27
NATO ASI Series Advanced Science Institutes Series A series presenting the results of activities sponsored by the NA TO Science Committee, which aims at the dissemination of advanced scientific and technoiogicai knowiedge, with a view to strengthening links between scientific communities. The series is published by an international board of publishers in conjunction with the NATO Scientific Affairs Division A Life Sciences Plenum Publishing Corporation B Physics New York and London C Mathematical Kluwer Academic Publishers and Physical Sciences Dordrecht, Boston, and London D Behavioral and Social Sciences E Applied Sciences F Computer and Systems Sciences Springer-Verlag G Ecological Sciences Berlin, Heidelberg, New York, London, H Cell Biology Paris, and Tokyo Recent Volumes in this Series Volume 181—Fundamental Processes of Atomic Dynamics edited by J. S. Briggs, H. Kleinpoppen, and H. O. Lutz Volume 182— Physics, Fabrication, and Applications of Multilayered Structures edited by P. Dhez and C. Weisbuch Volume 183— Properties of Impurity States in Superlattice Semiconductors edited by C. Y. Fong, Inder P. Batra, and S. Ciraci Volume 184—Narrow-Band Phenomena—Influence of Electrons with Both Band and Localized Character edited by J. C. Fuggle, G. A. Sawatzky, and J. W. Allen Volume 185— Nonperturbative Quantum Field Theory edited by G. 't Hooft, A. Jaffe, G. Mack, P. K. Mitter, and R. Stora Volume 186—Simple Molecular Systems at Very High Density edited by A. Polian, P. Loubeyre, and N. Boccara Volume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surfaces edited by P. K. Larsen and P. J. Dobson c £inü Senes S; Physics

NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

NATO ASI Series Advanced Science Institutes Series

A series presenting the results of activities sponsored by the NA TO Science Committee, which aims at the dissemination of advanced scientific and technoiogicai knowiedge, with a view to strengthening links between scientific communities.

The series is published by an international board of publishers in conjunction with the NATO Scientific Affairs Division

A Life Sciences Plenum Publishing Corporation B Physics New York and London

C Mathematical Kluwer Academic Publishers and Physical Sciences Dordrecht, Boston, and London

D Behavioral and Social Sciences E Applied Sciences

F Computer and Systems Sciences Springer-Verlag G Ecological Sciences Berlin, Heidelberg, New York, London, H Cell Biology Paris, and Tokyo

Recent Volumes in this Series Volume 181—Fundamental P r o c e s s e s o f A t o m i c D y n a m i c s

e d i t e d by J . S. B r i g g s , H. K l e i n p o p p e n , a n d H. O. L u t z

Volume 182— P h y s i c s , F a b r i c a t i o n , a n d A p p l i c a t i o n s o f M u l t i l a y e r e d S t r u c t u r e s e d i t e d b y P. D h e z a n d C. W e i s b u c h

Volume 183— P r o p e r t i e s o f I m p u r i t y S t a t e s i n S u p e r l a t t i c e S e m i c o n d u c t o r s e d i t e d b y C. Y. F o n g , I nde r P. B a t r a , a n d S. C i r a c i

Volume 184—Narrow-Band P h e n o m e n a — I n f l u e n c e o f E l e c t r o n s w i t h B o t h B a n d a n d L o c a l i z e d C h a r a c t e r e d i t e d b y J . C. F u g g l e , G. A . S a w a t z k y , a n d J . W . A l l e n

Volume 185— N o n p e r t u r b a t i v e Q u a n t u m F i e l d T h e o r y e d i t e d by G. ' t H o o f t , A . J a f f e , G. M a c k , P. K. M i t t e r , a n d R. S t o r a

Volume 186—Simple M o l e c u l a r S y s t e m s a t V e r y H i g h D e n s i t y e d i t e d by A. P o l i a n , P. L o u b e y r e , a n d N. B o c c a r a

Volume 187—X-Ray S p e c t r o s c o p y in A t o m i c a n d S o l i d S t a t e P h y s i c s e d i t e d by J . G o m e s F e r r e i r a a n d M. T e r e s a R a m o s

Volume 188—Reflection H i g h - E n e r g y E l e c t r o n D i f f r a c t i o n a n d R e f l e c t i o n E l e c t r o n I m a g i n g o f S u r f a c e s e d i t e d by P. K. L a r s e n a n d P. J . D o b s o n

c£inü Senes S; Physics

Page 2: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surfaces E d i t e d by

P. K. Larsen Ph i l i p s R e s e a r c h L a b o r a t o r i e s E i n d h o v e n , T h e N e t h e r l a n d s

a n d

P. J. Dobson Ph i l i p s R e s e a r c h L a b o r a t o r i e s Redh i l l , U n i t e d K i n g d o m

Plenum Press New York and London Published in Cooperation with NATO Scientific Affairs Division

Page 3: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

P r o c e e d i n g s o f a N A T O A d v a n c e d R e s e a r c h W o r k s h o p o n R e f l e c t i o n H igh -Ene rgy E l e c t r o n D i f f r a c t i o n a n d R e f l e c t i o n E l e c t r o n I m a g i n g o f S u r f a c e s , he ld J u n e 1 5 - 1 9 , 1987, in V e l d h o v e n , T h e N e t h e r l a n d s

L i b r a r y o f C o n g r e s s C a t a l o g i n g in P u b l i c a t i o n D a t a

N A T O A d v a n c e d R e s e a r c h W o r k s h o p o n R e f l e c t i o n H i g h - E n e r g y E l e c t r o n D i f f r a c ­t i o n a n d R e f l e c t i o n E l e c t r o n I m a g i n g o f S u r f a c e s (1987: V e l d h o v e n , N e t h e r l a n d s )

R e f l e c t i o n h i g h - e n e r g y e l e c t r o n d i f f r a c t i o n a n d r e f l e c t i o n e l e c t r o n i m a g i n g o f s u r f a c e s / e d i t e d b y P. K. L a r s e n a n d P. J . D o b s o n .

p. c m . — ( N A T O A S I s e r i e s . S e r i e s B, P h y s i c s ; v. 188) " P r o c e e d i n g s o f a N A T O A d v a n c e d R e s e r a c h W o r k s h o p o n R e f l e c t i o n H i g h -

E n e r g y E l e c t r o n D i f f r a c t i o n a n d R e f l e c t i o n E l e c t r o n I m a g i n g o f S u r f a c e s , h e l d J u n e 1 5 - 1 9 , 1 9 8 7 , in V e l d h o v e n , T h e N e t h e r l a n d s " — T . p . v e r s o .

" P u b l i s h e d in C o o p e r a t i o n w i t h N A T O S c i e n t i f i c A f f a i r s D i v i s i o n . " I n c l u d e s b i b l i o g r a p h i c a l r e f e r e n c e s a n d i n d e x . I S B N 0-306-43035-5 1. S u r f a c e s ( P h y s i c s ) — T e c h n i q u e — C o n g r e s s e s . 2. R e f l e c t i o n h i g h e n e r g y

e l e c t r o n d i f f r a c t i o n — C o n g r e s s e s . 3. R e f l e c t i o n e l e c t r o n m i c r o s c o p y — C o n ­g r e s s e s . I. L a r s e n , P. K. I I . D o b s o n , P. J . I I I . N o r t h A t l a n t i c T r e a t y O r g a n i z a t i o n . S c i e n t i f i c A f f a i r s D i v i s i o n . IV. T i t l e . V. S e r i e s . Q C 1 7 3 . 4 . S 9 4 N 3 7 1987 88 -28843 5 3 0 . 4 ' 1 - d c 1 9 C I P

© 1 9 8 8 Plenum Press, N e w York A Division of P lenum Publ ishing Corpora t ion 2 3 3 Spr ing Street , N e w York, N.Y. 1 0 0 1 3

All r ights reserved

No part of this book may be rep roduced , s to red in a retr ieval s y s t e m , or t ransmi t ted in any form or by any means, e lect ron ic , mechanical , pho tocopy ing , microf i lming, record ing, or o therw ise , w i thout wr i t ten permiss ion f rom the Publ isher

Pr inted in the Uni ted States of Amer ica

Page 4: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

SPECIAL PROGRAM ON CONDENSED SYSTEMS OF LOW DIMENSIONALITY T h i s b o o k c o n t a i n s t h e p r o c e e d i n g s o f a N A T O A d v a n c e d R e s e a r c h W o r k s h o p h e l d w i t h i n t h e p r o g r a m o f a c t i v i t i e s o f t h e N A T O S p e c i a l P r o g r a m o n C o n ­d e n s e d S y s t e m s o f L o w D i m e n s i o n a l i t y , r u n n i n g f r o m 1983 t o 1988 a s p a r t o f t h e a c t i v i t i e s o f t h e N A T O S c i e n c e C o m m i t t e e .

O t h e r b o o k s p r e v i o u s l y p u b l i s h e d a s a r e s u l t o f t h e a c t i v i t i e s o f t h e S p e c i a l P r o g r a m a re :

V o l u m e 148 I N T E R C A L A T I O N IN L A Y E R E D M A T E R I A L S e d i t e d by M. S. D r e s s e l h a u s

V o l u m e 152 O P T I C A L P R O P E R T I E S O F N A R R O W - G A P L O W - D I M E N S I O N A L S T R U C T U R E S e d i t e d by C. M. S o t o m a y o r T o r r e s , J . C. P o r t a l , J . C. M a a n , a n d R. A . S t r a d l i n g

V o l u m e 163 T H I N F I L M G R O W T H T E C H N I Q U E S F O R L O W - D I M E N S I O N A L S T R U C T U R E S e d i t e d b y R. F. C. F a r r o w , S. S. P. P a r k i n , P. J . D o b s o n , J . H. N e a v e , a n d A . S. A r r o t t

V o l u m e 168 O R G A N I C A N D I N O R G A N I C L O W - D I M E N S I O N A L C R Y S T A L L I N E M A T E R I A L S e d i t e d by P ie r re D e l h a e s a n d M a r c D r i l l o n

V o l u m e 172 C H E M I C A L P H Y S I C S O F I N T E R C A L A T I O N e d i t e d b y A. P. L e g r a n d a n d S. F l a n d r o i s

V o l u m e 182 P H Y S I C S , F A B R I C A T I O N , A N D A P P L I C A T I O N S O F M U L T I L A Y E R E D S T R U C T U R E S e d i t e d b y P. D h e z a n d C. W e i s b u c h

V o l u m e 183 P R O P E R T I E S O F I M P U R I T Y S T A T E S I N S U P E R L A T T I C E S E M I C O N D U C T O R S e d i t e d b y C. Y. F o n g , I nde r P. B a t r a , a n d S. C i r a c i

Page 5: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

CONTENTS

SURFACE STRUCTURAL DETERMINATION

EXPERIMENTAL

Experimental Overview of Surface S t r u c t u r e Determination by RHEED

S. Ino 3

THEORY

Surface S t r u c t u r a l Determination Using RHEED J.L. Beeby 29

Theory of RHEED by Reconstructed Surfaces M.G. Knibb and P.A. Maksym 43

Accurate Dynamical Theory f o r RHEED Rocking-curve I n t e n s i t y Spectra

S.Y. Tong, T.C. Zhao and H.C. Poon 63

INELASTIC EFFECTS

I n e l a s t i c S c a t t e r i n g E f f e c t s i n RHEED and R e f l e c t i o n Imaging A.L. B l e l o c h , A. Howie, R.H. M i l n e and M.G. Wal l s 77

E x c i t a t i o n of D i e l e c t r i c Spheres by E l e c t r o n Beams P.M. Echenique 91

RESONANCE AND CHANNELING EFFECTS

Resonance E f f e c t s i n RHEED G. Meyer-Ehmsen 99

I n e l a s t i c S c a t t e r i n g and Secondary E l e c t r o n Emission Under Resonance C o n d i t i o n s i n RHEED from P t ( l l l )

H. Marten 109

Adatom S i t e Determination Using Channeling E f f e c t s i n RHEED on X-ray and Auger E l e c t r o n P r o d u c t i o n

J.C.H. Spence and Y. Kim 117

Page 6: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

A Note on the Bloch Wave and I n t e g r a l Formulations of RHEED Theory

Jon Gj^nnes

DISORDERS AND STEPS IN ELECTRON DIFFRACTION

D i f f r a c t i o n from Disordered Surfaces: An Overview M.G. L a g a l l y , D.E. Savage and M.C. T r i n g i d e s

Theory of E l e c t r o n S c a t t e r i n g from Defect: Steps on Surfaces w i t h Non-equivalent Terraces

W. M o r i t z

D i f f r a c t i o n from Stepped Surfaces M. Henzler

RHEED and Disordered Surfaces B. Böiger, P.K. Larsen and G. Meyer Ehmsen

Temperature D i f f u s e S c a t t e r i n g i n RHEED M. A l b r e c h t and G. Meyer-Ehmsen

Temperature +Dependence of the Surface D i s o r d e r on Ge(OOl) Due to Ar Ion Bombardment

A.J. Hoeven, J.S.C. K o o l s , J . A a r t s and P.C. Zalm

Two-dimensional F i r s t - o r d e r Phase S e p a r a t i o n i n an E p i t a x i a l Layer

T.-M. Lu and S.-N. Yang

CONVERGENT BEAM DIFFRACTION

Surface Convergent-Beam D i f f r a c t i o n f o r C h a r a c t e r i z a t i o n and Symmetry Determination

J.A. Eades and M.D. Shannon

Convergent Beam RHEED C a l c u l a t i o n s Using the Surface P a r a l l e l M u l t i s l i c e Approach

A.E. Smith

REFLECTION ELECTRON MICROSCOPY

USING CONVENTIONAL INSTRUMENTS

R e f l e c t i o n E l e c t r o n Microscopy i n TEM and STEM Instruments J.M. Cowley

R e f l e c t i o n E l e c t r o n Microscopy w i t h Use of CTEM: Studies of Au Growth on P t ( l l l )

K. Y a g i , S. Ogawa and Y. T a n i s h i r o

A p p l i c a t i o n of R e f l e c t i o n E l e c t r o n Microscopy f o r Surface Science (Observation of cleaned c r y s t a l s urfaces of S i , P t , Au and Ag)

Y. Uchida

R e f l e c t i o n Microscopy i n a Scanning Transmission E l e c t r o n Microscope

R.H. Milne

xii

Page 7: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

C o n t r a s t of Surface Steps and D i s l o c a t i o n s Under Resonance, Non-resonance, Bragg, and Non-Bragg C o n d i t i o n s

Tung Hsu and L.-M. Peng 329

MICROPROBE RHEED

Microprobe R e f l e c t i o n High-energy E l e c t r o n D i f f r a c t i o n M. Ichikawa and T. D o i 343

Scanning RHEED S t u d i e s of S i l i c i d e Formation i n a UHV-SEM P.A. Bennett and A.P. Johnson 371

LOW ENERGY INSTRUMENTS

Low Energy E l e c t r o n R e f l e c t i o n Microscopy (LEEM) and I t s A p p l i c a t i o n t o the Study of S i Surfaces

E. Bauer and W. T e l i e p s 381

Low Energy Scanning E l e c t r o n Microscope T. Ichinokawa 385

ELECTRON DIFFRACTION STUDIES OF GROWTH

SEMICONDUCTORS

RHEED I n t e n s i t y O s c i l l a t i o n s Düring MBE Growth of I I I - V Compounds -An Overview

B.A. Joyce, J.H. Neave, J . Zhang and P.J. Dobson 397

RHEED O s c i l l a t i o n s C o n t r o l of GaAs and AlAs MBE Growth Using Phase­l o c k Modulated Beams

F. B r i o n e s , L. Gonzalez and J.A. V e l a 419

The C o n t r i b u t i o n of Atomic Steps to R e f l e c t i o n High energy E l e c t r o n D i f f r a c t i o n from Semiconductor Surfaces

P.R. P u k i t e , P.I. Cohen and S. B a t r a 427

RHEED S t u d i e s of Growing Ge and S i Surfaces J . A a r t s and P.K. Larsen 449

LEED I n v e s t i g a t i o n s of S i MBE onto Si(100) M. Horn, U. G o t t e r and M. Henzler 463

METALS

Q u a n t i t a t i v e S t u d i e s of the Growth of Metals on GaAs(llO) Using RHEED

D.E. Savage and M.G. L a g a l l y 475

RHEED I n t e n s i t y O s c i l l a t i o n s i n M e t a l E p i t a x y

G. L i l i e n k a m p , C. K o z i o l and E. Bauer 489

THEORY

C a l c u l a t i o n of RHEED I n t e n s i t y from Growing Surfaces T. Kawamura 501

Studies of Growth K i n e t i c s on Surfaces w i t h D i f f r a c t i o n M.C. T r i n g i d e s and M.G. L a g a l l y 523

Index 539

xiii

Page 8: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

THEORY OF ELECTRON SCATTERING FROM DEFECT: STEPS

ON SURFACES WITH NON-EQUIVALENT TERRACES

W. M o r i t z

I n s t i t u t f . K r i s t a l l o g r a p h i e und M i n e r a l o g i e U n i v e r s i t a e t Muenchen T h e r e s i e n s t r . 41, 8000 Muenchen 2, FRG

INTRODUCTION

One important parameter f o r the c h a r a c t e r i z a t i o n of surfaces i s the surfac e roughness. The d e n s i t y and d i s t r i b u t i o n of steps i n f l u e n c e s most of the p h y s i c a l and chemical p r o p e r t i e s of s u r f a c e s . I t i s found, f o r example, that a number of c a t a l y t i c r e a c t i o n s at sur f a c e s a c t u a l l y take p l a c e at edge or k i n k s i t e s . In the p r o d u c t i o n of semiconductor d e v i c e s the f l a t n e s s of surfaces or i n t e r f a c e s p l a y s an e s s e n t i a l r o l e . T h e r e f o r e a number of techniques have been developed to i n v e s t i g a t e the topography of s u r f a c e s e i t h e r by d i r e c t imaging or by d i f f r a c t i o n u s i n g both, X-rays and e l e c t r o n s . The d i f f r a c t i o n method i s the most convenient method t o o b t a i n I n f o r m a t i o n about the su r f a c e roughness on an atomic s c a l e .

The q u a n t i t i e s which are e a s i l y obtained form a d i f f r a c t i o n experiment are average q u a n t i t i e s l i k e t e r r a c e w i d t h s , i s l a n d s i z e d i s t r i b u t i o n f u n c t i o n s , mean roughness depths e t c . , because u s u a l l y a l a r g e area of the su r f a c e i s probed. The d e t e r m i n a t i o n of the d e t a i l s of the atomic geometry at and around a defect or a Step u s u a l l y r e q u i r e s a l a r g e experimental and t h e o r e t i c a l e f f o r t because of lack of s e n s i t i v i t y to such d e t a i l s , and i n the case of e l e c t r o n d i f f r a c t i o n , because m u l t i p l e s c a t t e r i n g e f f e c t s become important.

Surface roughness, domain or i s l a n d d i s t r i b u t i o n s cause broadening of the d i f f r a c t e d beams, i n general depending on the d i f f r a c t i o n c o n d i t i o n s and the beam i n d i c e s . I n many cases only the width of the beam (füll wi d t h at h a l f maximum) i s measured as an estimate of the average i s l a n d or t e r r a c e s i z e . However, from an a n a l y s i s of the angular beam p r o f i l e s the s i z e d i s t r i b u t i o n can be o b t a i n e d . This i s u s u a l l y done i n the k i n e m a t i c approximation ( s i n g l e s c a t t e r i n g ) where the c a l c u l a t i o n of beam p r o f i l e s becomes e s p e c i a l l y easy. The k i n e m a t i c a l theory i s used f o r low energy e l e c t r o n d i f f r a c t i o n (LEED) as w e l l as f o r r e f l e c t i o n h i g h energy e l e c t r o n d i f f r a c t i o n (RHEED). Although m u l t i p l e s c a t t e r i n g e f f e c t s are i n g e n e r a l s t r o n g f o r e l e c t r o n d i f f r a c t i o n , f o r the c a l c u l a t i o n of angular beam p r o f i l e s the k i n e m a t i c a l theory i s i n many cases s u f f i c i e n t . The q u e s t i o n a r i s e s whether m u l t i p l e s c a t t e r i n g can always be neglected i n e v a l u a t i n g beam p r o f i l e s and what e f f e c t s occur. In the case of LEED w i t h i t s back s c a t t e r i n g geometry, m u l t i p l e s c a t t e r i n g e f f e c t s are short ranged and the k i n e m a t i c e v a l u a t i o n of angular beam p r o f i l e s i s u s u a l l y based on t h a t argument. For RHEED w i t h i t s h i g h e l e c t r o n energies and the occurrence of

1 7 5

Page 9: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

forward s c a t t e r i n g t h i s argument should be l e s s a p p l i c a b l e . On the other hand, l a r g e t e r r a c e s i z e s can be measured w i t h a RHEED instrument u s i n g the low index beams where the r e s o l u t i o n i s h i g h . In such cases m u l t i p l e s c a t t e r i n g e f f e c t s should again be n e g l i g i b l e . In g e n e r a l , f o r RHEED m u l t i p l e s c a t t e r i n g e f f e c t s are more d i s t u r b i n g i n the beam p r o f i l e a n a l y s i s than f o r LEED and i n a d d i t i o n , shadowing e f f e c t s occur.

M u l t i p l e s c a t t e r i n g e f f e c t s can be d i v i d e d i n t o two p a r t s , one where the m u l t i p l e s c a t t e r i n g path crosses a domain boundary or a step and another p a r t where t h i s i s not the case and m u l t i p l e s c a t t e r i n g occurs o n l y w i t h i n one domain and w i t h i n the bul k . The l a t t e r e f f e c t i s i n ge n e r a l s t r o n g and cannot be ne g l e c t e d , n e i t h e r f o r LEED nor f o r RHEED, but i s not r e l e v a n t f o r the angular beam p r o f i l e s i f only antiphase domains e x i s t at the s u r f a c e . Therefore i t i s u s u a l l y not considered i n the a n a l y s i s of beam p r o f i l e s from stepped s u r f a c e s where a l l t e r r a c e s are e q u i v a l e n t . At surf a c e s w i t h non-equivalent t e r r a c e s i t can be t r e a t e d i n a si m p l e q u a s i - k i n e m a t i c a l approximation as w i l l be d i s c u s s e d below. The o t h e r c o n t r i b u t i o n to the m u l t i p l e s c a t t e r i n g e f f e c t , where subsequent s c a t t e r i n g i n d i f f e r e n t t e r r a c e s i s i n v o l v e d , i s c e r t a i n l y important f o r RHEED but r e q u i r e s a more s o p h i s t i c a t e d treatment than that given here and i s not considered i n t h i s a r t i c l e .

D i f f r a c t i o n from stepped su r f a c e s has been d e s c r i b e d i n a number of s t u d i e s d e a l i n g w i t h one dimensional d i s t r i b u t i o n s [ 1 - 8 ] . The reference l i s t i s not intended to be complete, an e x t e n s i v e l i s t of references can be found i n the review a r t i c l e by L a g a l l y et a l . [ 9 ] . I t i s u s u a l l y assumed that the surface c o n s i s t of t e r r a c e s of i d e n t i c a l s c a t t e r i n g p r o p e r t i e s but separated by a s h i f t v e c t o r w i t h v e r t i c a l and l a t e r a l components. This i s i n general the case f o r a l l u n r e c o n s t r u c t e d su r f a c e s of the monoatomic l a t t i c e s i n c l u d i n g the f c c and bcc metals. The (111) s u r f a c e of the diamond l a t t i c e a l s o e x h i b i t s only one type of t e r r a c e , whereas the (100) su r f a c e s i m i l a r to the basal plane of the hcp l a t t i c e , c o n s i s t s of two d i f f e r e n t t e r m i n a t i o n s . Non-equivalent t e r r a c e s may be the i n h e r e n t property of the l a t t i c e or the r e s u l t of r e c o n s t r u c t i o n . The S i ( 1 0 0 ) s u r f a c e , f o r example, has two r o t a t i o n a l domains due to the f o u r -f o l d screw a x i s of the bulk l a t t i c e which reduces t o a t w o - f o l d a x i s at the s u r f a c e . These two d i f f e r e n t domains e x i s t even without a r e c o n s t r u c t i o n . Another example i s the W(100) s u r f a c e where the r e d u c t i o n of the symmetry i n a s i n g l e domain i s due to the r e c o n s t r u c t i o n . The f o u r - f o l d symmetry of the unr e c o n s t r u c t e d s u r f a c e i s destroyed by atomic displacements and two r o t a t i o n a l domains occur i n a d d i t i o n to the an t i p h a s e domains. I t i s i n such cases that the e f f e c t of m u l t i p l e s c a t t e r i n g w i t h i n one t e r r a c e cannot be neglected f o r the c a l c u l a t i o n of beam p r o f i l e s even f o r the s p e c u l a r beam. In a kinematic c a l c u l a t i o n , where only s i n g l e s c a t t e r i n g i s co n s i d e r e d , the s t r u c t u r e f a c t o r of the s p e c u l a r beam would be the same f o r a l l domains. Therefore a d i s t r i b u t i o n of r o t a t i o n a l domains would not cause a broadening of the spe c u l a r beam. Th i s i s not so i n case of m u l t i p l e s c a t t e r i n g . Here the s t r u c t u r e f a c t o r s f o r r o t a t i o n a l domains can be very d i f f e r e n t . N e g l e c t i n g d i f f e r e n t s t r u c t u r e f a c t o r s at the domain boundaries (and shadowing e f f e c t s e t c . ) the s u r f a c e can be approximately d e s c r i b e d by domains w i t h d i f f e r e n t s t r u c t u r e f a c t o r s . That means the su r f a c e c o n s i s t s of domains, or i n the case of Si( 1 0 0 ) of t e r r a c e s , which f o r e l e c t r o n s d i f f e r i n the e f f e c t i v e s c a t t e r i n g p r o p e r t i e s . These t e r r a c e s are t h e r e f o r e denoted i n the f o l l o w i n g as non-equivalent t e r r a c e s , though the a c t u a l s t r u c t u r e s may be s y m m e t r i c a l l y e q u i v a l e n t . That the d i f f r a c t i o n from r o t a t i o n a l domains or t e r r a c e s has to be de s c r i b e d by d i f f e r e n t s t r u c t u r e f a c t o r s i s c l e a r l y a m u l t i p l e s c a t t e r i n g e f f e c t and would not occur, f o r example, i n the s p e c u l a r beam w i t h X-ray d i f f r a c t i o n . This e f f e c t i s larg e and depends s t r o n g l y on the d i f f r a c t i o n c o n d i t i o n s as can be e a s i l y seen from the experimental r o t a t i o n a l diagrams where lar g e i n t e n s i t y v a r i a t i o n s occur.

1 7 6

Page 10: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

In the case of LEED, r o t a t i o n a l diagrams could even be used f o r s t r u c t u r e a n a l y s i s . Azimuthai dependencies of i n t e n s i t i e s and beam p r o f i l e s have a l s o been r e p o r t e d i n RHEED s t u d i e s [10-13].

The d i f f r a c t i o n from stepped s u r f a c e s w i t h non-equivalent t e r r a c e s can be e a s i l y d e s c r i b e d by a q u a s i - k i n e m a t i c approximation by assuming d i f f e r e n t s t r u c t u r e f a c t o r s f o r each k i n d of t e r r a c e and u s i n g the kinem a t i c formalism o t h e r w i s e . M u l t i p l e s c a t t e r i n g e f f e c t s a r i s i n g from s c a t t e r i n g paths w i t h i n one t e r r a c e and w i t h i n the bulk are i n c l u d e d i n t h i s way. Those m u l t i p l e s c a t t e r i n g paths c r o s s i n g a step are ne g l e c t e d here. T h i s i s of course an approximation but i t i s w e l l a p p l i c a b l e f o r LEED at s u r f a c e w i t h l a r g e t e r r a c e s and e l u c i d a t e s a l s o some of the e f f e c t s observed w i t h RHEED.

In the next chapter the d i f f r a c t i o n from stepped s u r f a c e s w i l l be dis c u s s e d from the very g e n e r a l c o n s i d e r a t i o n t h a t the d i f f r a c t e d i n t e n s i t y can be d i v i d e d i n t o two p a r t s , one a r i s i n g from long ränge order and the other from s h o r t ränge ord e r . The i n f l u e n c e of the e x i s t e n c e of two d i f f e r e n t t e r r a c e s on the i n t e n s i t y o s c i l l a t i o n s d u r i n g l a y e r by l a y e r growth i s d i s c u s s e d b r i e f l y and a d e t a i l e d c a l c u l a t i o n of beam p r o f i l e s which would be expected from a S i ( 1 0 0 ) s u r f a c e w i t h s i n g l e and double steps and a geometric d i s t r i b u t i o n of t e r r a c e widths i s g i v e n .

GENERAL ASPECTS OF DIFFUSE SCATTERING

The i n t e n s i t y s c a t t e r e d from a d i s o r d e r e d s t r u c t u r e can be d i v i d e d i n t o two terms, a sharp r e f l e c t i o n and a d i f f u s e i n t e n s i t y . The sharp r e f l e c t i o n i s due to the ordered l a t t i c e and e x i s t s as long ränge order e x i s t s . The ränge i s gi v e n by the r e s o l u t i o n l i m i t of the instrument. The d i f f u s e i n t e n s i t y a r i s e s from the f l u c t u a t i o n of the s c a t t e r i n g amplitudes along the s u r f a c e ,

N i ( k - k * ) R I ( k , k ' ) = | Z F ( k , k ' ) e ~^| 2 +

n=l

N N _ * _* Z Z C(F (k,k') - F ( k , k

?

) ) ( F ,(k,k') - F ' ( k , k ' ) ) J x ( i ) n=l n' = l n ~ ~~~ n ~ ~ i ( k - k ' ) ( R -R ,)

x e ~*

where R n i s a two dimensional l a t t i c e v e c t o r , N i s the number of u n i t c e l l s , k and k' are the wave v e c t o r s of the incoming and outgoing waves and F n ( k , k ' ) are s t r u c t u r e amplitudes to u n i t c e l l column v a l u e s . F ( k , k ' ) i s the s p a t i a l average of s t r u c t u r e amplitudes. To s i m p l i f y the above e x p r e s s i o n we assume that the s t r u c t u r e amplitudes are s l o w l y v a r y i n g f u n c t i o n s of the d i f f r a c t i o n angle. I t may be f u r t h e r assumed that the d e n s i t y of d e f e c t s or steps i s low so that m u l t i p l e s c a t t e r i n g e f f e c t s at the edges can be n e g l e c t e d . The d i f f r a c t e d i n t e n s i t y can then be approximately w r i t t e n i n the convenient form

I ( k , k ' ) = |F| 2G(h)G(k) + N ( ] F T 2 - | F | 2 ) P ( k - k ' )

s i n N TTX

G(x) = ^ sin 2 -rrx

where P(k - k') i s the F o u r i e r t r a n s f o r m of the p a i r - c o r r e l a t i o n f u n c t i o n s and d e s c r i b e s the angular beam p r o f i l e , h and k are the beam i n d i c e s . N

1 7 7

Page 11: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

i s the t o t a l number of u n i t c e l l s . Eqs. 1 or 2 d e s c r i b e t h a t the i n t e n s i t y i n the sharp r e f l e c t i o n s i s due to the mean va l u e of the s c a t t e r i n g amplitudes and that the i n t e g r a t e d d i f f u s e i n t e n s i t y i s p r o p o r t i o n a l to the mean square d e v i a t i o n of s c a t t e r i n g amplitudes.

A comment has to be made on m u l t i p l e s c a t t e r i n g e f f e c t s . I t should be noted that Eq. 1 i s i n general v a l i d , a l s o f o r the m u l t i p l e s c a t t e r i n g case, when f o r each u n i t c e l l at the l a t t i c e p o i n t an i n d i v i d u a l s t r u c t u r e f a c t o r i s taken a c c o r d i n g t o the i n d i v i d u a l surroundings of the u n i t c e l l . Eq. 2 i s i n general not v a l i d because i t n e g l e c t s a l l m u l t i p l e s c a t t e r i n g e f f e c t s between d i f f e r e n t t e r r a c e s or i s l a n d s i f P(k - k') i s the F o u r i e r - t r a n s f o r m of the p a i r - c o r r e l a t i o n f u n c t i o n s . I t corresponds to the column approximation used i n high energy e l e c t r o n d i f f r a c t i o n [14]. A gen e r a l m u l t i p l e s c a t t e r i n g f o r m u l a t i o n has to i n c l u d e m u l t i - s i t e c o r r e l a t i o n s . The a p p l i c a b i l i t y of Eq. 2 i s j u s t i f i e d by the f a c t that f o r an e x p o n e n t i a l decay of p a i r c o r r e l a t i o n f u n c t i o n s , a l l m u l t i - s i t e c o r r e l a t i o n f u n c t i o n s w i l l a l s o e x h i b i t the same e x p o n e n t i a l decay. As long as no sharp i n t e r f e r e n c e s i n the s c a t t e r i n g f a c t o r s occur, the beam p r o f i l e s w i l l t h e r e f o r e keep the L o r e n t z i a n form as i n the ki n e m a t i c case. This has a l s o been shown a n a l y t i c a l l y f o r one dimension [3,15]. I t has t o be kept i n mind f u r t h e r that i n the ki n e m a t i c l i m i t the t o t a l i n t e g r a t e d i n t e n s i t y remains constant independent of the State of order w h i l e i n the m u l t i p l e s c a t t e r i n g theory t h i s i s i n general not the case. I n t e r f e r e n c e i n the m u l t i p l e s c a t t e r i n g paths can d r a s t i c a l l y enhance the i n t e n s i t y of a c e r t a i n beam. The i n t e n s i t y , of course, i s then m i s s i n g i n other beams. Co n s e r v a t i o n of the t o t a l d i f f r a c t e d i n t e n s i t y cannot be observed, however, because only the b a c k s c a t t e r i n g p a r t can be measured. F u r t h e r -more, s t r o n g a b s o r p t i v e e f f e c t s depending on the d i f f r a c t i o n c o n d i t i o n s d e s t r o y the c o n s e r v a t i o n of the i n t e g r a t e d i n t e n s i t y .

I t i s o f t e n convenient to S t a r t w i t h Eq. 2 f o r a q u a l i t a t i v e d i s c u s s i o n of the c h a r a c t e r i s t i c f e a t u r e s of the d i f f r a c t i o n p a t t e r n . I f u n c o r r e l a t e d d e f e c t s e x i s t at the s u r f a c e the d i f f u s e i n t e n s i t y w i l l be u n i f o r m l y d i s t r i b u t e d over the r e c i p r o c a l u n i t c e l l , the angular d i s t r i b u t i o n being determined onl y by the angular dependence of the atomic c r o s s s e c t i o n . I f the defect atoms form C l u s t e r s or t e r r a c e s , the d i f f u s e i n t e n s i t y w i l l be concentrated around c e r t a i n p o i n t s i n the r e c i p r o c a l u n i t c e l l . The i n t e n s i t y of the sharp r e f l e c t i o n as w e l l as the d i f f u s e i n t e n s i t y may van i s h at c e r t a i n p o i n t s , i . e . , the mean value of the s c a t t e r i n g amplitudes vanishes f o r a s u r f a c e w i t h an equal d i s t r i b u t i o n of t e r r a c e s at the "out of phase" c o n d i t i o n . The mean Square d e v i a t i o n may a l s o v a n i s h , e.g., at i n phase s c a t t e r i n g from two d i f f e r e n t t e r r a c e s , and u s u a l l y has i t s maximum when the mean value has i t s minimum. The q u a l i t a t i v e f e a t u r e s of the d i f f r a c t i o n p a t t e r n s f o r the two simple cases as shown i n the Fi g u r e s 1-4 f o l l o w s d i r e c t l y from the i n t e r p r e t a t i o n of Eq. 2.

The i n t e n s i t y and angular p r o f i l e of the s p e c u l a r beam f o r a two l e v e l System as a f u n c t i o n of coverage and momentum t r a n s f e r p e r p e n d i c u l a r to the surface i s d i s p l a y e d i n F i g u r e s 1 and 2. I t i s assumed here t h a t the two t e r r a c e s are e q u i v a l e n t . This case has been d e s c r i b e d i n d e t a i l and has been f r e q u e n t l y v e r i f i e d e x p e r i m e n t a l l y [4-9] but w i l l be s h o r t l y repeated here f o r the sake of completeness. Thus the two l e v e l s have s c a t t e r i n g f a c t o r s ^ ( k ^ k ' ) and F 2 ( k , k ' ) d i f f e r i n g by a phase f a c t o r

F . ( k , k ' ) = F . C k . l O e 1 ^ " ^ (3)

| F 2 ( k , k ' ) | = i F ^ k . k ' ) !

where d i s the s h i f t v e c t o r between t e r r a c e s . The mean value of the s c a t t e r i n g f a c t o r at coverage 0 i s d e f i n e d as

1 7 8

Page 12: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

F i g . 1. Model of a s u r f a c e w i t h i d e n t i c a l t e r r a c e s i n two l e v e l s and the corresponding angular p r o f i l e of the sp e c u l a r beam. The beam p r o f i l e c o n s i s t s i n general of two components, a c e n t r a l peak and a d i f f u s e p a r t . The w idth of the d i f f u s e i n t e n s i t y corresponds roughly to the mean t e r r a c e s i z e .

F(k,k') = (1 - 0 ) F 1 ( k , k ' ) +0F 2(k,k') (4)

and the i n t e n s i t y of the c e n t r a l peak i s

I = |F. | 2 C l - 20(1 - 0) (1 - C O S2T T S)] (5) P 1

where s = (k - k')d/2TT i s the momentum t r a n s f e r i n r e c i p r o c a l l a t t i c e u n i t s . The arguments k and k 1 have been dropped f o r convenience. The i n t e g r a l d i f f u s e i n t e n s i t y i s gi v e n by

I D = 20(1 - 0) \ T 1 | 2 ( 1 - COS2TTS) . (6)

The peak i n t e n s i t y becomes an o s c i l l a t i n g f u n c t i o n i n r e c i p r o c a l space as w e l l as being a f u n c t i o n of coverage as i l l u s t r a t e d i n F i g u r e 2a-c. The minimum of the peak i n t e n s i t y of the sp e c u l a r beam corresponds t o h a l f coverage. Because a t t h i s p o i n t the d i f f r a c t i o n from a l l l a y e r s should be out of phase, the i n t e n s i t y of the sharp r e f l e c t i o n has t o v a n i s h . The remaining i n t e n s i t y at s = 1/2 i s t h e r e f o r e e n t i r e l y due t o the maximum of the d i f f u s e term and corresponds roughly to the Square of the average i s l a n d diameter. The width of the d i f f u s e i n t e n s i t y i n r e c i p r o c a l u n i t s i s approximately the i n v e r s e of the i s l a n d diameter, the exact value depends on the i s l a n d s i z e d i s t r i b u t i o n f u n c t i o n . How the maximum of the d i f f u s e i n t e n s i t y behaves as a f u n c t i o n of coverage cannot be g e n e r a l l y g i v e n i n t h i s q u a l i t a t i v e d i s c u s s i o n s i n c e t h i s depends on the s p e c i f i c

1 7 9

Page 13: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

d

0 0.5 1

F i g . 2. I n t e n s i t y o s c i l l a t i o n s as a f u n c t i o n of coverage and momentum t r a n s f e r . I n t e n s i t y of the c e n t r a l peak (a) and d i f f u s e p a r t (b) at d i f f e r e n t coverages. c: I n t e n s i t y of the c e n t r a l peak as a f u n c t i o n of coverage at the "out of phase" c o n d i t i o n , s = 1/2, where (k - k')d = 2TTS.

growth model. At each maximum of the c e n t r a l peak one l a y e r i s completed. The l a y e r growth mechanism i s o b v i o u s l y best s t u d i e d at the "out of phase" c o n d i t i o n where the maximum e f f e c t on the peak i n t e n s i t y and d i f f u s e i n t e n s i t y i s observed. From the slope of the peak i n t e n s i t y at füll coverage (F i g u r e 2c) the number of l a y e r s i n v o l v e d i n the growth process can be determined [16].

We c o n s i d e r next a su r f a c e w i t h non-equivalent t e r r a c e s and assume a l s o l a y e r by l a y e r growth. We assume f u r t h e r that the su r f a c e w i t h a complete l a y e r c o n s i s t s of one t e r r a c e o n l y , see F i g u r e 3a. The s t r u c t u r e amplitudes f o r both t e r r a c e s d i f f e r now i n modulus and phase i n a d d i t i o n t o the geometric phase

i4> (k,k') i<J> (k,k') F l " ! F J e 1 • F 2 - l F 2 | e 2

( 7 )

I V * |F 2|.

1 8 0

Page 14: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

F i g . 3. a. Model of a s u r f a c e w i t h two non-equivalent t e r r a c e s i n two l e v e l s . b. I n t e n s i t y o s c i l ­l a t i o n s of the c e n t r a l peak as a f u n c t i o n of coverage. S o l i d l i n e : "out of phase" c o n d i t i o n , broken l i n e : " i n phase" c o n d i t i o n . A r e l a t i o n of J F j l 2 = 0 . 5 | F 2 I 2 n a s been assumed. A phase f a c t o r between the complex s t r u c t u r e amplitudes F^ and F 2 i n f l u e n c e s o n l y the " i n phase" and "out of phase" c o n d i t i o n s but not the p o s i t i o n s of maxima and minima on the coverage s c a l e .

The mean value of s c a t t e r i n g amplitudes does not v a n i s h any more at the out of phase c o n d i t i o n (s = 1 / 2 ) and at h a l f coverage. A l s o the maxima and minima may be s h i f t e d due to the phase d i f f e r e n c e . The peak i n t e n s i t y i s now given by

I = (1 - 0 ) 2 | F 1 | 2 + 0 2 | F 2 | 2 + 2 0 ( 1 - 0 ) I F J F J C O S ^ T T S + A<j>) ( 8 )

and shows now a double p e r i o d i c i t y as a f u n c t i o n of coverage, F i g u r e 3b. The i n t e g r a l d i f f u s e i n t e n s i t y i s

I ß = 0 ( 1 - 0 ) C | F 1 | 2 + | F 2 | 2 - 2 | F 1 F 2 | C O S ( 2 T T S + A<J>)3 ( 9 )

and cannot show a double p e r i o d i c i t y as a f u n c t i o n of coverage as i t r e s u l t s from the mean Square d e v i a t i o n i n s t r u c t u r e amplitudes. T h i s case i s i l l u s t r a t e d i n F i g u r e 4a and b. The phase d i f f e r e n c e A4»(k,k') between the s t r u c t u r e f a c t o r s s h i f t s the maxima and minima of the i n t e n s i t y of the c e n t r a l peak away from the p o i n t s s = 0 and s - 1 / 2 . The same occurs f o r the maxima and minima of the d i f f u s e i n t e n s i t y i n r e c i p r o c a l space a c c o r d i n g to Eqs. 8 and 9 . I t should be noted that a double p e r i o d i c i t y i n r e c i p r o c a l space f o r the peak i n t e n s i t y or angular w i d t h , which has been observed f o r S i ( 1 0 0 ) at i n c i d e n c e i n [011] d i r e c t i o n [17], i s due t o the e x i s t e n c e of f o u r l e v e l s w i t h two r o t a t i o n a l domains and two a n t i p h a s e domains. The s i m p l e r System which i s i l l u s t r a t e d i n F i g u r e s 3 and 4 c o n s i s t s of o n l y two l e v e l s .

The i n t e n s i t y o s c i l l a t i o n s as observed w i t h RHEED or LEED d u r i n g l a y e r by l a y e r growth (see F i g u r e 3b) e x h i b i t a double p e r i o d i c i t y but s t i l l have a maximum and minimum a t füll coverage because the d i f f u s e term

1 8 1

Page 15: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

a

F i g . 4. I n t e n s i t y o s c i l l a t i o n s of the peak i n t e n s i t y and the d i f f u s e i n t e n s i t y f o r two d i f f e r e n t t e r r a c e s and h a l f coverage as a f u n c t i o n of momentum t r a n s f e r . | F i | * = 0.5|F 2| 2. The phase d i f f e r e n c e A<j>(k,k*) s h i f t s the p o s i t i o n of maxima and minima i n r e c i p r o c a l space.

always vanishes at füll coverage. The i n t e n s i t y o s c i l l a t i o n s as a f u n c t i o n of momentum t r a n s f e r s and coverage 0 are now d i f f e r e n t . I t i s i n t e r e s t i n g t o note that double p e r i o d i c i t i e s and azimuthal dependencies of i n t e n s i t y o s c i l l a t i o n s d u r i n g MBE growth of S i ( 1 0 0 ) [11,12,18] and GaAs(lOO) [10,13] have been observed. From the above d i s c u s s i o n f o l l o w s that the s h i f t of maxima and minima i n the i n t e n s i t y o s c i l l a t i o n s as observed d u r i n g MBE growth of S i ( 1 0 0 ) and GaAs(lOO) cannot be e x p l a i n e d only w i t h a sequence of two d i f f e r e n t l a y e r s . The occurrence of two maxima d u r i n g the completion of only one l a y e r has o b v i o u s l y to be e x p l a i n e d by a s t r o n g l y peaked d i f f u s e s c a t t e r i n g at h a l f coverage [10]. On the other hand, the f a c t that at c e r t a i n d i f f r a c t i o n c o n d i t i o n s , the i n t e n s i t y i n i t i a l l y i n c r e a s e s w i t h i n c r e a s i n g coverage, as has been observed f o r GaAs(lOO) [10], f o l l o w s d i r e c t l y from the assumption of a phase d i f f e r e n c e between the two s c a t t e r i n g f a c t o r s . For the S i ( 1 0 0 ) s u r f a c e the azimuthal dependence of the i n t e n s i t y o s c i l l a t i o n s has been e x p l a i n e d by m u l t i p l e s c a t t e r i n g e f f e c t s i n v o l v i n g the form of the growing t e r r a c e s [19].

At s p e c i a l d i f f r a c t i o n c o n d i t i o n s the s t r u c t u r e f a c t o r s of the two t e r r a c e s can become equal, that i s when the plane of i n c i d e n c e c o i n c i d e s w i t h a symmetry plane t r a n s f o r m i n g one t e r r a c e to the o t h e r . For the S i ( 1 0 0 ) s u r f a c e t h i s occurs f o r i n c i d e n c e i n the [010] d i r e c t i o n . The two t e r r a c e s have then i d e n t i c a l s c a t t e r i n g f a c t o r s f o r the s p e c u l a r beam. This i s not so at i n c i d e n c e i n the [011] d i r e c t i o n , f o r which s c a t t e r i n g f a c t o r s are d i f f e r e n t . The dependence of the s t r u c t u r e f a c t o r on the azimuthal angle i s s p e c i f i c f o r m u l t i p l e s c a t t e r i n g . From the aboye d i s c u s s i o n , i t f o l l o w s that the S i ( 1 0 0 ) s u r f a c e looks l i k e a two l e v e l

182

Page 16: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

surface w i t h e q u i v a l e n t t e r r a c e s at Observation i n [010] and w i t h non-equi v a l e n t t e r r a c e s i n the [011] d i r e c t i o n . The double and s i n g l e p e r i o d i c i t i e s i n r e c i p r o c a l space at d i f f e r e n t azimuths have indeed been observed e x p e r i m e n t a l l y [17,20]. Double p e r i o d i c i t y i n the o s c i l l a t i o n of beam widths has a l s o been observed f o r Os(0001) [21] and has been i n t e r p r e t e d by the e x i s t e n c e of double s t e p s .

I t i s h i g h l y u n r e a l i s t i c to assume that the area of the su r f a c e i l l u m i n a t e d by the primary beam c o n s i s t s of only one or two t e r r a c e s , unless the beam i s very w e l l focused. U s u a l l y a s u p e r p o s i t i o n of a l l p o s s i b l e domains corresponding t o the po i n t symmetry of the c r y s t a l i s observed i n the d i f f r a c t i o n p a t t e r n . For GaAs(lOO) or S i ( 1 0 0 ) , f o r example, the two o r i e n t a t i o n s of the (4 x 2) and ( 2 x 1 ) s t r u c t u r e s r e s p e c t i v e l y , are always observed un l e s s one o r i e n t a t i o n i s suppressed at v i c i n a l f a c e s . For the above mentioned case of a two l a y e r sequence t h i s means that the s c a t t e r i n g amplitudes from two regions of the su r f a c e have to be summed up w i t h a l t e r n a t e l a y e r sequences. This s u p e r p o s i t i o n can be done c o h e r e n t l y or i n c o h e r e n t l y . The l a t t e r i m p l i e s that l a r g e areas e x i s t where one l a y e r i s completed before the next begins to grow. The doubling of the p e r i o d of the peak i n t e n s i t y w i t h i n c r e a s i n g coverage (F i g u r e 3b) i s then removed. I f a double p e r i o d i c i t y i s observed, however, i t can be concluded t h a t only one domain i s present w i t h i n the area of the i n c i d e n t beam. E x p e r i m e n t a l l y t h i s has been observed f o r S i ( 1 0 0 ) , see the a r t i c l e by Horn et a l . i n t h i s volume, F i g u r e 1.

The other case, coherent s u p e r p o s i t i o n , corresponds to the simultaneous growth of fo u r l a y e r s which may not be r e a l i z e d at steady State c o n d i t i o n s but may occur f o r the i n i t i a l growth c o n d i t i o n s . T h i s w i l l not be d i s c u s s e d here because i t depends too much on the s p e c i f i c model f o r the i n i t i a l t e r r a c e width d i s t r i b u t i o n and the s p e c i f i c growth model that general c o n c l u s i o n s can be drawn from the q u a l i t a t i v e p i c t u r e used above. The coherent s u p e r p o s i t i o n of the s c a t t e r i n g amplitudes from four l e v e l s , however, and the consequences f o r the beam widths i n r e c i p r o c a l space w i l l be d i s c u s s e d f o r the S i ( 1 0 0 ) sur f a c e i n some d e t a i l i n the next s e c t i o n .

I t has been assumed up to now that the s u r f a c e i s f l a t and c o n s i s t s of only two l e v e l s at l e a s t w i t h i n the coherence len g t h of the e l e c t r o n s which may be as la r g e as s e v e r a l u. I t has been shown e x p e r i m e n t a l l y that these assumptions are j u s t i f i e d f o r many cases of molecular beam e p i t a x y i n c l u d i n g the case of S i ( 1 0 0 ) [ 1 8 ] . However, the S i t u a t i o n where the surfac e i s rough on an atomic s c a l e , which means that many l e v e l s e x i s t w i t h i n the coherence len g t h of the beam, i s a l s o q u i t e f r e q u e n t l y r e a l i z e d , and the consequences f o r the beam p r o f i l e s can be s h o r t l y mentioned. For a two l e v e l system, see F i g u r e 1, the beam p r o f i l e c o n s i s t s of two components, a c e n t r a l peak and a d i f f u s e p a r t . The i n t e n s i t y of the c e n t r a l peak vanishes only at c e r t a i n p o i n t s i n r e c i p r o c a l space and at c e r t a i n coverages. The width of the d i f f u s e p a r t remains independent of the d i f f r a c t i o n c o n d i t i o n s and depends only on the i s l a n d d i s t r i b u t i o n . As the number of d i f f e r e n t l e v e l s i n c r e a s e s , the i n t e n s i t y of the c e n t r a l peak decreases r a p i d l y as a f u n c t i o n of momentum t r a n s f e r and a d d i t i o n a l narrow d i f f u s e f e a t u r e s occur [ 4 ] . I n the l i m i t i n g case of an i n f i n i t e number of l e v e l s , a su r f a c e which i s rough on an atomic s c a l e , the c e n t r a l peak vanishes at a l l d i f f r a c t i o n c o n d i t i o n s except at the B r a g g - c o n d i t i o n where a l l l e v e l s s c a t t e r " i n phase". The width of the peak then broadens c o n t i n u o u s l y . This has been shown p r e v i o u s l y i n an a n a l y s i s of the beam p r o f i l e s of the d i s o r d e r e d Au(110) surface [ 3 ] . The i n f l u e n c e of the number of l e v e l s on the beam p r o f i l e s has a l s o been i n v e s t i g a t e d i n d e t a i l r e c e n t l y [ 6 - 8 ] .

1 8 3

Page 17: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

ONE DIMENSIONAL MODEL WITH SINGLE AND DOUBLE STEPS

The c a l c u l a t i o n of beam p r o f i l e s from one-dimensional d i s o r d e r e d surfaces w i t h a geometric d i s t r i b u t i o n of steps f o l l o w s the methods developed f o r the a n a l y s i s of s t a c k i n g f a u l t s i n c r y s t a l s [22-24] and the a p p l i c a t i o n to steps on sur f a c e s has been d e s c r i b e d i n d e t a i l p r e v i o u s l y [ 3 - 8 ] . Therefore the formalism w i l l be only s h o r t l y repeated here as f a r as i t i s necessary to i n c l u d e double s t e p s . So f a r most c a l c u l a t i o n s of beam p r o f i l e s from stepped s u r f a c e s have assumed s i n g l e steps o c c u r r i n g at the surface w i t h a given p r o b a b i l i t y a. That model i n c l u d e s the occurrence of double steps w i t h the p r o b a b i l i t y a 2 and assumes that there i s no c o r r e l a t i o n between s t e p s . A s l i g h t l y m o d i f i e d model where the occurrence of a double step i s gi v e n a d i f f e r e n t p r o b a b i l i t y 3 and how t h i s w i l l become v i s i b l e i n the beam p r o f i l e s w i l l be i n v e s t i g a t e d here. To assume a d i f f e r e n t p r o b a b i l i t y f o r the occurrence of double steps w i t h i n the formal frame of a geometric d i s t r i b u t i o n of t e r r a c e s i z e s i s p o s s i b l e because f o u r d i f f e r e n t t e r r a c e s , or f o u r l e v e l s , are assumed.

The S i ( 1 0 0 ) s u r f a c e has been found to show a preference f o r double s t e p s . V i c i n a l s u r f a c e s form double steps as has been concluded from the f a c t that only one o r i e n t a t i o n of the r e c o n s t r u c t e d ( 2 x 1 ) u n i t c e l l occurs [25,26]. The e x i s t e n c e of double steps has been observed r e c e n t l y i n the d i r e c t image w i t h R e f l e c t i o n E l e c t r o n Microscopy (REM) [27] and Transmission E l e c t r o n Microscopy (TEM) [28]. The formation of double steps has a l s o been p r e d i c t e d t h e o r e t i c a l l y [24]. I t i s t h e r e f o r e i n t e r e s t i n g t o i n v e s t i g a t e how double steps can be observed i n the beam p r o f i l e s . The 1-D model w i t h a geometric d i s t r i b u t i o n of steps w i l l be a p p l i e d here because of i t s s i m p l i c i t y . The L o r e n t z i a n shape of the beam p r o f i l e r e s u l t i n g from the e x p o n e n t i a l decay of c o r r e l a t i o n s has been found o f t e n to f i t the experimental p r o f i l e s s u f f i c i e n t l y w e l l [ 4 ] . The ex p o n e n t i a l decay of c o r r e l a t i o n s corresponds i n 1-D to the geometric d i s t r i b u t i o n of t e r r a c e w i d t h s . The 1-D model has the advantage t h a t the beam p r o f i l e s can be c a l c u l a t e d a n a l y t i c a l l y and the i n f l u e n c e of d i f f e r e n t parameters can be e a s i l y seen. The 1-D model i s a l s o u s e f u l f o r the d e s c r i p t i o n of v i c i n a l f a c e s . I t i s not expected that the gene r a l f e a t u r e s of the d i f f r a c t i o n p a t t e r n s and beam p r o f i l e s d i f f e r s u b s t a n t i a l l y from the exact c a l c u l a t i o n f o r the 2-D model. For a q u a n t i t a t i v e e v a l u a t i o n of t e r r a c e s i z e d i s t r i b u t i o n s , however, a two-dimensional c a l c u l a t i o n may be necessary.

Two l i m i t i n g cases can be d i s t i n g u i s h e d . F i r s t the case of a f o u r l e v e l s u r f a c e , corresponding to the f o u r l a y e r sequence i n the bulk of Si( 1 0 0 ) w i t h two d i f f e r e n t p r o b a b i l i t i e s f o r s i n g l e and double s t e p s . T h i s i s the l i m i t i n g case of a f l a t s u r f a c e showing a l l f o u r types of domains. The other l i m i t i n g case i s a rough s u r f a c e w i t h an i n f i n i t e number of l a y e r s (at a l a t e r a l l y i n f i n i t e s u r f a c e ) and c o n t i n u o u s l y broadened beams. At s p e c i a l d i f f r a c t i o n c o n d i t i o n s , that i s at " i n phase" and "out of phase" s c a t t e r i n g from s i n g l e step height t e r r a c e s , both cases r e s u l t i n the same beam p r o f i l e s . In the model di s c u s s e d below a rough surf a c e i s assumed by a l l o w i n g the occurrence of up and down steps i n each l e v e l .

A model of the Si ( 1 0 0 ) s u r f a c e w i t h the f o u r d i f f e r e n t t e r r a c e s i s shown i n F i g u r e 5. The d i r e c t i o n of the edges i s assumed to be al o n g the densely packed atomic rows i n [011]. There are two antiphase domains and two r o t a t i o n a l domains i n the f o u r t e r r a c e s having s t r u c t u r e f a c t o r s

i ( k - k ' ) ( ^ + 2 d ) F ^ k . k ' ) , F (kfk») - F ^ k . k ^ e

i ( k - k ' ) d i ( k - k » ) ( ^ + 3 d ) F 2 ( k , k ' ) e Z , F u ( k , k ' ) = F 2 ( k , k ' ) e

1 8 4

Page 18: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

[100]

F 1 ! F 2 I F 3 I F 4

F i g . 5. Model of the S i ( 1 0 0 ) s u r f a c e w i t h f o u r d i f f e r e n t t e r r a c e s . The r e c o n s t r u c t i o n of the s u r f a c e i s neg l e c t e d here. The assignment of d i f f e r e n t s t r u c t u r e amplitudes to the d i f f e r e n t atomic columns as used i n the t e x t i s i n d i c a t e d i n the F i g u r e .

a and b are the l a t t i c e v e c t o r s of the p r i m i t i v e p l a n a r u n i t c e l l and d z

i s the l a y e r s p a c i n g . The r e c o n s t r u c t i o n of the surfa c e i s neglected here because i t i s not r e l e v a n t f o r the beam p r o f i l e s of the sp e c u l a r beam. M u l t i p l e s c a t t e r i n g events i n v o l v i n g the edge atoms as w e l l d e t a i l s of the atomic geometry near an edge are a l s o not considered here. As mentioned above, at i n c i d e n c e i n [011] d i r e c t i o n the s t r u c t u r e f a c t o r s F} and F 2 are d i f f e r e n t i n modulus and phase even f o r the s p e c u l a r beam as the r e s u l t of m u l t i p l e s c a t t e r i n g , w h i l e at i n c i d e n c e i n [010] t h i s i s not the case.

The phase f a c t o r s due to the antiphase r e l a t i o n between t e r r a c e 1 and 3, and 2 and 4 r e s p e c t i v e l y , as w e l l as the phase f a c t o r s due to the height d i f f e r e n c e s are a t t r i b u t e d here to the s t r u c t u r e f a c t o r s F i to F i * . This i s i n general p o s s i b l e f o r a s u r f a c e having only these f o u r l e v e l s . For a rough s u r f a c e w i t h more l e v e l s t h i s d e f i n i t i o n of the s t r u c t u r e f a c t o r s can be a l s o used as long as only s p e c i a l d i f f r a c t i o n c o n d i t i o n s are c o n s i d e r e d . I t i s i n general convenient t o i n c l u d e the phase f a c t o r s i n the c o r r e l a t i o n m a t r i x f o r the d e s c r i p t i o n of a rough s u r f a c e [ 3 ] . However, the a n a l y t i c a l e v a l u a t i o n of the eigenvalues f o r the general case becomes inconvenient here and the beam p r o f i l e s may be c a l c u l a t e d only f o r the s p e c i a l d i f f r a c t i o n c o n d i t i o n s of , f i n phase" and "out of phase" s c a t t e r i n g from s i n g l e and double s t e p s .

There e x i s t s two d i f f e r e n t monoatomic steps at t h i s s u r f a c e . The atomic geometry at the edge from t e r r a c e 1 to t e r r a c e 2 d i f f e r s from the step from t e r r a c e 2 t o 3. Both steps are assumed here t o occur w i t h the same p r o b a b i l i t y , f o r the sake of s i m p l i c i t y . To a l l o w d i f f e r e n t

1 8 5

Page 19: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

coverages f o r the t e r r a c e s 1 and 2, and 3 and 4, r e s p e c t i v e l y , the st e p down from t e r r a c e land 2 may occur w i t h p r o b a b i l i t y and the step up from t e r r a c e 2 to 1 w i t h p r o b a b i l i t y a 2 . The assumption of d i f f e r e n t p r o b a b i l i t i e s f o r these steps up and down enables the d e s c r i p t i o n of a surface w i t h a preference f o r one k i n d of t e r r a c e s . This i s not u n r e a l i s t i c , because i t has been e x p e r i m e n t a l l y observed that at v i c i n a l faces one k i n d of t e r r a c e s dominates [25-28]. The occurrence of double steps i s g i v e n by the p r o b a b i l i t y ß. The edge of double steps i s normal to the dimer rows i n the (2 x 1) r e c o n s t r u c t e d s u r f a c e , as i t becomes v i s i b l e i n the S p l i t t i n g of s u p e r s t r u c t u r e spots at v i c i n a l s u r f a c e s [25,26]. Therefore i t may be assumed f o r s i m p l i c i t y that double steps occur o n l y between the t e r r a c e s 1 and 3. Double steps between t e r r a c e s 2 and 4 would occur i n the other d i r e c t i o n and cannot be considered i n the one-dimensional model. I t i s f u r t h e r assumed that double steps up and down occur w i t h equal p r o b a b i l i t y which ensures that the average o r i e n t a t i o n of the s u r f a c e i s i n [100]. Because the p r o b a b i l i t y f o r the occurrence of a s i n g l e step has to be d i v i d e d i n t o two c o n t r i b u t i o n s , the p r o b a b i l i t y f o r a s i n g l e step downward from t e r r a c e 1 t o 2, or upward from t e r r a c e 1 t o 4, i s a/2. For double steps t h i s d i s t i n c t i o n needs not to be made because the step from t e r r a c e 1 to 3 may be upward or downward. To use the same d e f i n i t i o n f o r the p r o b a b i l i t i e s f o r s i n g l e and double steps the double step gets the p r o b a b i l i t y ß and not ß/2. More s o p h i s t i c a t e d models of the topography of the surf a c e are p o s s i b l e , but then the e v a l u a t i o n of the c o r r e l a t i o n m a t r i x has to be done n u m e r i c a l l y . I t i s f u r t h e r d o u b t f u l t h a t a more d e t a i l e d p i c t u r e i s u s e f u l w i t h i n the l i m i t s of a model of a geometric d i s t r i b u t i o n of t e r r a c e s i z e s .

The c o r r e l a t i o n m a t r i x f o r the above d e s c r i b e d model i s given by

1 -

P ( D =

* l - ß

a l 2 ß

a i 2

2 1 - a 2 2 0

Ö a 1 1 - a i - ß

a i P 2 1 - a i - ß 2

a 2

2 0 a 2

2 1 - c

(10)

With

? P i P i k ( i ) l

= P 'k' (11)

the t o t a l area of d i f f e r e n t t e r r a c e s i s obtained from the l e f t e i g e n v e c t o r of the c o r r e l a t i o n m a t r i x t o the eigenvalue 1. The p r o b a b i l i t i e s p being the coverages of the corresponding t e r r a c e s , are

P l = P 3 = 2 ( a } + a 2) P 2 - P, = 2 ( a 1 + a 2) (12)

I n t h i s model the d i f f e r e n c e i n the coverage between the two r o t a t i o n a l domains depends s o l e l y on the r e l a t i o n between the p r o b a b i l i t i e s a\ and ct 2

f o r the steps up and down. The double step p r o b a b i l i t y only i n f l u e n c e s the s i z e d i s t r i b u t i o n f o r the d i f f e r e n t t e r r a c e s .

I n the 1-D case the p a i r - c o r r e l a t i o n f o r a l l d i s t a n c e s are e a s i l y c a l c u l a t e d by powers of the m a t r i x P ( l ) . (See a l s o a recent review a r t i c l e by H. J a g o d z i n s k i [30].) The beam p r o f i l e as the F o u r i e r transform of the p a i r c o r r e l a t i o n s i s given by

1 8 6

Page 20: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

Ä - i ( k - k ' ) j a I ( k , k ' ) = G ( k ) E P i p i k ( j ) F . F k e . (13)

j With

P i k - p ( D J k <>*)

and

p j = i T ^ U , (15)

the d i f f r a c t e d i n t e n s i t y can be w r i t t e n i n the form

4 4 4 -N,N Ä _ . - i ( k - k ' ) j a T.F.TJ^U . X Je

I k i r r k r I ( k , k ' ) = G(k) Z Z Z Z F . F ^ Ü . X i , x i e ' 0 6 )

i = l k=l r=l j

D e f i n i n g q u a n t i t i e s B r ( k , k ' ) and D r(k,k')

Z Z l l T 1 ! ! ^.(k.k^Ffck.k 1) = B (k,k') + iD ( k , k f ) (17) . , . . i r r k l — — k r r i= 1 k=1 the beam p r o f i l e i s f i n a l l y g i ven by

l 4 1 - |X | 2

I ( k , k ' ) = Z B (k,k') ; -r r 1 - 21 X | c o s ( ( k - k ' ) a + <j> )+|X | 2

|X | s i n ( ( k - k f ) a + <\> ) - 2D (k,k') r r

r > ' 1 - 2 | X r | c o s ( ( k - k , ) a +* r) + |X r| 2

(18)

The eigenvalues of the m a t r i x P ( l ) are i n general complex i<j>

X = |X |e r . (19) r 1 r 1

The phase <J>r of an eigenvalue d e s c r i b e s the p o s i t i o n of the maximum of the beam p r o f i l e and the modulus |X r| the wi d t h .

The f i r s t term i n Eq. 18 d e s c r i b e s a Symmetrie p r o f i l e ( i n general the main c o n t r i b u t i o n ) and the second term d e s c r i b e s an asymmetric c o r r e c t i o n . The o r i g i n of the asymmetric c o r r e c t i o n may be t w o - f o l d . For a Symmetrie d i s t r i b u t i o n of up and down steps the kine m a t i c beam p r o f i l e i s always Symmetrie and the q u a n t i t i e s D r(k,k') v a n i s h . This has been denoted a l s o by the term " r e v e r s i b l e " s u r f a c e [ 7 , 8 ] . For a v i c i n a l plane the p r o b a b i l i t i e s of up and down steps are not equal i n both d i r e c t i o n s ( " i r r e v e r s i b l e s u r f a c e " ) and the beam p r o f i l e s become asymmetric. The second o r i g i n f o r an asymmetry of beam p r o f i l e s i s m u l t i p l e s c a t t e r i n g at the edges. Asymmetric p r o f i l e s w i l l not be d i s c u s s e d here.

The q u a n t i t i e s B r ( k , k ' ) and D r(k,k') are l i n e a r combinations of the s c a t t e r i n g amplitudes and may be a l s o denoted as s t r u c t u r e f a c t o r s i n the f o l l o w i n g . I t i s i n general convenient to c a l c u l a t e the s t r u c t u r e f a c t o r s n u m e r i c a l l y by the ei g e n v e c t o r s of the m a t r i x P ( l ) aecording to Eq. 17. In simple cases, such as the t w o - l e v e l System d i s c u s s e d above, an a n a l y t i c e x p r e s s i o n showing the r e l a t i o n t o the coverage 0 i s u s e f u l [4-8] but f o r the s p e c i a l case d i s c u s s e d here w i t h f o u r eigenvalues and f o u r d i f f e r e n t

187

Page 21: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

s t r u c t u r e f a c t o r s the e x p r e s s i o n of the s t r u c t u r e f a c t o r s i n terms of the coverages becomes unhandy. However, the approximate a n a l y t i c e x p r e s s i o n of the s t r u c t u r e f a c t o r s and the eigenvalues of the m a t r i x P ( l ) can be found f o r s p e c i a l d i f f r a c t i o n c o n d i t i o n s . I n s p e c t i o n of the eigenvalues A r and s t r u c t u r e f a c t o r s B r ( k , k ' ) at the " i n phase" (cos(k - k' )d_ = 1) and "out of phase" (cos(k - k')d = -1) d i f f r a c t i o n c o n d i t i o n f o r s i n g l e steps shows the V a r i a t i o n of beam i n t e n s i t i e s and p r o f i l e s i n r e c i p r o c a l space. The f o u r eigenvalues of the (4 x 4) m a t r i x are:

S • 1

X 3 - 1 - o, - 26 ( 2 0>

\ ~ ' " ° 2

The s t r u c t u r e f a c t o r s to the f i r s t two eigenvalues at i n phase d i f f r a c t i o n from a l l l e v e l s are

B j C k . k 1 ) = |Zp.F.(k,k')| 2

i

B 2(k,k') * P 1 P 2 | F 1 ( k , k ' ) ~ F 2 ( k , k ' ) | 2 .

The other two s t r u c t u r e f a c t o r s t u r n out to be very s m a l l , because J F i | = |F 3 j and |F 2| = | j - Therefore the c o n t r i b u t i o n s from A 3 and A 4 become very weak and t'he beam p r o f i l e c o n s i s t s of two p a r t s , a c e n t r a l s p i k e and a broad p r o f i l e . The i n t e n s i t y of the c e n t r a l s p i k e i s p r o p o r t i o n a l to the average s t r u c t u r e f a c t o r and the d i f f u s e p a r t i s due to the mean Square d e v i a t i o n s , as d i s c u s s e d above. At the out of phase c o n d i t i o n f o r s i n g l e steps the beam p r o f i l e c o n s i s t s a l s o of two p a r t s w i t h the r e v e r s e r e l a t i o n between the i n t e n s i t i e s . At the out of phase c o n d i t i o n f o r double s t e p s , cos(k - k 1 ) d = 0, the c e n t r a l s p i k e and" the broad p r o f i l e f o r A 2 v a n i s h and the two broadened p r o f i l e s from the two eigenvalues A 3 and A 4 become i n t e n s i v e . The r e l a t i v e i n t e n s i t i e s can be c a l c u l a t e d from Eq. 17, the a n a l y t i c e x p r e s s i o n being not very i n s t r u c t i v e i s not g i v e n here

The q u a l i t a t i v e p i c t u r e f o r i n c i d e n c e along [011] i s given i n F i g u r e 6. The beam p r o f i l e s show a double p e r i o d i c i t y i n r e c i p r o c a l space corresponding to the double step h e i g h t . At the " i n phase" c o n d i t i o n f o r a s i n g l e step a l l t e r r a c e s s c a t t e r i n phase and the width of the d i f f u s e i n t e n s i t y shows the s i n g l e t e r r a c e w i d t h . The d i f f u s e i n t e n s i t y a r i s e s from the d i f f e r e n t s c a t t e r i n g f a c t o r s of the two r o t a t i o n a l domains. The same occurs f o r the "out of phase" c o n d i t i o n f o r a s i n g l e s t e p . The t e r r a c e s 1 and 3, or 2 and 4 r e s p e c t i v e l y , are then i n phase and the d i f f u s e i n t e n s i t y again shows the average t e r r a c e w i d t h . In between the d i f f u s e i n t e n s i t y c o n s i s t s of a s u p e r p o s i t i o n of two L o r e n t z i a n p r o f i l e s , the narrower one showing the average width of the two t e r r a c e s , and the other one showing an a d d i t i o n a l broadening from which the p r o b a b i l i t y ß f o r double steps can be o b t a i n e d .

The beam p r o f i l e s f o r a s u r f a c e having o n l y s i n g l e steps i s shown f o r comparison i n F i g u r e 7. Assuming only the one p r o b a b i l i t y a f o r a s i n g l e s t e p , a l l t e r r a c e s occur w i t h equal p r o b a b i l i t y . The width of the d i f f u s e i n t e n s i t y shows a l s o a double p e r i o d i c i t y i n r e c i p r o c a l space, that i s because there are f o u r d i f f e r e n t t e r r a c e s at the s u r f a c e . The double p e r i o d i c i t y of the beam widths has been e x p e r i m e n t a l l y observed at a s u r f a c e where s i n g l e steps were o b v i o u s l y predominant [17]. The c e n t r a l s p i k e does not v a n i s h at the "out of phase" c o n d i t i o n f o r s i n g l e s t e p s because of the d i f f e r e n t s t r u c t u r e f a c t o r s f o r the two r o t a t i o n a l domains. At (001), (003) e t c . (s = 1/4, 3/4 e t c . ) the d i f f u s e i n t e n s i t y becomes narrower because then the average repeat d i s t a n c e i s twice the average t e r r a c e s i z e . The c e n t r a l spike vanishes at a l l d i f f r a c t i o n c o n d i t i o n s

1 8 8

Page 22: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

F i g . 6. Schematic drawing of the V a r i a t i o n of the angular p r o f i l e s of the s p e c u l a r beam f o r a Si( 1 0 0 ) s u r f a c e e x h i b i t i n g s i n g l e and double s t e p s . A geometrical d i s t r i b u t i o n of t e r r a c e s i z e s has been assumed w i t h equal p r o b a b i l i t y a f o r s i n g l e steps up or down, and fB f o r double s t e p s . The " i n phase" c o n d i t i o n f o r double steps i s at (002), (004), w h i l e (002) i s the "out of phase" c o n d i t i o n f o r s i n g l e s t e p s . The eigenvalue X of the c o r r e l a t i o n m a t r i x i n d i c a t e d i n the F i g u r e determines the widths of the d i f f u s e i n t e n s i t i e s . The i n c i d e n t beam has been assumed along the [011] d i r e c t i o n .

except at the " i n phase" and "out of phase" c o n d i t i o n f o r s i n g l e steps because a raulti-level System has been assumed by a l l o w i n g up and down steps at a l l l e v e l s .

CONCLUSIONS

I t has been shown that at su r f a c e s w i t h non-equivalent t e r r a c e s the i n t e n s i t y o s c i l l a t i o n s i n r e c i p r o c a l Space and as a f u n c t i o n of coverage may d i f f e r s u b s t a n t i a l l y from the simple case where only antiphase domains e x i s t . For a q u a n t i t a t i v e e v a l u a t i o n of beam p r o f i l e s m u l t i p l e s c a t t e r i n g e f f e c t s cannot be neg l e c t e d and a l s o the o r i e n t a t i o n of the i n c i d e n t beam has to be co n s i d e r e d . For a S i ( 1 0 0 ) s u r f a c e w i t h f o u r d i f f e r e n t t e r r a c e s and a c e r t a i n model f o r double steps the beam p r o f i l e s have been t h e o r e t i c a l l y d e s c r i b e d . The beam p r o f i l e e x h i b i t s at the " i n phase" and "out of phase" c o n d i t i o n f o r s i n g l e steps a d i f f u s e i n t e n s i t y w i t h a width a c c o r d i n g t o the s i n g l e step p r o b a b i l i t y . I f double steps are present at the surface w i t h a c o n s i d e r a b l e p r o b a b i l i t y the corresponding broadening of the beam becomes v i s i b l e at a momentum t r a n s f e r normal t o the surfa c e of s = 1/4, 3/4 i n r e c i p r o c a l u n i t s , which the "out of phase" c o n d i t i o n f o r double s t e p s . The p r o f i l e c o n s i s t s then of a s u p e r p o s i t i o n of two L o r e n t z i a n p r o f i l e s w i t h d i f f e r e n t w i d t h s . The p r o b a b i l i t i e s f o r double

1 8 9

Page 23: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

Ak„ F i g . 7. Same as F i g u r e 6 f o r a s u r f a c e having only

s i n g l e s t e p s .

steps can be determined i f both components can be separated. The e x i s t e n c e of two d i f f u s e components should be i n d i c a t e d by d e v i a t i o n s from the L o r e n t z i a n shape of the p r o f i l e . This should be a l s o observable at i n c i d e n c e i n C0103 d i r e c t i o n where the s t r u c t u r e f a c t o r s f o r the two r o t a t i o n a l domains become e q u a l . The beam p r o f i l e would then a l s o d e v i a t e from the L o r e n t z i a n shape.

Acknowledgement

The author would l i k e to thank P r o f . M. G. L a g a l l y , Dr. D. Saloner, J . M a r t i n and D. Savage f o r s t i m u l a t i n g d i s c u s s i o n s . Part of t h i s work was completed at the Dept. of M e t a l l u r g i c a l E n g i n e e r i n g , Univ. Wisconsin-Madison w i t h support from ONR, Chemistry Program. F i n a n c i a l support of the Deutsche Forschungsgemeinschaft (SFB 128) i s a l s o g r a t e f u l l y acknowledged.

REFERENCES

1. M. He n z l e r , Surface S e i . , 22:12 (1979). 2. M. Henzler, E l e c t r o n d i f f r a c t i o n and su r f a c e d e f e c t s t r u c t u r e , i n :

" E l e c t r o n Spectroscopy f o r Surface A n a l y s i s " , H. Ibach, ed., Spr i n g e r V e r l a g , Berlin-Heidelberg-New York (1977).

3. H. J a g o d z i n s k i , W. M o r i t z and D. Wolf, Surface S e i . , 77:233 (1978). W. M o r i t z , H. J a g o d z i n s k i and D. Wolf, Surface S e i . , 77:249 (1979). D. Wolf, H. J a g o d z i n s k i and W. M o r i t z , Surface S e i . , 77:265 (1979). D. Wolf, H. J a g o d z i n s k i and W. M o r i t z , Surface S e i . , 77:283 (1979).

4. T. M. Lu and M. G. L a g a l l y , Surface S e i . , 120:47 (1982). 5. T. M. Lu, G.-C. Wang and M. G. L a g a l l y , Surface S e i . , 108:494 (1981). 6. J . M. Pimbley and T. M. Lu, J . A p p l . Phys., 55:182 (1984).

J . M. Pimbley and T. M. Lu, J . A p p l . Phys., 57:1121 (1985). J . M. Pimbley and T. M. Lu, J . A p p l . Phys., 58:2184 (1985).

1 9 0

Page 24: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

7. C. S. Lent and P. I . Cohen, Surface S e i . , 139:121 (1984). 8. P. R. P u k i t e , C. S. Lent and P. I . Cohen, Surface S e i . , 161:39

(1985) . 9. M. G. L a g a l l y , D. E. Savage and M. C. T r i n g i d e s , t h i s volume, p. 139.

10. J . Zhang, J . H. Neave, P. J . Dobson and B. A. Joyce, A p p l . Phys., A42:317-326 (1987).

11. T. Sakamoto, N. J . Kawai, N. J . Kagakawa, K. Ohta and T. Kojima, A p p l . Phys. L e t t . , 47:617-619 (1985).

T. Sakamoto, T. Kawamura and G. H a s h i g u c h i , A p p l . Phys. L e t t . , 48 (1986) .

12. J . A a r t s , W. M. G e r i t s and P. K. Larsen, A p p l . Phys. L e t t . , 48:931 (1986).

13. B. A. Joyce, J . H. Neave, J . Zhang and P. J . Dobson, t h i s volume, p. 397.

14. J . M. Cowley, " D i f f r a c t i o n P h y s i c s " , E l s e v i e r Science P u b l . , Amsterdam-New York (1981).

15. W. M o r i t z , I n s t . Phys. Conf. Ser., 41:261 (1978). 16. M. H e n z l e r , t h i s volume, p. 193. 17. J . A. M a r t i n , C. E. Aumann, D. E. Savage, M. C. T r i n g i d e s , M. G.

L a g a l l y , W. M o r i t z and F. Kretschmar, J . Vac. S e i . Technol. (1986).

18. M. Horn, U. G o t t e r and M. H e n z l e r , t h i s volume, p. 463. 19. T. Kawamura, T. Sakamoto and K. Ohto, Surface S e i . , 171:L409-L414

(1986). 20. D. S a l o n e r , J . A. M a r t i n , M. C. T r i n g i d e s , D. E. Savage, C. A. Aumann

and M. G. L a g a l l y , J . A p p l . Phys., 61:2884 (1987). 21. H. S a a l f e l d , S. Tougaard, K. Bolwin and M. Neumann, Surface S e i .

(1986) . 22. T. Sakamoto, N. J . Nagakawa, K. Ohta and T. Kojima, A p p l . Phys.

L e t t . , 47:617-619 (1985). 23. S. B. Hendricks and E. T e l l e r , J . Chem. Phys., 10:147 (1942). 24. H. J a g o d z i n s k i , Acta C r y s t . , 2:201, 208 and 298 (1949). 25. J . K a k i n o k i and Y. Kamura, J . Phys. Soc. Japan, 9:169, 176 (1954). 26. M. Henzler and J . Clabes, Proc. 2nd I n t e r n . Conf. on S o l i d Surfaces

1974, Japan. J . A p p l . Phys., Suppl. 2, P t . 2:389-396 (1974). 27. R. Kaplan, Surface S e i . , 93:145-158 (1980). 28. N. Inoue, Y. T a n i s h i r o and K. Y a g i , Japan. J . A p p l . Phys., 26:L293

(1987) . 29. T. Nakayama, Y. T a n i s h i r o and K. Takanayagi, Japan. J . A p p l . Phys.,

26:L280 (1987). 30. D. E. Aspnes and J . Ihm, Phys. Rev. L e t t . , 57:3054-3057 (1986). 31. H. J a g o d z i n s k i , Prog. C r y s t a l Growth and Charact., 14:47-102 (1987).

191

Page 25: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

INDEX

Adatom m i g r a t i o n d u r i n g growth, 409 Aluminium ar s e n i d e

growth by MBE u s i n g phase l o c k modulated beams, 419

Antimony grown on G a A s ( l l O ) , 482

Atomic steps e f f e c t on r o c k i n g curves, 511, 516 ki n e m a t i c d i f f r a c t i o n , 428 RHEED, 427, 504

Auger e l e c t r o n e m i s s i o n , 109, 117

Beam - Specimen i n t e r a c t i o n , 325

C h a n n e l l i n g e f f e c t s , 117 i n R e f l e c t i o n E l e c t r o n Microscopy,

274 Column approximation and REM, 268 Convergent Beam D i f f r a c t i o n

s u r f a c e c h a r a c t e r i s a t i o n , 237 s u r f a c e m u l t i s l i c e approach, 251

Copper o x i d a t i o n , 320

De f e c t s and D i s o r d e r , 139, 201, 217 m u l t i l e v e l Systems, 157 s t e p s , 175, 193, 217 su r f a c e roughness and 3-D

s t r u c t u r e , 160 two l e v e l Systems, 146 v i c i n a l s u r f a c e s , 154

Depth of focus i n REM, 269 D i f f u s e s c a t t e r i n g , 177

thermal d i f f u s e s c a t t e r i n g , 211 D i s l o c a t i o n s

c o n t r a s t i n REM, 329, 332 resonance c o n d i t i o n , 338

D i s o r d e r , 33 i n S i ( 1 0 0 ) ( 2 x n ) , 533

Dynamical Theory i n RHEED, 29, 43, 31

resonances, 100

E l e c t r o n Microscopy of Surfaces w i t h Low Energy E l e c t r o n s , 381, 385 r e f l e c t i o n , 77, 261, 285, 303, 317,

329, 343

G a l l i u m A r s e n i d e growth by MBE, 397 growth us i n g phase-lock modulated

beams, 419 growth of Antimony on, 482 (O O l ) s u r f a c e , 49, 204, 318, 508 ( H O ) s u r f a c e , 72, 276, 390, 530 r e f l e c t i o n microscopy, 84, 318 thermal a n n e a l i n g , 530

Germanium (O O l ) s u r f a c e , 217 RHEED from growing s u r f a c e , 449

Gold s u r f a c e s s t u d i e d by REM, 303, 315

Growth k i n e t i c s , 163, 523 annealed G a A s ( l l O ) , 530 d i s o r d e r of S i ( 1 0 0 ) ( 2 x n ) , 533 oxygen p ( 2 x l ) o v e r l a y e r s on

W(110), 527 Growth of metals on G a A s ( l l O ) , 475 Growth modes, 362, 493 Growth Processes, 407. 456, 476

e f f e c t of I n t e r r u p t i o n , 414

Image formation i n REM, 268, 285, 296

Indium on G a A s ( l l O ) , 482 I n e l a s t i c s c a t t e r i n g i n RHEED

phonons, 38 Plasmons, 39 resonance c o n d i t i o n s , 277

I n t e r r u p t e d Growth, 414 Ion bombardment damage, 217

K i k u c h i e f f e c t s , 201, 403, 437

Low Energy E l e c t r o n D i f f r a c t i o n , i n t e n s i t y o s c i l l a t i o n s , 466 S i MBE on S i ( 0 0 1 ) , 463 spot p r o f i l e , 467

Low Energy E l e c t r o n R e f l e c t i o n Microscope, 381

Low Energy E l e c t r o n Scanning Microscope, 385

5 3 9

Page 26: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

M e t a l E p i t a x y , O v e r l a y e r s e t c . . phase t r a n s f o r m a t i o n s , 11 s u p e r s t r u c t u r e s , 11 A g / S i , 15, 17 A l / S i , 351 A u / S i , 9, 11, 16, 18, 349 Cu/Nb, 489 Cu/Ni, 489 Cu/W, 489 In/Ge, 16, 17 In/GaAs, 482 Mo/W, 489 Nb/W, 489 N i / S i , 17 Ni/Mo, 489 Ni/W, 489 Sb/GaAs, 482 Sn/Ge, 19, 17

Microprobe RHEED, 343 M o l e c u l a r Beam E p i t a x y

AlGaAs, 412, 443 GaAs, 201, 397, 419, 435 Ge, 443, 449 m e t a l s , 489 S i , 355, 449, 463 s u r f a c e s t r u c t u r e s d u r i n g growth,

367 Monolayer s c a t t e r i n g , 101, 103 M u l t i l e v e l Systems, 157

N i c k e l d e p o s i t e d onto S i l i c o n , 373

O x i d a t i o n s t u d i e s of copper, 320

P e n e t r a t i o n depth, 80, 81 Phase-lock modulated beams i n MBE,

419 Photoemission

angle r e s o l v e d , of s u r f a c e d u r i n g growth, 452

P l a t i n u m ( l l l ) s u r f a c e , 104, 109, 213, 281 g o l d d e p o s i t e d on P t ( l l l ) , 285 r e f l e c t i o n e l e c t r o n microscopy,

281, 303, 312, 330

Reconstructed s u r f a c e s s t u d i e d w i t h RHEED, 3, 43

R e f l e c t i o n E l e c t r o n M i c r o s c o p y , 77, 261, 285, 303, 317, 329, 343

column appro x i m a t i o n , 268 c o n t r a s t of s t e p s , 329 f a c e t t i n g , 307 image computations, 86 image f o r m a t i o n , 267 i n e l a s t i c s c a t t e r i n g , 277, 287 resonance e f f e c t s , 274

specimen p r e p a r a t i o n , 279 i n STEM, 261, 317 i n TEM, 261 su r f a c e d e f e c t s , 85

R e f l e c t i o n High Energy E l e c t r o n D i f f r a c t i o n (RHEED)

apparatus, 4 atomic s t e p s , e f f e c t o f , 427 Bloch wave f o r m u l a t i o n , 131, 270 d i s o r d e r , 32, 33, 139, 201 dynamical theory, 29, 34, 43, 63,

131 e l a s t i c s c a t t e r i n g , 30 i n e l a s t i c s c a t t e r i n g , 38, 109 i n t e n s i t y o s c i l l a t i o n s , 165, 208,

356, 397 apparent phase s h i f t , 401, 492 damping, 495 d i f f r a c t i o n c o n d i t i o n s 399, 453,

510 dynamical theory, 492 low growth temperature, 450 metal e p i t a x y , 489 phase-lock modulated beams, 419 r e s i d u a l gas e f f e c t s , 496 t h e o r e t i c a l m o d e l l i n g , 501

i n t e g r a l f o r m u l a t i o n , 131 i n v a r i a n t imbedding method, 67 kin e m a t i c theory, TDS, 212 microprobe, 343 m u l t i p l e s c a t t e r i n g , 506 m u l t i - s l i c e method, 271 novel techniques, 6 o s c i l l a t i o n / r o t a t i o n p a t t e r n s , 8 p a t t e r n s , I n t e r p r e t a t i o n , 4 r e c o n s t r u c t e d s u r f a c e s , 3, 43 resonance e f f e c t s , 99 r o c k i n g curves, 52, 63, 104 s t r e a k s , 241 s t r e a k shape, 208 su r f a c e s t r u c t u r e d e t e r m i n a t i o n ,

29 symmetry, 242 thermal d i f f u s e s c a t t e r i n g , 211 three l e v e l System, 517 two l e v e l system, 429 v i c i n a l s u r f a c e s , 432 x-ray spectroscopy, 20

Resonance c o n d i t i o n s i n RHEED, 83, 99

c o n t r a s t of steps i n REM, 329, 331 c o n t r a s t of d i s l o c a t i o n s i n REM,

339 d e f e c t images, 279 dynamical theory, 100, 109, 122 r e f l e c t i o n e l e c t r o n microsopy, 274

Rough su r f a c e s by REM, 319

5 4 0

Page 27: NATO ASI Series - epub.ub.uni-muenchen.deVolume 187—X-Ray Spectroscopy in Atomic and Solid State Physics edited by J. Gomes Ferreira and M. Teresa Ramos Volume 188—Reflection High-Energy

Scanning microprobe f o r REM, 385 Scanning t r a n s m i s s i o n e l e c t r o n microscope f o r REM, 317

Scanning t u n n e l l i n g microscope, 391 Secondary e l e c t r o n e m i s s i o n , 109, 118 S i l i c i d e f o r m a t i o n observed by UHV

SEM, 371 S i l i c o n ,

growth s t u d i e s by RHEED, 449, 513 by low energy e l e c t r o n microscopy,

381, 388 by r e f l e c t i o n e l e c t r o n microscopy,

303 S u b s t r a t e c l e a n i n g , 354

S i ( 0 0 1 ) , 185 growth, 463, 513 (2xn) phase, 533

S i ( 1 1 0 ) , 389 S i ( l l l ) , 5, 12, 195, 347, 352, 374 S i ( l l l ) + Au ( 5 x 1 ) , 9, 11 S i l v e r ,

(001) RHEED c a l c u l a t i o n , 71 s u r f a c e s by REM, 303, 315

Specimen p r e p a r a t i o n f o r REM, 279, 292, 303, 334

Steps, c o n t r a s t i n REM, 329, 335 e l e c t r o n d i f f r a c t i o n , 193 e l e c t r o n s c a t t e r i n g , 175

S u p e r l a t t i c e s , RHEED o s c i l l a t i o n s d u r i n g growth

o f , 496

Surf a c e d e f e c t s , 85 Surf a c e phase t r a n s f o r m a t i o n s , 11,

225 S u r f a c e r e c o n s t r u c t i o n , 3

REM of the ( l l l ) A u s u r f a c e , 297 Surface roughness, 160 Su r f a c e s t r u c t u r e d e t e r m i n a t i o n , 3,

29, 43 S u r f a c e s u p e r s t r u c t u r e s

metal induced on S i and Ge, 13, 18 Su r f a c e wave resonance, 99, 109, 122

Time dependent changes of RHEED, 163, 208 (see a l s o RHEED I n t e n s i t y O s c i l l a t i o n s )

T o t a l R e f l e c t i o n Angle X-ray Spectroscopy (TRAXS), 22

Two L e v e l Systems, 146

U l t r a h i g h vacuum e l e c t r o n microscope, 289, 371

V i c i n a l S u r f a c e s , 154 d i f f r a c t i o n from, 432 GaAs and Ge, 440

X-ray s p e c t r o s c o p y and RHEED, 20

Bayerische StaatsbibiJothoi

M ü n c h e n

541