalobservation).

    Clearlytheterraincontributedtotheferocityoftheslopewash,andintheabsenceofsteepgradientsitisnot surprising that prehistorians have not mentionedthepresenceoftherubblelayerintheearliestpartofthePotteryNeolithic.AtMunhata,forexample,Layer3isregardedasaperiodofabandonmentofunknownduration(Garfinkel1992:16;Perrot1964:345).SincetherewasnodiscussionofthenatureofthesedimentsinLayer3andYarmoukianLayer2(cf.Perrot1966),presumably there was nothing remarkable about thepresence of any appreciable amount of rubble. Thesame topographic situation seems to pertain at siteswith early PN layers, such asTellTeo (Eisenberg etal.2001)intheHulaValley,atYiftahelintheLowerGalilee(Braun1997),andSha’arHagolanintheJordanValley(e.g.GarfinkelandMiller2002).

    Anthropogenic Contributions to the Late Neolithic Rubble Layer

    It can’t be determined on the basis of the presentevidenceifclimatechangealonecouldhaveproducedthe devastating avalanches of rubble around LateNeolithic settlements in the hilly countryside. Noris it yet clear if therewasonlyone suchevent, or ifthere were two and perhaps even more; Fig. 5, forexample,indicatestherewereatleasttwoandperhapsthree episodes atWadi Shu‘eib. There are, however,good grounds to assert that some and perhaps evenmuch of the rubble slide damagewas due to humanoverexploitation of the vicinities immediate aroundsettlementssuchas‘AinGhazalandWadiShu‘eib.

    Years ago I promoted an argument for severeenvironmental degradation around villages duringthe LPPNB that may have caused the tumultuouspopulation decrease in Jordan (and by extension, forMPPNBsettlementsintheJordanValleyandPalestine)at around8,900 cal.B.C.This argument centeredoncalculationsoftheamountoflimeplasterthatexistedinthefloorsofdomesticbuildingsthroughoutthesouthernLevant, citing data from earlier published accounts(e.g., Kingery et al. 1988). Since then, independentassaysofplastersamplesfrom‘AinGhazalhousefloorshaveshownthattheoriginalestimatesoftheamountoflimeusedinthefloorswashighlyinflated,andthattheamountoflimenecessaryforthefloorswasnegligible(Affonso 1997; Telfah and Kafafi 2003). This, inturn, threw considerable doubt on the deforestationclaimsthatweremadefortheproductionoflimeandthe effects this deforestation had on environmental

    Fig. 4 PhotooftherubblelayerinSquare4452,15msouthofFig.2. (PhotobyCurtBlair).

    Fig. 5 ThebulldozersectionassociatedwithroadconstructionatWadi Shu‘eib.Onecanseeatleasttwoandperhapsthreerubble layersbeginningjustabovetheheadofDeborahOlszewski. (Photo:AlanSimmons).

  • Neo-Lithics1/09

    LateNeolithicRubbleLayerintheSouthernLevant

    16RubbleSlidesandRapidClimateChange

    degradation and settlement instability (e.g. RollefsonandKöhler-Rollefson1989).

    Butwhile the effects on forest resources for limeproduction was insignificant, a new considerationof human impacts on stands of brush and trees hasdemonstrated that simple daily needs for domesticfuel (cooking, foodprocessing, potteryproduction inthe PN, etc.) had a much more devastating demandonforeststhanhadbeenassumed(RollefsonandPinen.d.).Clearanceoftreesandbrushforfueldenudedthehillsides, and the intensive browsing by goats in thesame areas prevented regrowth to protect the fragilesedimentarystructuresaroundthesettlements(Köhler-RollefsonandRollefson1990).

    When the 8.2 k.y.a. event occurred, evidentlysometimeafterthebeginningofthePNperiodinthesouthernLevant,thehillyareasinhighlandJordanwerevulnerabletocataclysmicdebrisflowsafterararebutdestructivedownpour,moving soils and rockydebrisdownhill with enough force to destroy buildings insomecases.Thisappearstobethecaseat‘AinGhazal,although here theYarmoukian residents rebuilt theirhousesandmaintainedtheirpresenceatthevillageforaconsiderableamountoftime.

    There are other examples of the potentially

    destructivepowerofheavyrainsfallingonadenudedlandscapethatincludesappreciableslopes.Inthehillsof theKufrinja region of northwestern Jordan, todaythere are high natural terraces of angular limestonerubblewithvery little soil or vegetation cover (Figs.6-7).Theterracesareinclinedverylittle,notexceeding5-6°, but this appears to have been sufficient not tomovetherubble,buttoremovethesoilcoveroverit.Throughout highland Jordan, devegetation by goats(andsheep,butlessaffectingwoodybrushandtrees)has been underway since the PPN period, and thiscouldexplain thepresenceofsuchrubblefieldsaftertheoccasionaldownpour(s)duringthe8.2k.y.a.event.

    Concluding Remarks

    The widespread and apparently contemporaneousoccurrence of rubble layers atmost known early PNsettlements in the hilly areas of the southern Levantargueforcefullyforapowerfulphenomenonthatwasrelatedtoaregionalagentactingonfragilelandscapes.Themostlikelyagentisthesuddenandsevereclimaticdeteriorationinthelasthalfofthe9thmillenniumcal.B.P.

    Whiletheremaybeaconsensusonthisaspectoftheissue,muchmoreremainstobedetermined.Therubbleslides likelywerenotabsolutelysimultaneous, in thesensethatlocalvagariesofweatherpatternsmayhavetriggered the avalanches at different times, perhapsmanyyearsapartinvarioussectorsoftheregion.Itisalso not clear if therewas only a single rubble slideevent at the sites thatwere affected,nor is there anyreasontoassumethatitwasaone-timeaffair.Instead,itisprobablethatdenudedslopessufferedfromheavyrainfallanynumberoftimes,againperhapsyearsapart.Thereisalsothequestionofhowdamagingtherubbleslideswereindisparatelocalities:clearly‘AinGhazalrecoveredfromthecatastrophethatassailedit,butthiscan’t be said with confidence about the situation atWadiShu‘eib,forexample.

    The destruction of highland settlements andfarmlandsimmediatelyaroundthemmayhaveusheredinanothermassivepopulationrelocation,echoingthepost-LatePPNBturbulenceof thesouthernLevantatthebeginningofthe9thmillenniumcal.B.P.Althoughtherewereprobablyseveraldeleteriouseffectsof the8.2k.y.a.event throughout theLevant,settlements inlow-lyingareasevidentlydidnothavetocopewiththecolossaltransportofrubblethataffectedthehousesandfields of the highland populations. Is it possible, forexample,thatoneofthereasonsfortheimmensesizeof theSha’arHagolansettlementcouldbedue to themigration of residents from someof theYarmoukianfarming villages in northern and central highlandJordan?

    There are several vital areas that demand moreintensive investigation in the effects of the 8.2 k.a.event, andwe hope to begin a two-season project at‘AinGhazaltoconductmicrostratigraphicanalysisof

    Fig. 6 ArubbleterracenearthetopofahillinthevicinityofMughara Wishad,notfarfromKufrinja,northwesternJordan (Photo:G.Rollefson).

    Fig. 7 Arubbleterraceinthesameareanearasuddenly steeperdrop-off(Photo:G.Rollefson).

  • LateNeolithicRubbleLayerintheSouthernLevant

    Neo-Lithics1/0917

    RubbleSlidesandRapidClimateChange

    theYarmoukianlayers,lookingforproxyevidencethatwillprovidethemeansofestimatingthepoweroftheclimatic-induced consequences, as well as a detailedabsolute chronologyof the rubble layer phenomenonatthesite.

    References

    AffonsoM.T.1997 MineralogischeundgeochemischeUntersuchungen vonKleinplastikundBaumaterialienausdem akeramischenNeolithikumdesNahenOstens. Doctoraldissertation,Naturwissenschaften- MathematischenGesamtfakultät,Ruprecht-Karls- Universität,Heidelberg.

    BarzilayE.2003 TheGeologicalSetting.InH.KhalailyandO.Marder, TheNeolithicSiteofAbuGhosh.The1995 Excavations:3-11.IsraelAntiquitiesAuthorityReports, No.19.Jerusalem,IsraelAntiquitiesAuthority.

    BienertH-D.andViewegerD.1999 ArchaeologicalExcavationsattheLateNeolithicSiteof Ash-Shalaf:APreliminaryReportonthe1998Season. AnnualoftheDepartmentofAntiquitiesofJordan 43:49-67.

    BossutP.,KafafiZ.,andDollfusG.1988 Khirbeted-Darieh(SurveySite49/WHS524),un NouveauGisementNéolithiqueavecCéramicduSud- Jordanie.Paléorient14/1:127-131.

    BraunE.1997 Yiftah’el.SalvageandRescueExcavationsata PrehistoricVillageinLowerGalilee,Israel. IsraelAntiquitiesAuthorityNo.2.Jerusalem,Israel AntiquitiesAuthority.

    CropperD.,FoleyC.M.andRollefsonG.O.2003 UmmMeshratIandII:TwoLateNeolithicSites alongtheWadiath-Thamad,Jordan.In F.Ninow(ed.),WortundStein.StudienzurTheologie undArchäologie.FestschriftfürUdoWorschech: 15-32.FrankfurtamMain,PeterLang.

    DavisJ.,SimmonsA.,MandelR.,RollefsonG.O.,andKafafiZ.n.d. APostulatedEarlyHoloceneSummerPrecipitation EpisodeintheLevant:EffectsonNeolithicAdaptations. Paperpresentedatthe55thannualmeetingofthe SocietyforAmericanArchaeology,LasVegas,1990.

    EisenbergE.,GopherA.,andGreenbergR.2001 TelTe’o.ANeolithic,ChalcolithicandEarlyBronze AgeSiteintheHulaValley.IsraelAntiquitiesAuthority Reports13.Jerusalem,IsraelAntiquitiesAuthority.

    FarrandW.1978 SedimentalogicalObservationsatAbouGosh.In M.Lechevallier,AbouGoshetBeisamoun.Deux GisementsduVIIeMillénaireavantl’ÈreChrétienne enIsrael:91-94.Paris,AssociationPaléorient.

    FinoN.1996 ‘AinJammam.AnArchaeologicalStudy.Unpublished M.A.thesis,UniversityofJordan,Amman.(InArabic)

    GarfinkelY.1992 ThePotteryAssemblagesoftheSha’arGolanand RabahStagesofMunhata(Israel).LesCahiersdu CentredeRechercheFrançaisdeJérusalem6.Paris, AssociationPaléorient.

    GarfinkelY.andMillerM.2002 Sha’arHagolan1.NeolithicArtinContext.Oxford, OxbowBooks.

    GebelH.G.K.2003 SitePreservationandSiteFormationProcesses.In H.J.Nissen,M.Muheisen,andH.G.K.Gebel(eds.), BastaI.TheHumanEcology:95-116.Berlin,exoriente.2006 TheStratigraphyandLocusData.InH.G.K.Gebel, H.J.Nissen,andZ.Zaid(eds.),BastaII.The ArchitectureandStratigraphy:11-131.Berlin, exoriente.2008 Neolithic‘AinJamamnearRasan-Naqb:ThePre-1993 FieldResearchHistory.Neo-Lithics1/08:16-25.n.d. Neolithic‘AinJamamnearRasan-Naqb.Observations onSitePreservationsince1986andfieldoperation inSeptember1992.Unpublishedreporttothe DepartmentofAntiquitiesofJordan.

    GebelK.G.K.andKinzelM.2007 Ba‘ja2007:CrawlSpaces,RichRoomDumps,and HighEnergyEvents.Resultsofthe7thSeasonof Excavations.Neo-Lithics1/07:24-33.

    KafafiZ.1988 JebelAbuThawwab:APotteryNeolithicVillagein NorthJordan.InA.GarrardandH.G.Gebel(eds.),The PrehistoryofJordan.TheStateofResearchin1986: 451-471.BARInternationalSeries396.Oxford:B.A.R.2001 JebelAbuThawwab(Er-Rumman),CentralJordan.The LateNeolithicandEarlyBronzeAgeIOccupations. Berlin,exoriente.

    KafafiZ.andRollefsonG.1995 The1994Excavationsat‘AynGhazal:Preliminary Report.AnnualoftheDepartmentofAntiquitiesof Jordan39:13-29.

    KampU.2004 GeomorphologicalSiteSettingandGeochemical Results.InH.Nissen,M.MuheisenandH.G.K.Gebel (eds.),BastaI.TheHumanEcology:53-94.Berlin, exoriente.

    KingeryW.,VandiverP.,andPrickettM.1988 TheBeginningsofPyrotechnology,PartII:Production andUseofLimePlasterinthePre-PotteryNeolithicof theNearEast.JournalofFieldArchaeology 15:219-244.

    Köhler-RollefsonI.andRollefsonG.1990 TheImpactofNeolithicSubsistenceStrategiesonthe Environment:TheCaseof‘AinGhazal,Jordan.InS. Bottemaetal.(eds.),Man’sRoleintheShapingofthe EasternMediterraneanLandscape:3-14. Rotterdam:A.Balkema.

  • Neo-Lithics1/09

    LateNeolithicRubbleLayerintheSouthernLevant

    18RubbleSlidesandRapidClimateChange

    MacDonaldB.1988 TheWadielHasaArchaeologicalSurvey1979-1983, West-CentralJordan.Waterloo(Ontario,Canada): WilfredLaurierUniversityPress.

    MuheisenM.,GebelH.G.,HannssC.,andNeefR.1988 Excavationsat‚AinRahub,aFinalNatufianand YarmoukianSitenearIrbid(1985).InA.N.Garrard andH.G.Gebel(eds.),ThePrehistoryofJordan. TheStateofResearchin1986:473-502. BARInternationalSeries396.Oxford:B.A.R.

    PerrotJ.1964 LesdeuxpremièrescampagnesdefouillesàMunhatta (1962-1963).Premièresrésultats.Syria41:323-345.1966 LatroisièmecampagnedefouillesàMunhatta(1964). Syria43:49-63.

    RollefsonG.1997 ChangesinArchitectureandSocialOrganization at‘AinGhazal.InH.G.K.Gebel,Z.Kafafiand G.O.Rollefson(eds.),PrehistoryofJordanII. Perspectivesfrom1997:287-318.Berlin,exoriente.1998 ‘AinGhazal(Jordan):RitualandCeremonyIII. Paléorient24/1:43-58.

    RollefsonG.andKafafiZ.1994 The1993Seasonat‘AinGhazal:PreliminaryReport. AnnualoftheDepartmentofAntiquitiesofJordan 38:11-32.1997 The1996Seasonat‘AynGhazal:PreliminaryReport. AnnualoftheDepartmentofAntiquitiesofJordan40: 27-48.

    RollefsonG.andKöhler-RollefsonI.1989 TheCollapseofEarlyNeolithicSettlementsinthe SouthernLevant.InI.Hershkovitz(ed.),Peopleand CultureinChange:73-90.BritishArchaeological Reports-InternationalSeries508.Oxford:B.A.R.

    RollefsonG.andPineK.n.d. AhlanwaSahlan:MeasuringtheImpactofLPPNB ImmigrationintoHighlandJordan.Studiesinthe HistoryandArchaeologyofJordan10(inpress).

    RonenA.1971 Post-PleistoceneStonyLayersinEastMediterranean Sites.Quartär22:73-93.

    SimmonsA.H.,RollefsonG.O.,KafafiZ.,MandelR.D.,an-NaharM.,CooperJ.,Köhler-RollefsonI.,andRolerDurandK.2001 WadiShu‘eib,aLargeNeolithicCommunityinCentral Jordan:FinalReportofTestExcavations.Bulletinof theAmericanSchoolsofOrientalResearch321:1-39.

    TelfahJ.A.andKafafiZ.2003 PlasterFloorProductionattheNeolithicSiteofAin Ghazal,Jordan.MediterraneanArchaeologyand Archaeometry3(2):53-63.

    WaheebM.1996 ArchaeologicalExcavationsatRasan-Naqb-‘Aqaba RoadAlignment:PreliminaryReport.Annualofthe DepartmentofAntiquities40:339-348.

    WaheebM.andFinoN.1997 ‘Aynel-Jammam:ANeolithicSitenearRasen-Naqb, SouthernJordan.InH.G.K.Gebel,Z.Kafafiand G.O.Rollefson(eds.),ThePrehistoryofJordanII. Perspectivesfrom1997:215-219.Berlin,exoriente.

  • NaturalorAnthropogenicAgents?SomeExamples

    Neo-Lithics1/0919

    RubbleSlidesandRapidClimateChange

    Agglomerationsofangularstones/cobblesmixedwitharchaeological finds are encountered in many lateprehistoric sites within the Mediterranean woodlandarea in the southern Levant. In many cases theseoccurrences form stratigraphicallydefined layers thatmay look the same but apparently were formed bydifferentagents(naturalorhuman)forvariousreasons.In this short notewewill present some examples ofsuch occurrences from Cisjordan with respect tochronology,formationprocessesandfunctions.

    Terminology

    Several terms are employed in the literature fordescribingoccurrencesofstoneconcentrationsinlateprehistoric sites (e.g. Ronen 1971; Barzilay 2003;Goring-Morris and Horwitz 2007; Rollefson, thisvolume).All embrace interpretive implications sincethey are used for describing a specific phenomenon/activity.

    Forexampletheterm“stonylayers”wascoinedtodescribepost-Pleistocenerockfalllayersincavesitesin the Eastern Mediterranean region (Ronen 1971).Anotherterm,“midden”,isemployedfordescribingalayerthatwasformedduetorepetitivewastedisposalsatPPNBKfarHaHoresh(Goring-Morrisetal.1998:3;Goring-Morris and Horowitz 2007). “Gravel layers”is used for stone layers representing constructionactivities at PPNB Abu Gosh (Barzilay 2003:10).Finally,themostrecentterm,“rubblelayers”,isusedfor describing layers formed by natural agents notedatYarmukiansitesintheTransjordan(Rollefson,thisvolume).

    In order to avoid confusion or any associatedconnotations we will employ in the paper the term‘stonesurface’inaneutralsensewhenreferringtothisgeneralphenomenon.

    Chronology

    Chronologicallyspeaking,stonesurfacesinCisjordanare known from as early as the Late Epipalaeolithic(Natufian)untiltheendoftheChalcolithic(Ghassulian)period.

    During theNatufianandPPNAstone surfacesarelesscommonandappearonlyinveryfewsites.NatufianEynan is one example where stone surfaces weredocumentedthroughoutthesite(Vallaetal.2001:Figs.

    1-3).ThestonesurfacesatEynanweredividedintotwotypes;openareasurfacesrepresentingaccumulationsofcookingdebrisandotherpyrotechnologicalactivities,andindoorsurfacesthatfunctionedasfloors(Samuelianetal.2006).PPNAstonesurfaces(pebblepavementsandfills)werereportedtodominatetheKhiamianlayerat Hatoula (Winter and Ronen 1994:13-15). Thesesurfaceswerecomposedofbrokencobblesdisplaying‘jig-saw’breakagepattern(ibid.Fig.6).Althoughthebreakagepatternof these stones suggests theyderivefrom landslides in the vicinity of the Hatoula, theirpresenceat thesitewasexplainedasmanuports.Themajor argument for this explanationwas the absenceofsuchacomponentwithin theNatufian layerat thesite(ibid).

    StonesurfacesbecomeawideknownphenomenonduringthePPNBandPNperiods,asdiscussedinthisvolume. Such were reported for many sites locatedin the Mediterranean woodland zone in Cisjordan(e.g.RosenbergandGetzov2006:Figs.2-3;Barzilay2003;Birkenfeld2008;Getzov2008;Barzilaietal.,inpress).Severalinterpretationswereproposedforthesesurfaces(seebelow)whereastheirformationprocessescouldbeattributed toeithernaturaloranthropogenicagents.

    Although less reported, stone surfaces are alsocharacteristic of the Late Pottery Neolithic (WadiRabah)andChalcolithicperiodsinCisjordan.ExamplesaretheWadiRabah(strataVI)andmiddleChalcolithic(stratumVB-C)stonesurfacesatEinAsawirandlateChalcolithicPeqi’in(Getzov2007:Fig.2;Yanai2006:Figs.2.2;2.5;2.6).

    Formation processes and possible functions of stone surfaces

    Aspreviouslymentioned there are twomajor causesfor the formation of stone surfaces; natural andanthropogenicagents.Thesecouldbe furtherdividedinto sub-types representing possible cause (naturalagent)orpossiblefunctions(anthropogenicagent).

    Natural Agents

    Formations of stone surfaces due to natural agentsinclude at least three types triggered by differentprocesses.Thefirstaresurfaceswhichwereformedasaresultof“caverockfalls”(Ronen1971:89).

    Natural or Anthropogenic Agents? Some Examples For the Variety of Stone Surfaces in Late Prehistoric

    Sites in Cisjordan

    Omry Barzilai IsraelAntiquitiesAuthority,Jerusalem [email protected]

  • Neo-Lithics1/09

    NaturalorAnthropogenicAgents?SomeExamples

    20RubbleSlidesandRapidClimateChange

    AccordingtoRonentheirformationwasacceleratedintheearlyHoloceneduetohumidconditionswhichin turn disintegrated angular stones from cavewalls,thus forming stony layers. Such stone surfaces areindeedevidentatmanycavesitesintheMediterraneanwoodland zone, but do not necessarily correspondwithpost-Pleistoceneoccupations.Forexample,earlyEpipalaeolithic occupations atMegedRockshelter inthe Upper Galilee were embedded within cave rockfalls consequently forming a ca. 0.75-1.00 m thicklayer(Kuhnetal.2004:6-8).

    Anothertypeofnaturalagentisflashfloodsforminggeomorphologic ‘high level gravels’ (Poona 1971).AnexampleforsuchanaccumulationcanbeobservedwhereabackhoetrenchdugeastoftheJericho–BetSheanroadexposedathickstonylayercomprisedofseveralhorizons(Fig.1).Thisdiffers from thecave rock falls since it iscomprised of rounded cobbles and pebbles rather thanangularstones.Itshouldbenotedthatsuchnaturalstonesurfacescouldbeeasilyconfusedwithintentionallypavedsurfaces,inparticularatsiteslocatedinafluvialsetting.Forexample,PPNAGilgalIlocatedinasettingofhighlevelgravels(aboveWadiSaalbiya).Still,itisquiteclearthat the base of the floor of house II is anthropogenicdespitebeingmadeoflocallyavailablegravelandpebbles(Noy1989:13).

    The third typeofnaturalaccumulation is the‘rubbleslide’ which was proposed to reflect land slides inYarmukiansiteswithinclinedtopographyinTransjordan(Rollefson,thisvolume).Theselandslideswereconsideredto be associated with rapid climatic change at 8.2 ka(Weninger,thisvolume).Inseveralcaseswhennostonesurfaceswerenoted (e.g. ShaarHagolan), their absencewasexplainedbythelocationofthesiteinanareawithaflattopography(theCentralJordanValley).Still,iftheYarmukian stone surfaces were indeed the outcome ofland slides we should expect no surfaces at other sites

    locatedinaflattopography.However,thisisnotthecaseatYarmukianArdelSamraintheAkkoPlain(Barzilaietal.inpress;Getzovetal.inpress)whereanextremelythickstonesurfaceswererecorded(Fig.2).

    Anthropogenic agents

    At least four classes of anthropogenic agents couldhaveformedtheNeolithicstonesurfaces:construction,wastedisposals,cookingandintentionalcovering.

    Construction activities including ground levelingand floor making were proposed to form the stonesurfacesatPPNBAbuGosh(Barzilay2003:10).Thesesurfaceswerefound toberestricted to thesettlementwhilenonewereevidentinotherareasaroundthesite,thus verifying that these were indeed anthropogenic(ibid).A similar explanation was also suggested forthePPNCstonesurfacesatHagoshrimVIintheHulaBasin(Getzov2008).

    Another type of anthropogenic behavior that is

    Fig. 1 NaturalaccumulationofstonesintheJordanvalley

    Fig. 2 YarmukianstonesurfaceatArdelSamra

  • NaturalorAnthropogenicAgents?SomeExamples

    Neo-Lithics1/0921

    RubbleSlidesandRapidClimateChange

    responsible for formation of stony surfaces is wastedisposal.SuchwasnotedatPPNBKfarHahoreshwhereathicklayeratthesouthernandwesternpartsofthesitewas recorded (Goring-Morris and Horwitz 2007: Fig.2).Thisdumplayerconsistedofaccumulationsofburntstones,flintartifactsandanimalbonesthatwereproposedtorepresentwastedisposalsoffeastingactivitiesatthesite(ibid.,Fig.5).

    Thethirdtypeofstonesurfacesmadebyhumanagentsiscookinginstallationsthatmakeuseofhotrocks(Thoms2009). The archaeological remains of such techniqueusuallycompriseapitfilledwithstones(ibid.,Fig.5).Apossible example for such an installation was recordedrecentlyattheYarmukianoccupationatMishmarHaemeq(Barzilai andGetzov2008).Here a pitwas hewed intothevolcanicrockwasfilledwithangularstones(Fig.3).Althoughthisfeaturedoesnotexactlyfitthedefinitionofastonesurface,weshouldbeawarethatsuchpitinstallationscouldbethesourcesofdumplayers.

    Anothercookingfacilityistheopenovenhearthsthatresult inmanyfire-crackedstones (Thoms2008). It isnoted thatarepetitiveuseofsuchhearths in thesamelocationcouldresultinanaccumulationofstoneswhichconsequentlycreatessuchastonesurface(Fig.4).

    The last proposed type is intentional coverage

    of architecture, in particular unique Neolithicstructures which were reported to have beenintentionally buried (Verhoeven 2002). Oneexampleisthe„Schlangenpfeilergebäude“structurefromGöbekliTepe, dated to theEPPNB (Schmidt2000:4).Fromaerialphotographsonecanrecognizea fillofangularstones thatcouldfit thedefinitionof stony layer in the bottom right corner of thesquare(ibid.,Fig.2).InthesouthernLevant,suchaphenomenonwasobservedintheflagstonestructureat Mishmar Haemeq (Barzilai and Getzov 2008).Thisstructurewascoveredbya thin layer,ca.20-40cmthick,characterizedbyangularstonesmixedwith flint items, bones andother fragmented finds(Fig.5).Notablythestonesurfacewassetdirectlyonthestructurewhiletheperimetersofthebuildingwerenotcoveredatall.

    Concluding remarks

    The examples presented above show a wide varietyof stone surfaces that could result from natural orhumanagentscausedbyvariousfactorsorintendedfor

    Fig. 3 CookingpitfilledwithstonesatYarmukianMishmarHa‘emeq

    Fig. 4 Remainsofahearthwithfirecrackedstonesatchalcolithic NahalSecherXXIVintheNegev

    Fig. 5 ThePPNBflagstonestructureatMishmarHaemeq,aviewto south-west.1:earlystageinexposingthestructure.Noteastone surfacecoveringthenorthernandeasternpartsofthestructure. 2:alaterstageintheexcavation.Notethatthesediments beyondthewesternandsouthernperimetersarefreeofangular stones

  • Neo-Lithics1/09

    NaturalorAnthropogenicAgents?SomeExamples

    22RubbleSlidesandRapidClimateChange

    differentfunctions.Asforus,thearchaeologistsinthefield,weareexpectedtorecordsuchoccurrencesandattempttoseektheoriginsofthesestones.

    Inordertoidentifysurfacescausedbynaturalagentswe need to observe the surroundings of the site andconductageomorphologystudy.AspreviouslynotedweshouldexpecttofindsuchsurfacesassociatedwithclimaticeventsasproposedbyBernard(thisvolume)andRonen(1971).Howeverweshouldbearinmindthatnotallrockfall layers in caves were formed before the Holocene(e.g.Kuhnetal.2004)orthatsomestonesurfacesattheYarmukiansites(e.g.ArdelSamra)couldnotbearesultofrubbleslidessincetheyarelocatedonanalluvialplain.

    The anthropogenic agents are diversified and mayresult from construction, waste disposal, cooking andintentional covering activities.Within the anthropogenicsurfacesweshouldlookfordirectevidence.Forexample,accumulationofcookingstonesshouldbearburningsignssuchasfirecracks,orarchitecturalelementsshouldshowcleardelimitationssuchaswallsorplasterremains.WhatisstrikingisthatitappearsthatanthropogenicsurfacesaremuchmorecommoninthePPNBandearlyPNperiods.To my mind they are associated with early sedentism,and it shouldbe regardedasoneof theparameters thatweshouldconsiderinordertocomprehendthedurationof occupations in archaeological sites. Still one mustexplainwhy these surfaces are not as common in laterurbansettlements.Itispossiblethattheyreflectchangesincookingtechnologies,construction,andritualbelievesbutsuchissuesstillawaitfurtherinvestigation.

    Acknowledgements: Thanks toAriel Malinski BullerandSamuelWolfffortheireditorialcomments.

    References

    BarzilaiO.,LeDosseurG.,Eirikh-RoseA.,KatlavI.,MaromN.andMilevskiI.inpress Ain‘Hamifratz(ArdelSamra):ANeolithic-Chalcolithic SiteComplexintheAcrePlain,Israel.Hadashot Arkeologiot122.

    BarzilaiO.andGetzovN.2008 MishmarHa‘emeq:ANeolithicSiteintheJezreel Valley.Neo-Lithics2/08:12-17.

    BarzilayE.2003 TheGeologicalSetting.InH.KhalailyandO.Marder (eds.)TheNeolithicSiteofAbuGhosh:The1995 Excavations.IAAReports19:3-11.Jerusalem:Israel AntiquitiesAuthority.

    BirkenfeldM.2008 AspectsofTimeandSpaceattheEarlyNeolithicSite ofKfarHaHoresh-AGISbasedStratigraphicaland SpatialAnalysis,M.A.thesis,TheHebrewUniversity. Jerusalem.

    GetzovN.2007 ALateChalcolithicandEarlyBronzeAgeSettlementat

    Peqi’in,inUpperGalilee.‘Atiqot56:1-12.(inHebrew).2008 Ha-Goshrim.InE.Stern(ed.)TheNewEncyclopediaof ArchaeologicalExcavationsintheHolyLand5: 1759-1761.JerusalemandWashington,D.C.:Israel ExplorationSocietyandBiblicalArchaeologySociety.

    GetzovN.,BarzilaiO.,LeDosseurG.,Eirikh-RoseA.,KatlavI.,MarderO.,MaromN.andMilevskiI.inpress NahalBezetIIandArdelSamra:TwoLatePrehistoric SitesandSettlementPatternsintheAkkoPlain. MitekufatHaeven39.

    Goring-MorrisA.N.,BurnsR.,DavidzonA.,EshedV.,GorenY.,HershkovitzI.,KangasS.andKelecevicJ.1998 The1997SeasonofExcavationsattheMortuarySite ofKfarHaHoresh,Galilee,Israel. Neo-Lithics1998/3:1-4.

    Goring-MorrisA.N.andHorwitzL.K.2007 FuneralsandFeastsduringthePre-PotteryNeolithicB oftheNearEast.Antiquity81:1-17.

    KuhnS.L.,Belfer-CohenA.,BarzilaiO.,StinerM.C.,KerryK.,MunroN.andMayerBar-YosefD.2004 TheLastGlacialMaximumatMegedRockshelter, UpperGalilee,Israel.JournaloftheIsraelPrehistory Society34:5-47.

    NoyT.1989 GilgalI:APre-PotteryNeolithicSite,Israel. The1985-1987seasons.Paléorient15/1:11-18.

    PoonaK.P.1971 HighLevelGravelsandRelatedPalaeolithicSitesof ShorapurDoab,PeninsulaIndia.Quartär22:95-110.

    RonenA.1971 Post-PleistoceneStonyLayersinEastMediterranean Sites.Quartär22:73-93.

    RosenbergD.andGetzovN.2006 ABasaltChippingFloorfromLevelVI(PPNC)at Hagoshrim.MitekufatHaeven.JournalofTheIsrael PrehistoricSociety36:117-128.

    SamuelianN.,KhalailyH.andVallaF.2006 FinalNatufianarchitectureat’Eynan(’AinMallaha). Approachingthediversitybehindtheuniformity.In E.B.BanningandM.Chazan(eds.),Domesticating Space.Construction,Community,andCosmologyin theLatePrehistoricNearEast:35-42, Berlin:exoriente.

    SchmidtK.2000 GöbekliTepe,SoutheasternTurkey.Apreliminary reportonthe1995–1999excavations.Paléorient26/1: 45-54.ThomsA.V.2008 Thefirestonescarry:ethnographicrecordsand archaeologicalexpectationsforhot-rockcookeryin westernNorthAmerica.JournalofAnthropological Archaeology27:443-460.

    2009 Rocksofages:propagationofhot-rockcookeryin westernNorthAmerica.JournalofArchaeological Science36:573-591.

  • NaturalorAnthropogenicAgents?SomeExamples

    Neo-Lithics1/0923

    RubbleSlidesandRapidClimateChange

    VallaF.R.,KhalailyH.,SamuelianN.,MarchR.,BocquentinF.,ValentinB.,MarderO.,RabinovichR.,LeDosseurG.,DubreuilL.andBelfer-CohenA.2001 LeNatoufienfinaldeMallaha(Eynan),deuxième rapportpréliminaire:lesfouillesde1998et1999. MitekufatHaeven31:43-184.

    WinterY.E.andRonenA.1994 TheGeomorphologicalandGeologicalSetting. InM.LechevallierandA.Ronen(eds.)Legisementde HatoulaenJudéeOccidentale,Israël:5-16. MémoiresetTravauxduCentredeRechercheFrançais deJerusalem8.Paris:AssociationPaléorient.

    VerhoevenM.2002 RitualandIdeologyinthePre-PotteryNeolithicB oftheLevantandsoutheastAnatolia.Cambridge ArchaeologicalJournal12/2:233-258.

    YannaiE.2006 ‘EnEsur(‘EinAsawir)IExcavationsataProtohistoric SiteintheCoastalPlainofIsrael.IAAReports31. Jerusalem:IsraelAntiquitiesAuthority.

  • ChangeattheNeolithicSiteof‘AinGhazal

    Neo-Lithics1/0924

    RubbleSlidesandRapidClimateChange

    Introduction

    ‘Ain Ghazal is a large permanent farming Neolithicsettlement on the main highway leading from thecapitalAmmantothecityofal-Zarqatotheeast.ThematerialcultureuncoveredatthesitegreatlyincreasedourunderstandingofhowhumansocietyaffectedandinteractedwiththeenvironmentinthesouthernLevant(RollefsonandKafafi2007).

    The site canbe singledoutof theotherNeolithicsettlements in the area because it was continuouslyoccupied for over 2,500 years (from ca. 9,250-6,500uncal. B.P.). This provides the first opportunity toexamine a permanent farming settlement during thisperiodoftime.Also,thesiteyieldedoneoftherichestarraysofNeolithicdata-particularlythehumanstatueand bust collections and different types of domesticand ritual buildings. This includesmaterial from thetransitionfromthePre-PotteryNeolithicBtothePre-PotteryNeolithicCandanotherinsitutransitionfromtheaceramictotheearlyPotteryNeolithic.Lastbutnotleast, the site occupied a very large area (ca. 14 ha)when it reached its climaxby theendof the seventhand the beginning of the sixthmillennia uncal. B.C.(Rollefsonetal.1992).

    The site of ‘Ain Ghazal was initially discoveredduringbulldozingoperationsofopeningtheAmman-Zarqa highway in 1974. Unfortunately, systematicarchaeological investigations started only eight yearsafter the discovery. The project started as a rescueexcavation in 1982, and the team headed by GaryRollefsonandfundedbytheDepartmentofAntiquitiesof Jordan gave priority towards rescuing the mostendangered areas located just directly to thewest ofthehighway.

    The archaeological excavations conducted in theseasonsof 1992-1998 concentratedonother areas of‘Ain Ghazal, including its fringes (Rollefson et al.1990;RollefsonandKafafi1993;KafafiandRollefson1995). Test probes at the edges of ‘Ain Ghazaldemonstrateditsenormoussize,butmoreimportantly,wealsolearnedmuchmoreofits“dual”nature.TracesofNeolithicoccupationwereexcavatedattheeasternpartof thesite,which includedstonealignments thatsuggestedverylongwallsthathadnotbeenseeninthemainsite to thewest.Theexcavatorsannounced thatthematerialfromtheearliestoccupationofthisEasternField (ca. 9,500 years ago) does not provide much

    informationofdaily life.9,300yearsago thispartof‘Ain Ghazal appears to have been a sector that wasinvolved in communal ritual observances (RollefsonandKafafi2007).

    Stratigraphy and Chronology

    Archaeologists researching archaeological sitesfollowtwoways inunderstanding thestratigraphyofthe archaeological sites. The first one is the verticalstratigr