39
NECSA SMELTER AC Carolissen Senior Manager: Nuclear Liabilities Management

NECSA SMELTER FACILITY PRESENTATION

Embed Size (px)

Citation preview

Page 1: NECSA SMELTER FACILITY PRESENTATION

NECSA SMELTER

AC CarolissenSenior Manager: Nuclear Liabilities Management

Page 2: NECSA SMELTER FACILITY PRESENTATION

2

South Africa is an IAEA Non Proliferation Treaty Member State forpromotion of nuclear for peaceful purposes.

The scrap metal consist of uranium contaminated ferrous and no-ferrous metals which are currently stored on the Pelindaba site

This contaminated materials pose a safety risk and to reduce therisk, melting was considered as an option

The challenge with these materials is that they cannot beadequately decontaminated by the conventional methods that areavailable to Necsa on the Pelindaba site

Continues

Background

Page 3: NECSA SMELTER FACILITY PRESENTATION

3

Background (Continued)

Necsa embarked on a comprehensive techno-economicstudy to look at all the alternatives to safely manage thematerial according to international waste managementpractices.

Alternatives considered : Store indefinitely, encapsulateand store at Necsa, shredding, direct disposal, melting atcommercial smelter.

The Smelter will be exclusively used for Necsa metalscurrently on site.

Page 4: NECSA SMELTER FACILITY PRESENTATION

4

Objectives of Smelter

To decontaminate materials which cannot be decontaminated with the use of conventional methods.

To reduce the waste volumes substantially.

To destroy sensitive equipment associated with nuclear non-proliferation.

Improve waste management and control.

Minimize the transport of waste

Cost-effective discharge of nuclear liability.

Page 5: NECSA SMELTER FACILITY PRESENTATION

5

Examples of Smelters being used for Decontamination

Smelters are widely used in the nuclear industry as awaste management tool. The following countries havesmelters -

– CARLA Plant, Siempelkamp, Germany (start 1989).

– STUDSVIK Melting Facility, Sweden (start 1987).

– INFANTE Plant, Marcoule, France (start 1992).

– Scientific Ecology Group (SEG) Plant, Oak Ridge, USA(start 1992).

– Capenhurst Melting Facility, United Kingdom (start 1994).

– Manufacturing Sciences Corporation (MSC), Oak Ridge,USA (start 1996).

Page 6: NECSA SMELTER FACILITY PRESENTATION

6

Dimensions of a Proposed Smelter

Height : 3mWidth : 2m

Crucible : Ø 850mm x 1100mm

Load capacity: - 4000kg steel components- 1500kg Al and other metals

Page 7: NECSA SMELTER FACILITY PRESENTATION

7

Pouring from Ladle

Page 8: NECSA SMELTER FACILITY PRESENTATION

8

Materials to be Processed

• The contaminated items to be smelted comprise a variety of components including –– Pipes and tubes– Heat exchangers– Electric motors – Compressors– Instrumentation

– Bolts, nuts and couplings

Material Type Estimated Mass(Tons)

Steel components 8 649

Stainless steel components 1 107

Aluminium components 1 421

Cast Iron 1 075

Non-ferrous metals 1 748

Total 14 000

Most of the above-mentioned material have already gone through a decontamination process

Page 9: NECSA SMELTER FACILITY PRESENTATION

9

Materials to be Processed

Page 10: NECSA SMELTER FACILITY PRESENTATION

10

Smelter Location The melting facility and cutting facility will be located on the Pelindaba East site.

Page 11: NECSA SMELTER FACILITY PRESENTATION

11

Facility Layout

Page 12: NECSA SMELTER FACILITY PRESENTATION

12

Smelter Location The selected area will have the following advantages:

– It is adjacent to the proposed low and intermediate levelstorage area. This is logically favourable and will minimisetransport and handling of contaminated scrap.

– Space is available for cutting and selection of scrap.

– Space is available for temporary storage and melt-refinedproduct.

– Most of the required infrastructure is available for example:

o Off-gas stack with monitoring facility next to area.

Page 13: NECSA SMELTER FACILITY PRESENTATION

13

Smelter Specification An induction furnace is proposed since this is the most versatile

and will create the least off-gases.

The basic crucible size is determined by the size of theseparation elements. The objective being that these can bemelted with a minimum of prior mechanical handling e.g.cutting to reduce size.

The smelters must have the flexibility to melt the full range ofpossible materials i.e. Steel, Copper and Aluminium.

This will require two crucibles of 4 000kg each.

Full capture fume hoods connected to an off-gas filtrationsystem.Continues

Page 14: NECSA SMELTER FACILITY PRESENTATION

14

Smelter Specification

Melting temperatures mustrange between 700OC and1600OC to accommodatethe various metal types.

A small 125kg test smelterwill also be installed forexperimental purposes.

An emergency sand filledliquid metal catchment pitunderneath the furnace willbe provided.

Page 15: NECSA SMELTER FACILITY PRESENTATION

15

Smelter off-gas System

CycloneCartridge Filters

Hepa Filters

Page 16: NECSA SMELTER FACILITY PRESENTATION

16

Smelter off-gas System

The smelters will be equipped with full capture fume hoods. Thesewill be connected to a separate off-gas system with own fans, pre-filters and HEPA filters (absolute filters). The system will tie into theexisting building ventilation system and exhaust through an existingstack (82m high).

This system is the most sophisticated offered by the off-gas suppliersand will capture about 99,9% of the dust generated during thesmelting process.

Page 17: NECSA SMELTER FACILITY PRESENTATION

17

Test Smelter

This smelter will not operate on a continuous basis, but only asrequired. Typical activities will include:

– Sampling tests with different scrap batches to evaluatedecontamination, off-gas generation and other safety-related issues prior to full scale melting.

– Dilution tests with various scrap samples to plan full-scaleoperations.

– Monitor releases into the building and through the stack.

– Train personnel on small-scale operations before lettingthem operate the large smelters.

Page 18: NECSA SMELTER FACILITY PRESENTATION

18

Waste and Atmospheric Emissions

All releases of materials will be handled strictly inaccordance with the requirements of the NationalNuclear Regulator, based on international standards.The following products and emissions will result from thesmelter operation:

– Metal ingots

Ingots not meeting the requirements of unconditionalrelease will be stored in the Pelstore (licensed storagefacility). It could either be conditionally cleared (re-use or re-cycle) or disposed of at a later stage.

Continues

Page 19: NECSA SMELTER FACILITY PRESENTATION

19

Waste and Atmospheric Emissions

– Slag

The slag will trap most of the radioactivity (about 98%) and it will be drummed(compaction could also be done) and stored in the Pelstore. Eventually it willbe disposed of at Vaalputs, the licensed disposal facility near Springbok.

– Off-gas dust used off-gas filters and used crucible linings.

These would be drummed and stored in the Pelstore until disposal atVaalputs.

– Off-gas emissions

The Annual Authorised Discharge Quantities (AADQ) for routine gaseousdischarges of uranium at Necsa is set by the NNR at 8 x 109Bq which relatesto an associated dose of 2μSv/a at the site borders.

Page 20: NECSA SMELTER FACILITY PRESENTATION

20

Total Accumulated Waste

• Slag ~ 500 ton• Dust, filters, linings ~ 150 ton • Non-cleared ingots ~ 0 – 2800 ton• Total waste ~ 650 ton estimated• Volume reduction of waste – 85%-95%

20

Page 21: NECSA SMELTER FACILITY PRESENTATION

21

Safety Features of the Furnace and Ancillary Equipment

The following safety features will be built into the 4 ton and testsmelters:– Every motor shall be provided with a freestanding emergency

stop.– An interlock is provided preventing the furnace from being

operated unless there is sufficient flow of cooling water.– The off-gas system contains an interlock that prevents the

smelter to start up unless the off-gas system is operational.– A cooling water valve will be provided inside the smelter facility

to isolate cooling flow in case of a pipe rupture in the system.– A remote emergency stop for the smelters will be provided.– An earth leakage system for the furnace lining will be provided.– All equipment shall be properly earthed.

Continues…

Page 22: NECSA SMELTER FACILITY PRESENTATION

22

Alarms will be provided for low cooling water and hydraulicpressures.

All electric wiring will be done to SABS standards. Applicable requirements of the Occupational Health and Safety Act

will be complied with. All statutory requirements for pressure vessels and pressure piping

will be complied with. All hydraulic and water piping will be provided with vent and drain

points. After installation all pressure vessels and piping will be pressure

tested. The supplier will perform a functional and melt rate test after

installation before acceptance of the equipment.

Safety Features of the Furnace and Ancillary Equipment

Page 23: NECSA SMELTER FACILITY PRESENTATION

23

Environmental Impact An annual dose of about 8.0 x 10-4 µSv for U at the Pelindaba site borders will

cause no environmental impact to the vicinity.

The actual mass of the uranium related to the emissions will be in the order of120 grams per annum.

The radioactive dose to any human living in the Gauteng area, resulting fromnatural sources (cosmic radiation, terrestrial, radon gas etc.) is about 2500µSv per annum.

The added dose from the smelter at the site border will be less than onemillionth of that, and further away from the site it will become even less.

The dust and dose increase to the Necsa site and environment is thereforeinsignificant and the public will not be affected by the emissions from thissmelter.

Record of Decision was issued on 31 August 2007 and valid for 5 years

Page 24: NECSA SMELTER FACILITY PRESENTATION

24

Limiting Operating Conditions The DEA RoD was issued with strict conditions, provisions and the

implementation of various mitigation measures concerning the operation ofthe smelter. Some of these include the following:

– Necsa must ensure that an emission detection system is installed in thestack before operation commences.

– All monitoring and test results of the test smelter must be presented to thePelindaba Safety Information Forum (PSIF) before commissioning of themain smelters.

– Monthly progress and audit reports concerning specified compliance andmonitoring results must be presented to the PSIF during operation of themain smelters.

Six monthly reports concerning all operational monitoring results must also be submitted to the DEA for a period of two years after commissioning.

Page 25: NECSA SMELTER FACILITY PRESENTATION

25

Necsa Notifications to DEA

Page 26: NECSA SMELTER FACILITY PRESENTATION

26

NNR Public Hearings• In accordance with the provisions of

section 21 (4) (b)of the National Nuclear Regulator Act, Act 47 of 1999 a public hearing was convened by the NNR related to the proposed Necsa smelter.

• The public hearing was held at Royal Elephant Hotel and Conference Centre (Bondev House) in Centurion on 11 October 2012.

• The hearings were presided on by a panel comprising Mr D Elbrecht and Mr K Maphoto from the NNR Board and the NNR Programme Manager, Mr T Pather.

Page 27: NECSA SMELTER FACILITY PRESENTATION

27

NNR Public Hearings

• The following persons registered as interveners and made oral representations at the public hearings –– Judith Taylor (Earth life Africa)– Robert Garbett ( Karee trust, Professional aviation Services,

Renosterspruit Nature Reserve)– Christine Garbett (Cane, Pelindaba Working Group)– Dominique Gilbert (Pelindaba Working Group)

• In addition a number of individuals submitted written representation objecting to the granting of the nuclear installation licence to Necsa.

Page 28: NECSA SMELTER FACILITY PRESENTATION

28

NNR Public Hearings

Page 29: NECSA SMELTER FACILITY PRESENTATION

29

NNR Public Hearings• The interveners objected to the granting of the Nuclear

installation licence for the proposed Necsa smelter citing-

– fear that the public would be impacted negatively by the releases from the proposed facility;

– Necsa should have considered further alternatives to smelting;

– Concern over the volume of electricity needed for the project;

– Concern over the reliance on and reliability of HEPA filters to be used in the facility;

– Concern over the claimed efficiency of the smelting process to decontaminate the scrap metal.

Page 30: NECSA SMELTER FACILITY PRESENTATION

30

NNR Conclusions

• The NNR has concluded that the proposed facility is –

- justified and in line with the Radioactive Waste Management Policy and Strategy for the Republic of South Africa (2005),

- appropriately designed, and - would not represent an undue risk to workers

or the members of the public.

Continues

Page 31: NECSA SMELTER FACILITY PRESENTATION

31

NNR Conclusions ( Continued)

• The above conclusions are based on the fact that –

The safety case documentation submitted by Necsa has demonstrated compliance with the NNR regulations on Safety Standards and Regulatory Practices, Regulation R.388 of 2006. – The smelter equipment is of proven industrial design and is commercially

available. – The projected doses to members of the public as a result of normal

operations is well below the regulatory criteria – The maximum worker doses due to normal operations in the facility was

projected to be of the order of 5 mSv/a, which is within the prescribed worker dose limit

– HEPA filters are commonly employed to control particulate matter emissions from processes that involve management or treatment of radioactive materials. The HEPA filters to be used by Necsa in the proposed Production Smelter will be of nuclear grade and will be designed and manufactured to international standards (such as ASME AG-1).

Page 32: NECSA SMELTER FACILITY PRESENTATION

32

NNR Regulatory Decision

• On 2 July 2013 the NNR has granted approval for the Necsa Production Smelter (NIL- 29 Variation 1)

• The approval will however be implemented in a phased manner.

• The current approval is for construction and cold commissioning of the facility only.

• Approval for hot commissioning of the facility will be granted separately following NNR review of the as built plant and results of the cold commissioning programme.

Continues

Page 33: NECSA SMELTER FACILITY PRESENTATION

33

NNR Regulatory Decision (Continued)

• Approval for routine operation of the facility will be subject to separate NNR approval, following review of the results of successful cold and hot commissioning of the facility as well as an updated safety case reflecting the results of both the cold and hot commissioning programmes.

• The material permitted to be smelted in the facility is limited to the 14 000 tons of metal detailed in the safety case. No additional material may be smelted in the facility.

• Should Necsa wish to smelt additional material in the facility this will be subject of a new nuclear authorization application and will entail a process of public consultation.

Page 34: NECSA SMELTER FACILITY PRESENTATION

34

NNR Regulatory Decision ( Continued)

• The Nuclear Installation License NIL-29 has accordingly been amended to permit –- construction and cold commissioning of the Production Smelter - The receiving of non-Contaminated scrap to be used in the cold

commissioning.

The amended NIL-29 further requires that –- Cold Commissioning of the Production Smelter must be

undertaken in accordance with an NNR approved cold commissioning programme.

- Only non-contaminated scrap may be used in the cold commissioning of the Production Smelter in Area 26.

- The licensee may not proceed to hot commissioning without prior NNR approval.

Page 35: NECSA SMELTER FACILITY PRESENTATION

35

Project Status: Furnace Platform

Installed Furnace Bodies Furnace Body with Fume Hood

Page 36: NECSA SMELTER FACILITY PRESENTATION

36

Project Status: Furnaces

Page 37: NECSA SMELTER FACILITY PRESENTATION

37

Project Status: Off-Gas System

Cyclone Filter Cartridge Filter Bank

Page 38: NECSA SMELTER FACILITY PRESENTATION

38

Project Status: Off-Gas System

Cyclone Filter Cartridge Filter Bank

Page 39: NECSA SMELTER FACILITY PRESENTATION

THANK YOU

39