20
National Aeronautics and Space Administration NASA’s Optical Communications Programs Bernard L. Edwards NASA Goddard Space Flight Center 21 May 2019 https://ntrs.nasa.gov/search.jsp?R=20190025298 2019-12-04T22:35:46+00:00Z Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

NASA’s Optical Communications Programs · 2020. 5. 26. · •Sharing optical communication ground stations or relay satellites would also allow agencies to share the cost of the

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • National Aeronautics andSpace Administration

    NASA’s OpticalCommunications Programs

    Bernard L. EdwardsNASA Goddard Space Flight Center21 May 2019

    https://ntrs.nasa.gov/search.jsp?R=20190025298 2019-12-04T22:35:46+00:00ZJournal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • Resiliency is the ability of a mission to endure the loss of one or more nodes, satellites or ground system elements — perhaps degraded but still operational. The mission may continue to function by use of augmented capabilities available from other sources.

    Resilience drives:• Disaggregated systems• Affordability to allow sparing and system redundancy• Interoperability with other missions/systems• Density of the constellation

    Overview

    Small optical communication systems can lead to large affordable constellations providing resilient communications in space

    2

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • NASA’s Space Network Today

    • The NASA Space Network or Tracking and Data Relay Satellite System is comprised of a constellation of Tracking and Data Relay Satellites (TDRS) in geosynchronous orbit and associated ground stations and operation centers.

    • NASA is developing technologies for the next generation of relay satellites.3

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • Laser Communications Relay Demonstration (LCRD) for 2020

    Scheduled launch: August 2020

    Mission duration: Two year ops demoSix years ops

    Hosted payload: US Air Force’sSpace Test Program Satellite – 6 (STPSat-6)

    Ground stations: CaliforniaHawaii

    Partnership: NASA Goddard Space Flight CenterNASA Jet Propulsion LaboratoryMIT Lincoln LaboratorySTMD/Technology Demonstration Missions Space Communications and Navigation

    Flight payload:

    • Two 10.8 cm Optical Modules and Controller Electronics Modules

    • Two software-defined DPSK Modems with 2.88 Gbps data rate (1.244 Gbpscoded user rate)

    • 622 Mbps Ka-band RF downlink• New High Speed Switching Unit to

    interconnect the three terminals

    Key for NASA’s Next-Gen Earth Relay

    Guest investigators welcome!

    4

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • NASA’s Optical Plan Forward:User Terminals for LEO and the Moon

    User Terminals for ISS and Orion EM‐2

    5

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • TeraByte InfraRed Delivery (TBIRD)200 Gbps Cubesat Demo in Early 2020

    100+ Gbps optical link enables delivery of many TeraBytes/day from low-Earth

    orbit

    Space terminal based on telecom optical components,

    small enough for CubeSat

    ~Foot-class ground terminal aperture is low cost and widely deployableMIT

    Lincoln Laboratory

    6

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • TBIRD Proto-Flight HW at MIT Lincoln Laboratorybased on Integrated Photonics and Coherent DSP ASIC

    TBIRDMass: 2.24 kgPower: 120W(5 minute ops)Volume: 1.8 U

    MITLincoln Laboratory

    7

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • NASA’s Optical Plan Forward: Deep Space Optical Communications (DSOC in 2022)

    8

    PPM TransmitterWith PhotonCounting Receiver

    8

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • 9DEEP SPACE GATEWAY CONCEPT SCIENCE WORKSHOP | FEBRUARY 27-MARCH 1, 2018

    Orion MPCV233 Mbps – 2.1 Gbps

    20+ Mbps Forward1000+ Mbps Return

    CubeSat4 – 500 Mbps

    Lunar Surface100 Mbps – 2.1 Gbps

    Optical Data Trunk to/from Earth Gateway-Enabled Lunar Network

    Laser Communications for Lunar Orbital Platform-Gateway

    Laser communications enables data returns from Gateway comparable to today’s ISS and high-rate proximity links for an optical lunar network

    High-rate, low-latency dataPositioning, navigation and timing

    e.g. high-res multi-spectral imaging

    e.g. low-latency tele-robotics;In-situ analysis

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • Increasing Communications ResiliencyThrough Standardization and Resource Sharing

    • Resiliency in both space and on the ground can be increased by sharing communications resources

    • Sharing optical communication ground stations or relay satellites would also allow agencies to share the cost of the communications infrastructure.

    – For example, due to cloud blockage, it is critical to have multiple ground stations in use during space-to-ground optical operations to provide high availability.

    • International cross support for civil space agencies is being worked within the Interagency Operations Advisory Group (IOAG) and the Consultative Committee for Space Data Systems (CCSDS).

    • The goal is to develop optical communications cross support by various agencies as we have today in traditional Radio Frequency (RF) communications.

    Traditional InternationalRF Cross Support

    10

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • 11

    NASA and CCSDS International Optical Communication Standards in Development

    100Gbps

    10Gbps

    1 Gbps

    100Mbps

    10Mbps

    102 103 104 105 106 107 108 1010Km Km 109

    GEO

    light second light minute light hour

    LEO SATSVENUS

    MERCURYMARSNEAR-EARTH

    SATS MOON JUPITERSATURN URANUS

    NEPTUNE

    PLUTOLagrange

    MOON Lagrange 1 AU

    1 Gbps @1 AU SCaN

    Goal

    Range of Communication Link (km)

    LCRDEDRSJDRS

    LOP‐G

    O2O

    Next Gen IOC

    DSOCPsyche Gen 2 DSOC

    TBIRD Demo

    CCSDSHigh DataThroughput

    CCSDSHigh PhotonEfficiency

    CommercialLEO 

    CrosslinksOr Direct‐to‐

    Earth Using OOKTo Commercial 

    OGS

    CCSDSOptical On‐Off

    Keying

    100XMore Loss

    so PPM

    1,000,000XMore Loss so PPM, Large 

    OGS

    100XMore Loss so PSK

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • Detection Sensitivityin Optical Communications

    ReceivedSignalLocal

    Oscillator

    PowerDetection

    10

    1

    0.1

    Phot

    ons

    per b

    it Coherent

    PhotonCounting

    Quantum Limit

    OpticallyPreamplified

    LO shot noise limited

    ASE noise limited

    “noiseless”

    Unknown architecture

    CCSDSOptical On‐Off

    Keying

    CCSDSHigh DataThroughput

    CCSDSHigh Photon

    Efficiency PPM

    12

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • National Aeronautics andSpace Administration

    Questions?

    Please feel free to contact me at:

    Bernie EdwardsNASA Goddard Space Flight Center

    [email protected]

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • BACKUP

    14

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • Integrated Laser Communication Relay DemonstrationPayload at NASA Goddard Space Flight Center

    15

    Modem1

    Modem2

    Space Switching 

    Unit 1

    Space Switching 

    Unit 2

    OpticalModule

    1

    OpticalModule

    2

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • The Key to Reducing SWaP and Cost:Photonic Integrated Circuits

    1 cm

    For NASA, this means that optical systems for communications and sensors can be reduced in size, mass, and cost by >> 100x by leveraging this commercially‐available technology (some customization may be required)

    US Industry has commercialized “Integrated photonics” to allow many electro‐optical components, even glass fibers, to be “squeezed down”…..

    …into the optical equivalent of a micro‐electronics “integrated circuit” 

    COTS Laser Comm Modem

    ..based on Integrated Photonics

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • Clouds are primary source of attenuation

    Characterization and prediction of the atmospheric channel are critical to inform space link handovers, select ground sites, and to maximize system availability

    CCSDS Books will:◆ Provide a narrative on 

    atmospherics and explain why it is critical to accurately characterize

    ◆ Explain how long‐term statistics of atmospherics are used to choose an optimal network of geographically diverse ground sites

    ◆ Provide content on the required instruments and parameters to support long‐term site characterization and real‐time decision making

    Atmospheric Characterization and Predictionfor Optical Communications

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • High Data Throughput 1550 nm Link Scenarios

    Space

    Air

    Ground

    SpaceRelay

    Optical or RF Trunks

    Crosslinks

    Users

    OpticalDirect‐to‐Earth

    Link

    Atmosph

    ere

    Optical Link

    RF Link

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • High Data Rate 1550 nm Signaling Overview

    FEC:DVB‐S2, RS, or 

    G.975 I.3

    Convolutional Channel 

    Interleaver

    Physical Layer Framing RandomizerQ‐Repeat

    To amplifier ortelescope

    Modulation:Burst‐Mode PSK@1550nm

    CCSDS Transfer Frames

    SlicerFrame Sync Marker

    Attachment

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020

  • High Data Rate 1550 nm Relay Link Example

    Space Pkt

    AOS Frame

    FEC/ILV/   Q‐Repeat

    Physical Link

    User Platform

    User Terminal

    Phy Frame

    Relay Platform

    Relay Terminal 1

    Phy FrameRelay Terminal 2

    Physical Link

    Ground RelayService I/F

    AOS Frame

    Ground Network

    Switch

    Optical relay serves as a transparent link‐layer bridge between User Platform and Ground Relay

    Phy Frame

    Random

    Modulation

    De‐Random

    De‐Mod

    Random

    Modulation

    FEC/DeILV/ De‐Q‐Rep.

    Phy Frame

    De‐Random

    De‐Mod

    Transparent Bridge

    2005/10/17

    Journal of Space Operations & Communicator (ISSN 2410-0005), Vol. 17, No. 1, Year 2020