13
NATURAL FIBERS, PLASTICS AND COMPOSITES

NATURAL FIBERS, PLASTICS AND COMPOSITES - …978-1-4419-9050-1/1.pdf · NATURAL FIBERS, PLASTICS AND COMPOSITES ... Fiberglass Science and Technology P PG Industries, Inc. ... 14

  • Upload
    hathuy

  • View
    237

  • Download
    1

Embed Size (px)

Citation preview

NATURAL FIBERS, PLASTICS ANDCOMPOSITES

NATURAL FIBERS, PLASTICS AND COMPOSITES

edited by

Frederick T. Wallenberger Fiberglass Science and Technology

P PG Industries, Inc. Pittsburgh, PA

Norman E. Weston Consultant Lewes, DE

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Library of Congress Cataloging-in-Publication

Natural Fibers, Plastics and Composites. Edited by Frederick T. Wallenberger and Norman E. Weston ISBN 978-1-4613-4774-3 ISBN 978-1-4419-9050-1 (eBook) DOI 10.1007/978-1-4419-9050-1

Copyright ©2004 by Springer Science+Business Media New York OriginaUy published by Kluwer Academic Publishers in 2004 Softcover reprint ofthe hardcover 1 st edition 2004

AU rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photo-copying, microfilming, recording, or otherwise, without the prior written permission of the publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Permissions for books published in the USA: [email protected] Pennissions for books published in Europe: [email protected] Printed on acidjree paper.

Contents

Contents

Contributing Authors

SECTION I. OVERVIEW

1 SCIENCE AND TECHNOLOGYFREDERICK T. WALLENBERGER ANDNORMANE. WESTON1. MATERIALS FROM NATURAL SOURCES2. VALUE-IN-USE OF NATURAL MATERIALS3. OVERVIEW OF NATURAL MATERIALS

3.1 Commercial Technologies3.2 Commercial Developments3.3 Recent Research Advances

REFERENCES

v

xiii

1

3

3445677

SECTION II. NATURAL FIBERS: PROPERTIES ANDAPPLICATIONS 9

2 ADVANCED SPIDER SILK FIBERS BY BIOMIMICRY 11JEFFREYTURNER AND COSTASKARA1ZAS1. INTRODUCTION 112. SPIDER SILK AS A BIOMATERIAL 123. SPIDER SILK GENETICS 134. SILK PROTEIN PRODUCTION IN VITRO 145. SILK PROTEIN PRODUCTION VIA LACTATION 166. SPIDER SILK PROTEIN CHARACTERIZATION 177. SPINNING SILK PROTEINS INTO FIBERS 18

VI

7.1 Fiber Properties and Morphology 208. POTENTIAL USES FOR SPIDER SILK FIBERS 22ACKNOWLEDGEMENT 23REFERENCES 23

3 ENGINEERING PROPERTIES OF SPIDER SILK FIBERS 27FRANKK. Ko1. INTRODUCTION 272. TENSILE PROPERTIES 293. TRANSVERSE COMPRESSION PROPERTIES 314. TORSIONAL PROPERTIES 335. VISCOELASTIC PROPERTIES 34

5.1 Elastic Response in Simple Elongation 355.2 Hysteresis in Cyclic Loading 365.3 Stress Relaxation at Constant Strain 365.4 Creep at Constant Load 375.5 Low Frequency Sinusoidal Stretching 38

6. A CONSTITUTIVE MODEL FOR SPIDER SILK 386.1 The Elastic Response in Simple Elongation 396.2 The History Dependent Response 406.3 The Continuous Relaxation Spectrum 406.4 Computation Methods 41

7. SUMMARY AND OBSERVATIONS 45ACKNOWLEDGEMENTS 47REFERENCES 47

4 MICROCRYSTALLINE AVIAN KERATIN PROTEIN FIBERS 51WALTER F . SCHMIDT AND SHALINI JAYASUNDERA1. MICROCRYSTALLINE STRUCTURE 51

1.1 Feather Keratin Structure 511.2 Wool Chemical Structure 521.3 Oriented Molecular Ordering 521.4 Evidence for Peptide Secondary Structure 54

2. MORPHOLOGICAL STRUCTURE 562.1 Uniformity of Keratin Monomers 572.2 Non-Uniformity in Polymeric Forms 59

3. FEATHERS INTO FIBER 604. FIBER INTO FIBER COMPOSITES 63REFERENCES 65

5 KERATIN FIBER NONWOVENS FOR EROSION CONTROL 67BRIAN R. GEORGE, ALIMOHAMMAD EVAZYNAJAD, ANNEBOCKARIE, HOLLY MCBRIDE. TETYANA BUNIK ANDALISON SCUTTI1. INTRODUCTION 672. FIBERS AND NONWOVEN FABRICS 68

Vll

2.1 Fiber Characterization 692.2 Fabric Production and Characterization 692.3 Production and Characterization of Fabric Controls 712.4 In-Use Characterization ofNonwoven Fabrics 76

3. EROSION CONTROL 763.1 Fabric Selection 773.2 Product Installation 793.3 Soil Evaluation 803.4 Product Evaluation 80

ACKNOWLEDGEMENTS 81REFERENCES 81

6 KERATIN FillER STRUCTURES FOR NANOFILTRATION 83M MISRA AND P. KAR1. INTRODUCTION 832. CHARACTERIZATION OF AVIAN FillERS 843. REMOVAL OF METAL IONS FROM SOLUTIONS 86

3.1 Removal of Copper 873.2 Removal of Lead 883.3 Removal of Chromium 893.4 Removal of Mercury 903.5 Removal of Cadmium 903.6 Removal of Metals from Mixed Metal Solution 90

4. REMOVAL OF URANIUM FROM SOLUTIONS 915. EFFECT OF FillER SURFACE TREATMENT 916. SUMMARY 92REFERENCES 93

7 ALGINATE AND CHITOSAN FillERS FOR MEDICAL USES 95HENRYK STRUSZCZYK1. INTRODUCTION 952. EXPERIMENTAL DETAILS 973. CHITOSAN AND ALGINATE FillER EVALUATION 99

3.1 Chitosan Fibers 1003.2 Alginate Fibers 102

4. CONCLUSIONS 103ACKNOWLEDGMENTS 104REFERENCES 104

8 NATURAL FillERS WITH LOW MOISTURE SENSITIVITY 105GERARD T. Port1. INTRODUCTION 1052. CHARACTERISTICS OF BAST FillERS 1063. SWELLING OF BAST FillERS 1074. METHODS TO REDUCE FillER SWELL 109

4.1 Acetylation 109

Vlll

4.2 Hydrothenna1 Treatment 1105. THE DURALIN®PROCESS III

5.1 Decortication 1115.2 The Feedstock 112

6. DURALIN®PROCESS- MOLECULAR ASPECTS 1137. Duralin® fibers and duralin® flax shives 116

7.1 Duralin® Fibers 1167.2 Duralin® Flax Shives 117

8. THERMAL DEGRADATION OF FLAX FillERS 1189. SUMMARYAND CONCLUSIONS 119REFERENCES 120

9 ENVIRONMENTALLY FRIENDLY LYOCELLFillERS 123K. CHRISTIAN SCHUSTER, CHRISTIAN ROHRER, DIETEREICHINGER, JOSEF SCHMIDTBAUER, PETER ALDRED, ANDHEINRICH FIRGO1. INTRODUCTION 123

1.1 Cellulosic Fibers 1261.1.1 Tradenames 1261.1 .2 Structural Properties 126

2. RAW MATERIALS AND PULPING 1293. VISCOSE AND MODAL FillER PROCESS 1314. LENZINGLYOCELL FillER PROCESS 132

4.1 An IntrinsicallyClean Process 1324.2 Lyocell Fiber Structure 1334.3 Fibrillation- Cause and Effects 1354.4 Lenzing Lyocell Technologyand Products 1364.5 LenzingLyocell'"LF 136

4.5.1 Fibrillation Protection 1374.5.2 MechanicalProperties 1374.5.3 Fiber Morphology 1384.5.4 The Chemical StabilityofLyocell LF 1384.5.5 ToxicologicalTests 1394.5.6 Lyocell LF Blends 139

4.6 Lenzing Lyocell® FILL 1404.6.1 Bulkiness 1404.6.2 Elasticity 1404.6.3 Cigarette Burn Test 1414.6.4 Washability 1424.6.5 Comfort - Physiology 1424.6.6 Lyocell® FILL Blends 143

5. ENVIRONMENTAL AWARDS TO LENZING 1435.1 Oeko-Tex Standard 100 1435.2 EU Award for the Environment 1445.3 European Eco-Labe12002 144

ACKNOWLEDGEMENTSREFERENCES

ix

145145

SECTION III. NATURAL PLASTICS & MATRIX MATERIALS 147

10 PLASTICS AND COMPOSITES FROM POLYLACTIC ACID 149KRISTllNA OKSMAN AND JOHAN-FREDRIK SELIN1. INTRODUCTION 1492. POLYLACTIC ACID 150

2.1 Polymerization 1512.2 Mechanical Properties 1512.3 Polymer Degradation 152

3. FLAX FIBERS 1523.1 Generic PropertiesofNatural Fibers 1523.2 Selected Properties of Flax Fibers 153

4. POLYLACTIC ACID COMPOSITES 1534.1 Matrix Materials 1544.2 Extrusion of Composite and Compression Molding 1544.3 Mechanical testing 1544.4 Scanning Electron Microscopy 1584.5 Gel Permeation Chromatography 1594.6 Dynamic MechanicalThermal Analysis 160

5. APPLICATIONS OF POLYLACTICACID 1636. SUMMARYAND CONCLUSIONS 163REFERENCES 164

11 PLASTICS AND COMPOSITES FROM SOYBEAN OIL 167ZORAN S. PETROVIC, ANDREW GUo, IVAN JAVNI AND WEIZHANG1. INTRODUCTION 1672. VEGETABLEOIL BASED RESINS 168

2.1 Compositions 1692.2 Direct Polymerization of Vegetable Oils 1692.3 Epoxy Resins From Vegetable Oils 1702.4 Unsaturated PolyestersFrom Vegetable Oils 1732.5 PolyurethanesFrom VegetableOils 176

2.5.1 Polyols From Vegetable Oils 1762.5.2 PolyurethaneResins From VegetableOils 1782.5.3 Distributionof HydroxylGroups, CrosslinkDensity 1792.5.4 Effect of the StructureofIsocyanates 182

2.6 Composites from Soy Polyo1s and Reinforcements 1862.6.1 Materials 1862.6.2 Fabrication and Propertiesof Composites 1862.6.3 Effect of Cure Time on PropertiesofComposites 1872.6.4 Effect of Reinforcement on CompositeProperties 1872.6.5 Properties of Glass Fiber ReinforcedComposites 188

x

2.6.6 Hydrolytic Stabilityof Soy Based Composites 1892.6.7 Properties ofCompositesReinforced with E-Glass 189

3. CONCLUSIONS 190REFERENCES 190

12 PLASTICSAND COMPOSITES FROM LIGNOPHENOLS 193ELISABETE FROLLlNI, JANE M F. PAIVA, WANDERSON G.TRINDADE, ILCE A. TANAKA RAZERA AND SANDRA P . TITA1. INTRODUCTION 1932. LIGNOCELLULOSIC MATERIALS 1943. THERMOSETMATRICES 196

3.1 Lignophenolicand PhenolicResins 1973.2 Lignophenolicand PhenolicPrepolymerResins 1993.3 LignophenolicResins in Thermoset Matrices 203

4. LIGNOCELLULOSIC FIBERS IN COMPOSITES 2045. IMPACT STRENGTH 206

5.1 Phenolic Matrix Composites 2085.2 LignophenolicMatrix Composites 2105.3 Effect of Fiber Treatments 211

6. WATER ABSORPTION 2137. LIGNOPHENOLICS IN CLOSED CELL FOAMS 218ACKNOWLEDGEMENTS 219REFERENCES 219

13 CHITOSAN BIOPOLYMER-SILICA HYBRID AEROGELS 227WILLIAM M RISEN, JR. AND XIPENG LIU1. INTRODUCTION 2272. FORMATION OF BIOPOLYMERS 232

2.1 Generic Approaches 2322.2 SynthesisofX-Si02 and X-Si02-M Aerogels 2332.3 Characterization ofX-Si02 and X-Si02-M Aerogels 233

2.3.1 SANS and TEM Size Measurements 2342.3.2 Magnetic Properties 2342.3.3 Absorption Spectroscopy 2342.3.4 Chemical Reactionswith X-Si02-M Aerogels 234

2.4 Reactions and Modifications 2352.4.1 Reaction with SuccinicAnhydride(SA) 2352.4.2 HMDI and SynthesisofX-Si02-NCO 2352.4.3 Reaction with IsocyanateTerminatedPrepolymer 2352.4.4 Modificationwith Isocyanatoethyl Methacrylate 2362.4.5 Amine Pendant SiloxaneCopolymer 2362.4.6 Reaction ofX-Si02-NCO with HEMAMonomer 2362.4.7 Chitosan-SilicaAerogel Hybrid Composite 237

3. STRUCTURES AND PROPERTIES 2373.1 X-Si02 and X-Si02-M Aerogels 2373.2 ModificationofX-Si02 Aerogel 240

Xl

4. APPLICATIONS 242ACKNOWLEDGEMENTS 245REFERENCES 246

SECTION IV. COMPOSITES FROM NATURAL FIBERS ANDPLASTICS 247

14 USES OF NATURAL FIBER REINFORCED PLASTICS 249RYSZARDKOZLOWSKIANDMARIA WLADYKA-PRZYBYLAK1. INTRODUCTION 2492. CONVENTIONAL COMPOSITE BOARDS 250

2.1 Particleboards 2522.2 Fiberboards 253

3. LIGNOCELLULOSIC-MINERAL COMPOSITES 2554. NATURAL FIBER REINFORCED POLYMERS 255

4.1 Composites Containing Natural Vegetable Fibers 2564.2 Limitations ofNatural Fiber Reinforced Composites 2564.3 Properties ofNatural Vegetable Fibers 2564.4 Fiber Modification 260

4.4.1 Chemical Modification - Mercerization 2604.4.2 Liquid Ammonia Treatment 2604.4.3 Conventional Chemical Modification 2614.4.4 Silane Coupling Agents 2624.4.5 Treatment With Isocyanates 2634.4.6 Permanganate Treatment 2634.4.7 Graft Copolymerization 2644.4.8 Physical Methods of Modification 266

4.5 Manufacture of Composites 2664.5.1 Hand Lay-up, Spray and Press Molding 2664.5.2 Resin Transfer Molding 2674.5.3 Pultrusion 2674.5.4 Filament Winding 2684.5.5 Bulk and Sheet Molding 268

4.6 Nonwovens from Natural Fibers 2695. FIRE RETARDANT COMPOSITES 2696. CONCLUSIONS 270REFERENCES 271

IS NATURAL FIBER REINFORCED AUTOMOTIVE PARTS 275THOMAS P. SCHLOESSERI. INTRODUCTION 2752. PROPERTIES OF NATURAL FIBERS 2763. COMPARISON OF NATURAL AND GLASS FIBERS 2784. PROCESSING OF NATURAL FIBER BASED PARTS 2795. PROPERTIES OF NATURAL FIBER BASED PARTS 2806. POTENTIAL OF NATURAL FIBER BASED PARTS 281

XlI

7. SUMMARY AND CONCLUSIONS 2838. OUTLOOK 285REFERENCES 285

16 REGENERATED CELLULOSE REINFORCED PLASTICS 287S.J. EICHHORN1. INTRODUCTION 2872. FillER STRUCTURE AND PROPERTIES 2893. NATURAL FillER-PLASTIC MATRIX INTERFACES 2924. REGENERATED CELLULOSE FillERS 2965. HYBRID GLASSINATURAL FillER COMPOSITES 2986. BIOMIMETICS IN COMPOSITE PRODUCTION 2987. CONCLUSIONS 300ACKNOWLEDGEMENTS 300REFERENCES 300

17 BAMBOO FillER REINFORCED PLASTICS 305HIROSHI YAMAGUCHI AND TORU FUJII1. INTRODUCTION 3052. PREPARATION OF BAMBOO FillERS 3073. BAMBOO FillERS - MECHANICAL PROPERTIES 3084. NATURAL FillER MATRIX COMPoSITE 3105. RHEOLOGICAL BEHAVIOR OF COMPOSITES 3126. CONCLUSION 318ACKNOWLEDGMENT 318REFERENCES 318

18 RAMIE FillER REINFORCED NATURAL PLASTICS 321ANILN. NETRAVALI1. INTRODUCTION 3212. BIODEGRADABLE FIBERS 322

2.1 Plant Based Fibers 3222.2 Ramie Fibers 323

3. BIODEGRADABLE POLYMERS 3243.1 Synthetic and Natural Resins 3243.2 Soy Based Natural Resins 325

4. BIODEGRADABLE COMPOSITES 3274.1 Soy Based Natural Resins 3274.2 Short Fiber Ramie-Soy Composites 3274.3 Long Fiber Ramie-Soy Composites 333

5. CONCLUSIONS 340ACKNOWLEDGEMENTS 340REFERENCES 340

19 NANOPARTICLE REINFORCED NATURAL PLASTICS 345SABINE FISCHER

xiii

1. INTRODUCTION 3452. NANOPARTICLESIN A POLYMERIC MATRIX 346

2.1 Classical Methods to Prepare Nanocomposites 3482.2 Other Methods to Prepare Nanocomposite Materials 350

3. NANOCOMPOSITES WITH NATURALPOLYMERS 3513.1 Materials and Processes 3523.2 Nanocomposites for BioplasticApplications 353

3.2.1 Clay Modification 3543.2.2 Processing 3543.2.3 Analysis 3553.2.4 Manufacturingand Propertiesof Thin Films 3553.2.5 Conclusions 357

4. BIOMEDICALAPPLICATIONS 3584.1 Chitosan as a Matrix for BiomedicalApplications 3584.2 Chitosan-ClayNanocomposites 3594.3 Nanocomposites Based on Hydroxyapatite 360

5. SUMMARY 362ACKNOWLEDGEMENTS 363REFERENCES 363

Index 365

Contributing Authors

AuthorP. AldredA. BockarieT.BunikS. 1. EichhornD. EichingerE. EvazynajadS. FischerH. FirgoE. FroIIiniT. FujiiB. R. GeorgeA.GuoS. lavasunderaI. lavniP.KarC. KaratzasF.KoR. KozlowskiX.LiuH. McBrideM. MisraA. N. NetravaliK. Oksman1. M. F. PaivaZ. S. PetrovicG.T.PottW. M. Risen, Jr.C. RohrerT. SchlosserW. F. SchmidtJ. SchmidtbauerK. C. SchusterA. ScuttiJ.-F. SelinH. StruszczykI. A. TanakaRazeraS. P. TitaW. G. Trindade1. TurnerH. YamaguchiF. T. WaIlenbergerN. E. WestonM.Wladyka-PrzybylakW. Zhang

AffiliationChristianDopplerLaboratory, Dornbirn, AustriaPhiladelphiaUniversity, Schoolof Science& HealthPhiladelphiaUniversity, Schoolof Science& HealthUniv. of Manchester, Manchester Materials Sci. Ctr.LenzingAG, Austria,Marketing DepartmentPhiladelphiaUniv., Schoolof Textiles& Mater. Tech.EindhovenUniv. of Technology, TNO Industrial Tech.LenzingAG, Research& Development DepartmentUniv. ofSiio Paulo,ChemicalInstitureof Sao CarlosDoshishaUniversity, Dept. of Mechanical EngineeringPhiladelphiaUniv.,Schoolof Textiles& Mater. Tech.PittsburgState Univ., KansasPolymerResearch Ctr.U. S. Dept. ofAgriculture, Agricultural Res. ServicePittsburgState Univ., Kansas PolymerResearchCtr.Univ. ofNevada,Metallurgical & MaterialsEng.Nexia Biotechnologies, Inc., Montreal, CanadaDrexel University, Departmentof Materials Eng.InstituteofNatural Fibers,Poznan,PolandBrown University, Departmentof ChemistryPhiladelphiaUniv., SchoolofTextiles & Mater. Tech.Univ. of Nevada,MetaIlurgical & Materials Eng.CorneIlUniversity, Fiber ScienceProgramNorwegianUniversityof Scienceand TechnologyUniv. ofSiio Paulo,ChemicalInstitureof Sao CarlosPittsburgState Univ., KansasPolymerResearchCtr.Ceres B.V., Wageningen, The NetherlandsBrown University, Departmentof ChemistryLohmann& RauscherAG, GermanyDaimlerChrysler, Body and Powertrain ResearchU. S. Dept. ofAgriculture, Agricultural Res. ServiceLenzingAG, Researchand Development Dept.LenzingAG, Researchand Development Dept.PhiladelphiaUniversity, Schoolof Science& HealthFortum Oil and Gas, Porvoo,FinlandInstituteof ChemicalFibers,Lodz, PolandUniv. ofSao Paulo,ChemicalInstitureofSiio CarlosUniv. of Sao Paulo,ChemicalInstitureofSiio CarlosUniv. ofSao Paulo,Chemical Institureof Sao CarlosNexia Biotechnologies, Inc., Montreal, CanadaDoshisha University, Dept. of Mechanical EngineeringPPG Industries,Inc., Fiberglass Scienceand Techno!.Consultant,LewesDelawareInstituteofNaturalFibers,Poznan, PolandPittsburgState Univ., KansasPolymerResearchCtr.

Chapter95516951991217511411623141356181012118139154995107121212217I1

1411