15
National Aeronautics and Space Administration NASA’s Current Plans for ERA Propulsion Technology Dr. Jim Heidmann Project Engineer (Acting) Propulsion Technology Sub-project for ERA, NASA www.nasa.gov 48 th AIAA Aerospace Sciences Meeting January 4, 2010

NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

National Aeronautics and Space Administration

NASA’s Current Plans for ERA Propulsion Technology Dr. Jim Heidmann Project Engineer (Acting) Propulsion Technology Sub-project for ERA, NASA

www.nasa.gov

48th AIAA Aerospace Sciences Meeting January 4, 2010

Page 2: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

Outline

• Overview – Overall ERA Project – Propulsion Technology Element

• Technical Approach – Propulsion System-Level Benefits – Critical Technology Areas: Propulsor, Combustor, Core

Turbomachinery

• Concluding Remarks

Page 3: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

. nves ga ons w ere propu s on sys em s s or er e ec

       

             

       

             

             

         

               

Research Focus Areas 1.0 Project Management 2.0 Airframe Technology ML/D, Empty Weight, Airframe Noise

2.1 Lightweight Structures investigations where airframe system is 1st order effect

2.2 Flight Dynamics and Control 2.3 Drag Reduction 2.4 Noise Reduction

3.0 Propulsion Technology SFC, Engine Noise, Emission Index

3 1 Combustor Technology 3.1 Combustor Technology i ti ti h l i t i 1 t d ff tinvestigations where propulsion system is 1st order effect

3.2 Propulsor Technology 3.3 Core Technology

4.0 Vehicle Systems Integration ML/D, Weight, SFC, Emission Index, Noise

4.1 Systems Analysis investigations where propulsion/airframe interaction is 1st order effect

4.2 Propulsion Airframe Integration 4.3 Propulsion Airframe Aeroacoustics 4.4 Advanced Vehicle Concepts

Page 4: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

ropu sor ec no ogy

Propulsion Technology Focus Areas System-Level Research

Combustor Technology

P l T h lPropulsor Technology

Core Technology

Page 5: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

Velocity

TSFC

Lift

Dragln

Wfuel

WPL + WO

=

•Aerodynamics • Empty Weight •Engine Fuel Consumption

AircraftRange

1 +

Propulsion Technology Enablers

Noise • increasing ducted BPR, potential embedding benefit

Emissions • low NOx combustion, reduced SFC

Fuel Burn • reduced SFC (increased BPR, OPR & turbine inlet temperature,

potential embedding benefit)

Aircraft Velocity

TSFC

Lift

Drag = ln 1 +

Range

Wfuel

WPL + WO

•Engine Fuel •Aerodynamics • Empty Weight Consumption

TSFC = Velocity / (ηoverall)(fuel energy per unit mass)

ηoverall = (ηthermal)(ηpropulsive)(ηtransmission)(ηcombustion)

Page 6: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

Im rovementsIm rovementsIm rovementsIm rovements

             

   

    

    

                    

                            

Propulsion Technology Opportunity

Propulsion system improvements require advances in propulsor and core/combustor technologies

CoreCoreCoreCore ImprovementsImprovementsImprovementsImprovementspppp (direct impact on LTO(direct impact on LTO(direct impact on LTO(direct impact on LTO NOxNOxNOxNOx))))

PropulsorPropulsorPropulsorPropulsor improvementsimprovementsimprovementsimprovements

AAAAllllaaaannnn EEEEppppsssstttteeeeiiiinnnn PPPPrrrraaaatttttttt &&&& WWWWhhhhiiiittttnnnneeeeyyyy AAAAiiiirrrrccccrrrraaaafffftttt

Page 7: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

((((PoddedPoddedPoddedPodded)))) PRSEUS ConceptPRSEUS ConceptPRSEUS ConceptPRSEUS Concept((((­­­­38.8%)38.8%)38.8%)38.8%) PRSEUS ConceptPRSEUS ConceptPRSEUS ConceptPRSEUS Concept

    

                    

                            

                                                                     

                 

    

    

                            

    

                            

    

                    

                            

    

                            

    

                    

                            

    

    

    

                    

                            

                    

                            

    

                    

                            

    

                            

            

                            

    

                            

    

                            

                    

                            

    

                            

    

                            

                    

                            

    

                            

    

                            

    

            

    

                            

                            

Potential Reduction in Fuel Consumption Key Propulsion Benefits

TTTTeeeecccchhhhnnnnoooollllooooggggyyyy BBBBeeeennnneeeeffffiiiittttssss RRRReeeellllaaaattttiiiivvvveeee ttttoooo LLLLaaaarrrrggggeeee TTTTwwwwiiiinnnn AAAAiiiisssslllleeee ((((MMMMooooddddeeeelllliiiinnnngggg bbbbaaaasssseeeedddd uuuuppppoooonnnn BBBB777777777777­­­­222200000000 EEEERRRR////GGGGEEEE99990000))))

NNNN++++2222 HHHHWWWWBBBBNNNN++++2222 aaaaddddvvvvaaaannnncccceeeedddd """"ttttuuuubbbbeeee­­­­aaaannnndddd­­­­wwwwiiiinnnngggg”””” NNNN++++2222 HHHHWWWWBBBB

PPPPlllluuuussss mmmmoooorrrreeee aaaaggggggggrrrreeeessssssssiiiivvvveeee tttteeeecccchhhh mmmmaaaattttuuuurrrraaaattttiiiioooonnnn

Composite WingsComposite WingsComposite WingsComposite Wings & Adv. Sub. Sys.& Adv. Sub. Sys.& Adv. Sub. Sys.& Adv. Sub. Sys. ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 3.5%3.5%3.5%3.5%

­­­­75,200 lbs75,200 lbs75,200 lbs75,200 lbs ((((­­­­31.7%)31.7%)31.7%)31.7%)

Composite FuselageComposite FuselageComposite FuselageComposite Fuselage ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 3.0%3.0%3.0%3.0%

Composite WingsComposite WingsComposite WingsComposite Wings & Adv. Sub. Sys.& Adv. Sub. Sys.& Adv. Sub. Sys.& Adv. Sub. Sys. ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 5.8%5.8%5.8%5.8%

PRSEUS ConceptPRSEUS ConceptPRSEUS ConceptPRSEUS Concept ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 4.1%4.1%4.1%4.1%

AdvancedAdvancedAdvancedAdvanced EnginesEnginesEnginesEngines

HWB with CompositeHWB with CompositeHWB with CompositeHWB with Composite CenterbodyCenterbodyCenterbodyCenterbody ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 15.5%15.5%15.5%15.5%

­­­­91,900 lbs91,900 lbs91,900 lbs91,900 lbs

Composite WingsComposite WingsComposite WingsComposite Wings & Adv. Sub. Sys.& Adv. Sub. Sys.& Adv. Sub. Sys.& Adv. Sub. Sys. ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 2.9%2.9%2.9%2.9%

HWB with Composite CenterbodyHWB with Composite CenterbodyHWB with Composite CenterbodyHWB with Composite Centerbody ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 15.4%15.4%15.4%15.4%

Nickol, et al 2009Nickol, et al 2009Nickol, et al 2009Nickol, et al 2009

Fuel Burn = 161,900 lbsFuel Burn = 161,900 lbsFuel Burn = 161,900 lbsFuel Burn = 161,900 lbs ­­­­75,200 lbs75,200 lbs75,200 lbs75,200 lbs ­­­­31.7%31.7%31.7%31.7%

((((PoddedPoddedPoddedPodded)))) ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =

­­­­6.76.76.76.7%%%%

HLFCHLFCHLFCHLFC (Wing and Nacelles)(Wing and Nacelles)(Wing and Nacelles)(Wing and Nacelles) ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 12.1%12.1%12.1%12.1%

PRSEUS ConceptPRSEUS ConceptPRSEUS ConceptPRSEUS Concept ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 2.7%2.7%2.7%2.7%

Advanced EnginesAdvanced EnginesAdvanced EnginesAdvanced Engines ((((PoddedPoddedPoddedPodded))))

∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 6.5%6.5%6.5%6.5%

HLFCHLFCHLFCHLFC (Outboard Wing and Nacelles)(Outboard Wing and Nacelles)(Outboard Wing and Nacelles)(Outboard Wing and Nacelles) ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 10.5%10.5%10.5%10.5%

((((­­­­38.8%)38.8%)38.8%)38.8%) PRSEUS ConceptPRSEUS ConceptPRSEUS ConceptPRSEUS Concept ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 2.3%2.3%2.3%2.3%

Advanced EnginesAdvanced EnginesAdvanced EnginesAdvanced Engines ((((PoddedPoddedPoddedPodded))))

∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 5.5%5.5%5.5%5.5%

HLFCHLFCHLFCHLFC (Outboard Wing and Nacelles)(Outboard Wing and Nacelles)(Outboard Wing and Nacelles)(Outboard Wing and Nacelles) ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 9.0%9.0%9.0%9.0%

­­­­107,200 lbs107,200 lbs107,200 lbs107,200 lbs ((((­­­­45.2%)45.2%)45.2%)45.2%)

Fuel Burn = 145,200 lbsFuel Burn = 145,200 lbsFuel Burn = 145,200 lbsFuel Burn = 145,200 lbs ­­­­91,900 lbs91,900 lbs91,900 lbs91,900 lbs ­­­­38.8%38.8%38.8%38.8%

Fuel Burn = 129,900 lbsFuel Burn = 129,900 lbsFuel Burn = 129,900 lbsFuel Burn = 129,900 lbs ­­­­107,200 lbs107,200 lbs107,200 lbs107,200 lbs ­­­­45.2%45.2%45.2%45.2%

Embedded EnginesEmbedded EnginesEmbedded EnginesEmbedded Engines withwithwithwith

BLI InletsBLI InletsBLI InletsBLI Inlets ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 4.5%4.5%4.5%4.5% HLFCHLFCHLFCHLFC (Centerbody)(Centerbody)(Centerbody)(Centerbody) ∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn =∆ Fuel Burn = ­­­­ 5.5%5.5%5.5%5.5%

Page 8: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

-25

Propulsor Technology Roadmap 0

 OOOOppppeeeennnn RRRRoooottttoooorrrr   ccccuuuurrrrrrrreeeennnntttt

BBBBPPPPRRRR >>>>33330000-5

-10

AAAAAAAAiiiiiiiirrrrrrrrffffffffrrrrrrrraaaaaaaammmmmmmmeeeeeeee SSSSSSSShhhhhhhhiiiiiiiieeeeeeeellllllllddddddddiiiiiiiinnnnnnnngggggggg-15     AAAAiiiirrrrffffrrrraaaammmmeeee &&&& PPPPrrrrooooppppuuuullllssssiiiioooonnnn TTTTeeeecccchhhhssss     

-20 UUUUHHHHBBBB ((((2222000011115555 TTTTRRRRLLLL 6666))))        UUUUHHHHBBBB ((((2222000011113333 EEEEIIIISSSS))))BBBBPPPPRRRR ~~~~ 11115555­­­­22220000         BBBBPPPPRRRR ~~~~ 9999­­­­11112222   

-25 AAAAiiiirrrrffffrrrraaaammmmeeee TTTTeeeecccchhhhssss 

NNNN++++1111-30 GGGGooooaaaallll

UUUUHHHHBBBB ++++ NNNNAAAASSSSAAAA NNNNRRRR TTTTeeeecccchhhhssss               -35 ((((2222000011115555 TTTTRRRRLLLL6666)))) 

   

   

BBBBPPPPRRRR ~~~~ 11115555­­­­22220000  AAAAiiiirrrrffffrrrraaaammmmeeee SSSShhhhiiiieeeellllddddiiiinnnnggggNNNN++++2222 -40

GGGGooooaaaallll AAAAiiiirrrrffffrrrraaaammmmeeee &&&& PPPPrrrrooooppppuuuullllssssiiiioooonnnn TTTTeeeecccchhhhssss         

-45

-50 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5

BBBBAAAASSSSEEEE%%%%ΔΔΔΔ FFFFUUUUEEEELLLL BBBBUUUURRRRNNNN

0

Page 9: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

• Unducted UHB (Open Rotor)

Propulsor Technology Technical Challenges Noise Reduction Energy Efficiency

Ultra high bypass ratio propulsor

Ducted vs. Unducted trade, noise vs. efficiency Concepts • Ducted UHB

• short inlets, laminar flow nacelles • SMA variable area nozzle • soft vane, over­the­rotor treatment

• Unducted UHB (Open Rotor) • increased rotor spacing, higher blade count, pylon spacing

• Embedded for boundary layer ingestion • inlet flow control, distortion tolerant fan

Challenges • Open Rotor ­ reduced noise while maintaining high propulsive efficiency • Ducted UHB ­ nacelle weight & drag with increasing diameter • Embedded Propulsion – distortion control & effects on fan performance and noise • All – propulsion / airframe integration

Page 10: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

                                       

                               

                              

    

  

                        

                    

     

 

 

  

    

         

         

         

     

           

Propulsor Technology Technical Overview

Noise Reduction Energy Efficiency • Objective

– Explore propulsor (bypass flowpath) configurations for N+2 vehicle concepts to expand and better define the trade space between performance and noise reduction.

• Approach – Investigate feasibility of higher BPR propulsion

systems: UHB Turbofans, Open Rotors and TBD UUUUHHHHBBBB TTTTuuuurrrrbbbbooooffffaaaannnnssss Advanced Propulsor identified from NRA.

– Evaluate UHB & Open Rotor for N+2; isolated and partially installed simulations in wind tunnel tests;partially installed simulations in wind tunnel tests; Handoff to VSI for full installation experiments.

• Benefit – Propulsor concepts identified and validation data OOOOppppeeeennnn RRRRoooottttoooorrrr

available for noise & performance trades.

Select UHB & Open Rotor Concepts

FY10 FY11 FY12 FY13 FY14 FY15

Select Adv. Propulsor Concept For N+2

Complete UHB Turbofan Tests

Complete Isolated Open Rotor Tests

possibilities • isolated and partially installed advanced propulsor ground tests similar to phase 1 • integrate with other techs (config, shielding) • flight test propulsion concept • incorporate in design of flight vehicle testbed

Page 11: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

Enablin Technolo

             

             

 

 

   

 

                   

                 

 

 

   

   

Combustor/Core Technology Technical Challenges

Low NOx combustor concepts for high OPR environment

Increase thermal efficiency without increasing NOx emissions

Injector Concepts • Partial Pre­Mixed • Lean Direct Multi­Injection

Enabling Technology g gy • lightweight CMC liners • advanced instability controls

Challenges • Improved fuel­air mixing to minimize hot spots that create additional NOx • Lightweight liners to handle higher temperatures associated with higher OPR • Fuel Flexibility

Page 12: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

– Select single concept for future engine tests.

    

        

     

    

 

 

  

 

 

FuelFuelFuelFuel StagingStagingStagingStaging

LinersLinersLinersLiners

Combustor Technology Technical Overview

LTO and Cruise NOx IIIInnnnssssttttaaaabbbbiiiilllliiiittttyyyy• Objective CCCCMMMMCCCC CCCCoooonnnnttttrrrroooollll

– Extend maturation of technologies for reducing LTO NOx. Concepts must ensure fuel flexibility.

• Approach – Pursue 4 concepts:

• Lean Partial-Mixed Combustor • Lean Direct Multi-Injection • 2 TBD from NRA

– Flametube, sector, and annular combustor tests. – Select single concept for future engine tests. – Assume 50% cost share with industry. – Parallel effort to assess CMC durability and ability

to manufacture liners • Benefit

– Technologies to reduce LTO NOx by 75% below CAEP/6.

Select Low­NOxBidders Combustor ConceptsConference

FY09 FY10 FY11 FY12 FY13 FY14 FY15

Initiate Low­NOx Complete Complete Complete Combustor Concept Flametube Sector Annular Combustor

Studies Experiments Tests Tests

MMMMuuuullllttttiiiippppooooiiiinnnntttt IIIInnnnjjjjeeeeccccttttiiiioooonnnn

Page 13: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

                  

                          

                  

         

  

                         

                           

                            

            

   

   

   

     

   

 

 

   

 

Core Technology Technical Overview LTO NOx Energy Efficiency

• Objective – Explore core architectures and develop key technologies needed for N+2 propulsion

• Approach – Explore high OPR and high T4 core engine concepts; leverage existing work on high OPR compressors from VAATE, turbine cooling work in Subsonic Fixed Wing.

– Pursue Ceramic Matrix Composite (CMC)Pursue Ceramic Matrix Composite (CMC) turbine components; assess fabrication methods for cooled vanes and nozzles AAAAddddvvvvaaaannnncccceeeedddd CCCCoooorrrreeee ffffoooorrrr UUUUHHHHBBBB

TTTTuuuurrrrbbbbooooffffaaaannnn ((((PPPP&&&&WWWW GGGGTTTTFFFF))))• Benefit – Technologies to increase thermal efficiency that enable higher BPR propulsion (turbofans, open rotors & embedded engines)

FY10 FY11 FY12 FY13 FY14 FY15 • high OPR compressor

Assess CMC Fab Identify Core • increase T4 Increasing

integration/complexity

Complete Test of Methods, Durability N+2 Concepts Advanced Core & Heat Transfer Components

Page 14: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

                       

     

       

    

High OPR Core Compressor Testing

• Objective: Validate innovative engineering concepts and models for higher Overall Pressure Ratio (OPR) in an Advanced Technology Development Compressor (ATDC) testbed to achieve NASA fuel burn and LTO NOx emissions goals.

• Approach: Collaborate and cost share with industry, government and academia to create and operate an ATDC testbed in the GRC W7 Facility.

• W7 Multi-Stage Compressor Test Facility Progress: • Refurbished straddle mounted driveline 90%

complete • 640 lbs 5-Stage checkout rotor in final balancing • Start final phase “A” test article assembly 1QFY10 • New high temperature throttle valve installed • Meetings with aircraft engine companies to discuss

collaboration and cost share for W7 ATDC Testbed • W7 basic compressor rig envelope and Phase “A”

driveline/flow test drawings sent to P&W, GEAE, & Rolls-Royce

• 640lbs 5­Stage Checkout Rotor in GRC Dynamic Balancing Machine

• Test cell prep and checkout testing FY10/11, W7 ATDC design and fabrication FY10/11, research/development testing FY12/13

Research Team: Scott Thorp, GRC (Aero Mech. Lead); John Fabian, GRC (Aero. Lead)

Page 15: NASA’s Current Plans for ERA Propulsion Technology v4x_5… · Aircraft Range 1 + Propulsion Technology Enablers. Noise • increasing ducted BPR, potential embedding benefit

,

Concluding Remarks

• System studies identify propulsion technology as key to meeting ERA fuel burn, noise, and emissions goals

• Technical approaches include development of reduced NOx combustors increased bypass ratio reduced NOx combustors, increased bypass ratio propulsors, increased pressure ratio compressors, increased temperature turbines, and embedded engines

• Partnerships with industry will be key to meeting the goals