35
Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko Univerza v Ljubljani Slovenija

Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Embed Size (px)

Citation preview

Page 1: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Nematic colloids for photonic systems(with schemes for complex structures)

Iztok Bajc

Adviser: Prof. dr. Slobodan Žumer

Fakulteta za matematiko in fiziko

Univerza v Ljubljani

Slovenija

Page 2: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Outline

• Motivations, classical and new applications• Nematic liquid crystals• Colloidal particles in nematic• Modeling requirements for large 3D systems• Test calculations (3D)• Future work: external fields for photonic systems

Page 3: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Motivations, classical and new applications

Page 4: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Motivations

• Interesting and fast evolving field.• Liquid crystals well represented field in Slovenia.

Why to approach this thematic?

M. Ravnik, S. Žumer, Soft Matter, 2009.

• One of the priorities of the EU project (Hierarchy)

in which I’m involved.

M. Humar, M. Ravnik, S. Pajk, I. Muševič,

Nature Photonics, 2009.

• New potential applications:

• Metamaterials.

• Microcavities - microresonators.

• Requirement of very effective modeling codes.

Challenge to find the right approaches.

(Hot topics!)

Page 5: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

• LCD (Liquid Crystal Displays).

Classical applications of liquid crystals

Liquid crystals

have unique

optical properties.

• Eye protecting filters for welding helmets (Balder)

• Polarizing glasses for 3D vision

Page 6: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

New potential applications: metamaterials, microresonators

• Solid state metamaterials:

• Photonic crystals:

• Soft metamaterials?

Nematic droplet.

Figures: I. Muševič, CLC Ljubljana Conference, 2010.

Whispering Gallery Modes (WGM ) in a microresonator.

Page 7: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Nematic Liquid Crystals

Page 8: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Nematic liquid crystals

E

• (The same happens, if temperature is lowered)

• Electric or magnetic field can change their phase form isotropic liquid to partially ordered mesophase.

• Molecules are rodlike.

• Tend to align in a preferred direction.

• Liquid crystals are a liquid, oily material.

• They flow like a liquid...

• ... but can be partially ordered - like crystals.

Page 9: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Description of nematic liquid crystals

• Basic quantities

)(rn

Director )(rS

Scalar order

parameter

Quantifies the degree of order of the

orientation:

-1/2 ideal biaxial liquid

0 isotropic liquid

1 ideally aligned liquid

(all molecules parallel)

12

1 S

1n

Points in preferenced orientation.

Page 10: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Alternative description with Q-tensor field

221123

2eeee

PInn

SQ

• traceless:

its largest eigenvector and its corrispondent eigenvalue.n

S

New quantity: tensor order parameter :)(rQ

Q 0332211 QQQ 221133 QQQ

Only 5 independent

components of Q are required.

• symmetric:Qjiij QQ

2211

2322

131211

QQ

QQ

QQQ

Q

Page 11: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Free-energy functional

2ijijkijkijijij

k

ij

k

ijbulk )QC(Q

4

1 QQ BQ

3

1 QAQ

2

1

x

Q

x

Q L

2

1 f

dVQQfdVQQfQFborder

surf

bulk

bulk ),(),()(

• Director and order nematic structure follow from minimizing the Landau-de Gennes functional:

2)0(ijijsurf )Q-(QW

2

1 f

Elastic energy

Surface energy

Thermodynamic energy

L – elastic constants

A, B, C – material constants

W – surface energy

Page 12: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Colloidal particles in nematic

Page 13: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

• We get disclination lines (topological defects) around the particles:

• Inclusion of colloidal particles in a thin sheet of nematic LC.

Colloidal structures

-crystals in nematic.

Strong attractive forces

between particles.

Inclusion of colloidal particles

Page 14: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Structures of colloidal particles in nematic

1D structures

2D structures - crystals

3D structures

Page 15: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

12- and 10- cluster in 90° twisted nematic cell.

Experiments by U. Tkalec, 2010 (to be published). 3×3×3 dipolar crystal in

homeotropically oriented nematic.

Experiment by Andriy Nych, 2010

(to be published).

Large 3D structures:

Page 16: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Modeling Requirements

Page 17: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Actual finite difference code in C is:

• Robust and effective for smaller or periodic systems.

• But uses uniform grid (uniform resolution).

Computations until now

A job needs 2h to converge.

You double the resolution

Then it will run for 2 days.

Example:

Page 18: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

New modeling requirements

Moving objects (due to

nematic elastic forces).

Mesh adaptivity in 3D, preferably

with anisotropic metric.

Parallel processing

(computer clusters).

Meshes by Cécile Dobrzynski, Institut de Mathématiques de Bordeaux.

Page 19: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Newton iteration of tensor fields

If function (of one variable):

0)(' xf

)('')('

1 k

k

xfxf

kk xx )(')('' kkk QFQQF

kkk QQQ 1

0)(')( QFQF

First variation of functional:

( - test functions)

Newton iteration:Newton iteration:

Finite Element Method (FEM)

Advantages: – Mesh can be locally refined less mesh point needed.– Around each point we have an interpolating function (spline).

Page 20: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Test calculations in 3D:One colloidal particle

Page 21: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

• Central section of 3D simulation box mesh

• Mesh points: 17 000; Tetrahedra: 100 000

• Mesh generation’s time: 5 sec (TetGen)

2 microns

Page 22: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

• Central section: director field n (in green).• Newton’s method took 19 iterations (total time: 54 min).

2 microns

Page 23: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

• Central section of the order parameter field S.

• In green: sections of Saturn ring defect.

Topological defect

2 microns

Page 24: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Test calculations in 3D : More particles

Page 25: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko
Page 26: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko
Page 27: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Future work: external fields for photonic systems

Page 28: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Electric field on a nematic droplet

)(Q

A large field E change Q.

Iteration needed

Also changes.

By tuning electric field

Figures: I. Muševič, CLC Ljubljana Conference, 2010.

0E

we switch between optical modes.

Page 29: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Electromagnetic waves – linear/nonlinear optics

• Detail dimensions comparable with wavelength.

Ray optics not adequate.2 microns

• Nematic is a lossy medium.

• Also nonhomegeneously anisotropic.

Birefringence

• Full system description needed (diffraction,...).

Page 30: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Numerical solution of Maxwell equations

Computational photonics

Mature field for homogeneous medium and periodic structures (e.g. photonic crystals).

But young for nonhomegenously anysotropic media !

Computational soft photonics

Basis:

Computational electromagnetics

Page 31: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Computational approaches

Book Joannopoulos et alt., Photonic Crystals, points out three cathegories of problems:

1) Frequency-domain eigenproblems

2) Frequency-domain response

3) Time-domain propagation

[1] Joannopoulos et alt., Photonic Crystals, Molding the flow of Light, 2nd ed, Princeton University Press, 2008.

Page 32: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Frequency domain eigenproblems

0

)(2

1

H

Hc

Hr

)(k

• Seeking for eigenmodes.

• Aim: band structure of photonic crystals.

• Periodic boundary conditions.

1)

Eigenequation

• Reduces to a matrix eigenproblem:

BxAx 2

Pictures from site of Steve Johnoson (MIT).(+ condition)

Page 33: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Frequency domain responses

• Seeking for stationary state.

• Aims: absorption & transmittivity.

• At fixed frequency .?

Ec

iJEtc

rH

Hc

iHtc

E

1)(

1

+ Absorbing Boundary Conditions (ABC).

• Reduces to a matrix linear system:

bAx

2)

Page 34: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Time-domain propagation

Time evolution of electromagnetic waves.

Start with FDTD (Finite Difference Time Domain) numerical method:

1. Ready code freely available.

2. Easily supports nonlinear optical effects.

3. Gain feeling and experience for smaller systems.

Next: possibility of passing to FEM will be considered.

3)

?Micro-optical elements?

Micro-waveguides??

? ?

Page 35: Nematic colloids for photonic systems (with schemes for complex structures) Iztok Bajc Adviser: Prof. dr. Slobodan Žumer Fakulteta za matematiko in fiziko

Work has been finansed by EU:

Hierarchy Project, Marie-Curie Actions

Acknowledgments:

• Slobodan Žumer (adviser)

• Miha Ravnik, Rudolf Peierls Centre for Theoretical Physics, Univerza v Oxfordu, in FMF-UL.

• Frédéric Hecht, Laboratoire Jacques-Louis Lyon, UPMC, Paris 6.

• Daniel Svenšek

• Igor Muševič

• Miha Škarabot

• Martin Čopič

• Uroš Tkalec