24
NCCA 2014 Performance Evaluation of Non-Tunneling Edge-Overlay Model on 40GbE Environment Nagoya Institute of Technology, Japan Ryota Kawashima and Hiroshi Matsuo

NCCA 2014 Performance Evaluation of Non-Tunneling Edge-Overlay Model on 40GbE Environment Nagoya Institute of Technology, Japan Ryota Kawashima and Hiroshi

Embed Size (px)

Citation preview

NCCA 2014

Performance Evaluation of Non-Tunneling Edge-Overlay Model on 40GbE Environment

Nagoya Institute of Technology, Japan

Ryota Kawashima and Hiroshi Matsuo

2

Outlines

Backgrounds Ethernet Fabric Network Virtualization

Edge-Overlay (Distributed Tunnels) Tunneling protocols Problems

Proposed method MAC address translation Host-based VLAN

Evaluation

Conclusion

3

Ethernet Fabric

L2-based technology

Multipath without STP (Spanning-Tree Protocol)

Automatic network management

Standardized protocols TRILL, SPB, …

Many productsFabricPath(Cisco), VCS(Brocade), …

Scalable L2 datacenter networks

4

Network Virtualization

Multi-tenant Datacenter Networks Each tenant uses virtual network(s)

• LINP : Logical Isolated Network Partition Each virtual network shares the physical network resources

Physical network

VM

VM

Tenant 1

Tenant 2

Tenant 3VM

VM VM

Virtual networks

VM

VM

VM

VM

5

Traditional approach

VLAN – Virtual LAN Each virtual network uses its own VLAN ID

DST VLAN Payload FCSVM's frame SRC TYPE

Ethernet header

VLAN ID (1~ 4094) is included

VM

VM

VID=10

VID=20

VM

VMPhysical network

Normalrouting/switching

6

VLAN limitations

The maximum number of virtual networks is 4094 Each tenant can create multiple virtual networks

Too many Forwarding DB (FDB) entries MAC addresses of VMs have to be learnt

Address space isolation is difficult Different tenants cannot use the same address space

7

A trend – Edge-Overlay approach

Distributed tunneling, NVO3...

Purposes Tenant traffic separation

Address space isolation

Scalability of the number of virtual networks• Over 4094

Reduction of the number of FDB entries

8

Key technologies

Tunneling protocols L2-in-L3 (IP-based)

• VXLAN, NVGRE, STT VN Context Identifier

NVE : Network Virtualization Edge TEP : Tunnel End Point Devices

• Virtual switches • (e.g. Open vSwitch, Cisco Nexus 1000V)

• ToR switches• Gateways

9

VM

Edge-Overlay Overview

VM

VM

VM

Physical network

Virtual network1

Virtual network2

Virtual network3

VM

VM

VM

VM

Physical server Physical server

Virtualswitch

Tenant 1

Tenant 2

Tenant 3

Tenant 1

Tenant 2

Tenant 3

Virtualswitch

NVE NVE

Tunnel

10

Tunneling protocols

Ethernet(Physical)

IP(Physical)

VXLANUDP FCSEthernet(Virtual)

Payload

VXLAN VM's frame

Ethernet(Physical)

IP(Physical)

NVGRE FCSEthernet(Virtual)

Payload

NVGRE VM's frame

Ethernet(Physical)

IP(Physical)

STTTCP-like FCSEthernet(Virtual)

Payload

STT VM's frame

24bit IDUDP encapsulation

24bit IDIP encapsulation

64bit IDTCP-like headerNIC offloading (TSO)

11

Problems with Tunneling (1 / 2)

IP Fragmentation at the physical server

Payload

PayloadHeader

Payload Payload

PayloadHeader PayloadHeader

VM

PhysicalServer

Header Payload

PayloadHeader

Fragmentation

Fragmentation

12

Problems with Tunneling (2 / 2)

Compatibility with existing environment ECMP-based Load balancing is not supported (NVGRE)

• ECMP : Equal Cost Multi-Path Firewalls, IDS, load balancer may drop packets (STT) TSO cannot be used (VXLAN, NVGRE)

• TSO : TCP Segmentation Offload

Practical problem Supported protocols differs between products (vendor lock-in)

13

Proposed Method

Yet another edge-overlay method Tunneling protocols are not used L2 physical networks No IP fragmentation at the physical server layer OpenFlow-enabled virtual switches Scalability of the number of virtual networks Compatibility with existing environment

14

Method1 - MAC Address Translation

MAC addresses within the frame are replaced SRC address : VM1's address => SV1's address DEST address : VM2's address => SV2's address

VM 1 VM 2VM1 => VM2

Physical Server (SV1) Physical Server (SV2)

SV1 => SV2 SV1 => VM2Virtual Switch Virtual Switch

VMs’ MAC addresses are hidden

15

Method2 – Host-based VLAN

VM VM VM

Tenant 1 Tenant 2

VID=10VID=10 VID=20

Server

Server

VM VM

Tenant 1 Tenant 2

VID=20VID=10

Virtual Network(VID10)

Virtual Network(VID20)

Traditional

VM VM VM

Tenant 1 Tenant 2

VID=10VID=20 VID=30

Server

Server

VM VM

Tenant 1 Tenant 2

VID=20VID=10

ProposalVID is globally unique VID is unique within a server

The number of virtual networks is unlimited

An example

VM 1

Virtual switch

Sender

SRC-IP : 192.168.0.1DST-IP : 192.168.0.2SRC-MAC: 52:54:00:11:11:11DST-MAC: 52:54:00:22:22:22

Physical server (SV1)

Tenant A192.168.0.152:54:00:11:11:11

10.0.0.1F4:52:14:12:34:56

TraditionalDatacenter network

VM 2

SRC-IP : 192.168.0.1DST-IP : 192.168.0.2SRC-MAC: F4:52:14:12:34:56DST-MAC: 52:54:00:22:22:22

ReceiverTenant A

192.168.0.252:54:00:22:22:22

Match Action

VID Tenant Dest

10 A VM2

20 B VM4

Physical server (SV2)10.0.0.2F4:52:14:AB:CD:EF

OpenFlowController

Virtual switch

16

Match Action

Tenant Dest Server VID

A VM2 SV2 10

A VM5 SV3 30

B VM4 SV2 20

SRC-IP : 192.168.0.1DST-IP : 192.168.0.2SRC-MAC: F4:52:14:12:34:56DST-MAC: F4:52:14:AB:CD:EFVLAN ID: 10

17

Questions

How to ensure the isolation of virtual networks? The OpenFlow controller knows all information about VMs

• IP/MAC addresses, tenant, physical server Virtual switches allow communications between VMs of the same

tenant

How virtual switches know VLAN ID? Local VMs

• When : VM startup (vport is created)• How : The controller allocates a VID triggered by port add event

Remote VMs• When : First ARP request• How : The controller writes a proper flow entry

18

Feature Comparison

Proposal VXLAN NVGRE STT VLAN

Physical Network L2 L2 / L3 L2 / L3 L2 / L3 L2

MAC address hiding ✔ ✔ ✔ ✔ -

No. of virtual networks Unlimited 16 million 16 million 18 quintillion 4094

IP Multicasting - Option - - -

Load balancing (ECMP) ✔ ✔ - ✔ ✔

FW, IDS, LB Transparency ✔ ✔ ✔ - ✔

IP Fragmentation (Physical) - Occur Occur Occur -

TSO support ✔ - - ✔ ✔

19

Performance Evaluation

3 types of VM communications are evaluated using 40 GbE environment

TCP communication

UDP communication

Multiple TCP communcations

20

Environment

Virtualswitch

Physical server 1

VM1

Iperfclient

VM2

Physical server 2

40GbE Network (data plane)

Virtualswitch

OpenFlowController

Iperfserver

(GRE / VXLAN tunnel)

1GbE Network (control plane)

Iperfclient

VM3 VM4

IperfserverSender Receiver

TCP communication

21

8Gbps

22

UDP communication

Fragmentation

Fragmentation

Too many fragments

23

Multiple TCP communications

24

Conclusion

Yet another Edge-overlay method No tunneling protocols No IP fragmentation at physical server layer Higher throughput than tunneling protocols

• Over 10 Gbps L2 network

Future Work Inter DC communication support MPLS support