NASA Space Shuttle STS-116 Press Kit

Embed Size (px)

Citation preview

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    1/135

    STS-121 Press

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    2/135

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    3/135

    December 2006 CONTENTS i

    CONTENTSSection PageSTS-116 MISSION OVERVIEW: POWER RECONFIGURATION HIGHLIGHTS

    S T AT I O N AS S E M BL Y M I S S I ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1S T S -1 1 6 T I M E L INE O V E R V IE W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0M I S S I O N P R I O RI T I E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 L AU NCH AND L ANDI NG . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 1 5

    LA U N C H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 A B O R T- TO - O R B I T (A TO ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15TR A N S A TLA N TI C A B O R T LA N D I N G (TA L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 R E TU R N - TO - LA U N C H - S I TE (R TLS ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 A B O R T O N C E A R O U N D (A O A ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15LA N D I N G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    M I S S I O N P R O FI LE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 1 6 S T S -1 1 6 DI S CO V E R Y CR E W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 1 7M I S S I O N P E R S O NNE L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 R E NDE ZV OU S AND DO CK I NG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .2 8

    U N D O C K I N G , S E P A R A TI O N A N D D E P A R TU R E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1INTERNATIONAL SPACE STATION ELECTRIC POWER SYSTEM (EPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    ACT I V E T HE R M AL CO NT RO L S YS T E M ( AT CS ) O V E R VI E W .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 0 S P ACE W AL K S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .65

    E V A 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6E V A 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7 E V A 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 9

    P AYL O AD O V E R VI E W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 I N TE G R A TE D TR U S S S E G M E N T P 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 I N TE G R A TE D C A R G O C A R R I E R (S P A C E H A B ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7LO G I S TI C S S I N G LE M O D U LE (S P A C E H A B LS M ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 8

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    4/135

    December 2006 CONTENTS ii

    Section PageE X P E R I ME NT S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .7 9

    D E TA I LE D TE S T O B J E C TI V E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 9S H O R T- D U R A TI O N B I O A S TR O N A U TI C S I NV E S TI G A TI O N (S D B I ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 9S H O R T- D U R A TI O N R E S E A R C H A N D S TA TI O N E X P E R I M E N TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 0E U R O P E A N S P A C E A G E N C Y E X P E R I M E N TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4

    SPACE SHUTTLE MAIN ENGINE ADVANCED HEALTH MANAGEMENT SYSTEM . . . . . . . . . . . . . . . . . . . . . . . .89 S HU T T L E R E FE R E NCE DAT A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

    ACR O NYM S AND ABBR E VI AT I O NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 1 0 3 M E DI A AS S I S TANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1 8P U BL I C AFFAI R S CO NT ACT S . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 9

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    5/135

    December 2006 MISSION OVERVIEW 1

    STS-116 MISSION OVERVIEW:

    POWER RECONFIGURATION HIGHLIGHTS

    STATION ASSEMBLY MISSION

    Withitscranestillattached,theorbiterDiscoverywasmated

    totheexternaltankandsolidrocketboostersonthemobile

    launcherplatforminhighbay3oftheKennedySpace

    CenterVehicleAssemblyBuilding.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    6/135

    December 2006 MISSION OVERVIEW 2

    SpaceShuttleDiscoverylaunchesinDecember

    onits33rdmissiontodeliveranothertruss

    segmentoftheInternationalSpaceStationand

    beginthe

    intricate

    process

    of

    reconfiguring

    and

    redistributingthepowergeneratedbytwo

    pairsofU.S.solararrays.

    Theshuttlelauncheswithsevenastronauts

    sixshuttleandonelongdurationstationcrew

    member. Thisisthefirstcrewmemberrotation

    infouryearsinvolvingashuttleratherthana

    RussianSoyuz.

    TheprimaryassemblyhardwareDiscoverywill

    deliverto

    the

    space

    station

    is

    the

    $11

    million

    IntegratedTrussSegmentP5,whichmeasures

    11feetlongby15feetwideby14feethigh(3.3

    x4.5x3.2meters). Itwillserveasaspacerand

    bemated

    to

    the

    P4

    truss

    that

    was

    attached

    in

    SeptemberduringtheSTS115missionof

    Atlantis.

    Attachmentofthe4,000pound

    (1,800kilogram)P5setsthestageforthe

    relocationtoitsfinalassemblypositionofthe

    P6trussandthepairofsolararraysthathave

    beenlocatedtemporarilyatopthestations

    Unitymoduleforsixyears.

    AcomputergeneratedartistsrenderingoftheInternationalSpaceStationafterflight

    STS116/12A.1,followingthedeliveryandinstallationofthethirdporttrusssegment

    (P5)andtheretractionoftheP6portsolararraywingandtworadiators.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    7/135

    December 2006 MISSION OVERVIEW 3

    Threespacewalks(ExtravehicularActivitiesor

    EVAs)spreadacrossthesevendaysofdocked

    operationswillinvolveP5installationand

    reconfigurationof

    cables

    so

    that

    flight

    controllersinMissionControl,Houston,can

    sendcommandstoswappowergenerationand

    distributionfromhalfoftheP6arraystothe

    newestP4pair(powerchannel2/3movesto

    P42Aand1/4movestopowerchannelP44A).

    InadditiontotheP5spacer,Discoverys

    payloadbayalsohousesasmallpressurized

    logisticsmoduleholdingsuppliesandan

    integratedcarrierdeliveringspacestation

    hardwareandthreesmallsatellitestobedeployedaftertheshuttlehasundockedfrom

    thespacestation.

    The20thshuttlemissiontotheInternational

    SpaceStationrepresentsthemost

    choreographedassemblyflighttodatebetween

    theshuttleandstationcrewmembersandflight

    controllersinMissionControl,whowillsend

    allcommandstocarefullyredistributepower

    andthermal

    management

    from

    one

    location

    to

    another. TheSTS118missioninthesummerof

    2007willdeliveranidenticalshortspacer(S5)

    totheoppositeendofthestationstruss.

    Discoverywilllaunchwithsevencrew

    members,includingCommanderMark

    Polansky,PilotWilliam(Bill)Oefelein

    (Commander,USN),andMissionSpecialists

    NicholasPatrick,Robert (Bob) Curbeam(Captain,

    USN),JoanHigginbotham,ChristerFuglesang

    representingtheEuropeanSpaceAgency,andSunitaWilliams.Williamswillreplacecrew

    memberThomasReiter(ESA)whowillreturn

    toEarthaboardDiscoveryinherplace.

    Williamswillreturnhomenextsummer

    followingEndeavoursSTS118mission.

    Attiredintheirtrainingversionsoftheshuttlelaunchandentrysuit,astronauts

    MarkL.Polansky(left),STS116commander,andWilliamA.Oefelein,pilot,

    occupythecommanderandpilotsstationduringatrainingsessioninthefixed

    baseshuttlemissionsimulator(SMS)intheJakeGarnSimulationand

    TrainingFacilityatJohnsonSpaceCenter.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    8/135

    December 2006 MISSION OVERVIEW 4

    Thelaunchfromcomplex39BattheKennedy

    SpaceCenter,Florida,istimedpreciselyto

    occurwithinthesamelaunchplane(similartoa

    laneon

    ahighway)

    as

    the

    space

    station

    to

    maximizepropellantsavingsandminimize

    rendezvoustime.

    Becauseoftheexcellentperformanceofthe

    shuttlesexternaltankinminimizingfoam

    sheddingduringascent,andtheabilityto

    performa100percentinspectionoftheorbiter

    thermalprotectionsystemforunlikelydamage,

    therestrictionfordaylightonlylauncheshas

    beenlifted. ThisallowsDiscoveryslaunchto

    takeplaceatnightforthefirst10daysofitswindow,whichopensnoearlierthanDec.7

    andclosesonoraboutDec.26basedonasun

    betaangleconstraint.

    Thefirstthreedaysofthemissionnearlymirror

    thoseofthepreviousthreeshuttleflightsto

    inspectthethermalprotectionsystemtilesand

    thewing

    leading

    edge

    reinforced

    carbon

    carbon

    panels,andrendezvousanddockwiththe

    InternationalSpaceStation.

    Patrickistheprimeshuttleremotemanipulator

    system(roboticarm)operatorandwillleadthe

    inspectioneffortusingtheRemoteManipulator

    System(RMS)extensiontheOrbiterBoom

    SensorSystem. PolanskyandOefeleinserveas

    backupshuttlearmoperators.

    Thehighest

    priority

    tasks

    of

    the

    flight

    will

    be

    to

    transferonestationcrewmemberforanother,

    installthenewP5shortspacer,reconfigurethe

    electricalpowersystemandthermalcontrol

    systemandtransferextraoxygentostorage

    tanksontheoutsideoftheU.S.QuestAirlock.

    AstronautNicholasJ.M.Patrick,STS116missionspecialist,participates

    inatrainingsessioninthecrewcompartmenttrainer(CCT2)inthe

    SpaceVehicleMockupFacilityatJohnsonSpaceCenter.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    9/135

    December 2006 MISSION OVERVIEW 5

    IntheKennedySpaceCenterSpaceStationProcessingFacility,anoverheadcrane

    movestheP5trussformissionSTS116tothepayloadcanister. Thethirdport

    trusssegment,theP5willbeattachedtotheP3/P4trussontheInternational

    SpaceStationduringthe11daymission.

    Afterdocking,thefirstpriorityistotransfer

    formfittingseatlinersintheSoyuzspacecraftmakingWilliamsanofficialmemberofthe

    Expedition14crewalongwithCommander

    MichaelLopezAlegriaandFlightEngineer

    MikhailTyurin. Reiterthenbecomesamember

    oftheshuttlecrewwithwhichhewillreturn

    homeafterasixmonthstayonthestation.

    Onflightday3,PatrickwillcarefullylifttheP5

    spacerwiththeshuttleRMSandhandittothewaitingstationarm. Higginbothamand

    Williamswillcontrolthestationarmatthe

    stationsroboticworkstationintheDestiny

    Laboratory. Thespacerwillremainonthe

    stationsarmovernightinpreparationfor

    installationthenextdayduringthefirstofthree

    plannedspacewalks.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    10/135

    December 2006 MISSION OVERVIEW 6

    AstronautsRobertL.Curbeam,Jr.andChristerFuglesang,STS116missionspecialists,

    wearingtrainingversionsoftheExtravehicularMobilityUnit(EMU)spacesuit,

    participateinanunderwatersimulationofextravehicularactivity(EVA).

    CurbeamandFuglesangaredwarfedbystationtrusssegmentsinthis

    overallviewofthesimulationconductedintheNeutralBuoyancy

    Laboratory(NBL)neartheJohnsonSpaceCenter.

    Thedayafterdocking(flightday4),CurbeamandFuglesangwillleavetheQuestAirlockona

    sixhourspacewalktoassistwithinstallation

    andutilityconnectionsbetweentheP5short

    spacerandtheP4truss.

    Theconnectiontasksincluderemovaloffour

    launchlockswiththetwotrusssegments

    approximately612inchesapart. The

    spacewalkersthenwillserveasonthescene

    observersforalignmentandinstallationofP5to

    P4. Theinstallationiscompletedwiththe

    matingofsixutilitycables.AstronautRobertL.Curbeam,STS116

    missionspecialist,attiredinatrainingversion

    oftheExtravehicularMobilityUnit(EMU)

    spacesuit,awaitsatrainingsessioninthe

    watersoftheNeutralBuoyancyLaboratory

    (NBL)nearJohnsonSpaceCenter.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    11/135

    December 2006 MISSION OVERVIEW 7

    EuropeanSpaceAgency(ESA)astronautChristerFuglesang,STS116missionspecialist,

    participatesinanExtravehicularMobilityUnit(EMU)spacesuitfitcheckintheSpace

    StationAirlockTestArticle(SSATA)intheCrewSystemsLaboratoryattheJohnson

    SpaceCenter. AstronautWilliamA.Oefelein,pilot,assistedFuglesang.

    Betweenthefirstandsecondspacewalksbegins

    aprocessofpowerandthermalreconfiguration

    thathasneverbeenattemptedbefore. Groundcommandingremovespowerfromonehalfof

    theP6solararrayfollowedbytheretractionof

    itsportarray. Aminimumof40percentofthe

    arraymustberetractedtoprovideenough

    clearanceforactivationoftheP4solararray

    trackingrotaryjointtestedduringtheprevious

    shuttlemission(STS115). Thestarboardsolar

    arrayofP6willberetractedduringSTS117

    nextMarchbeforeinstallationoftheS3/S4setof

    solararrays

    on

    the

    integrated

    truss

    structure

    of

    thestation.

    ThoughfullretractionoftheP6portarrayis

    notnecessary,itisplannedinathreestep

    processbudgetedforfivehours,withretraction

    ofthreebaysfirst. Thentheportarraywill

    continuetoberetractedtoapproximately40

    percent,andfinallytoonebay.

    Thenextfourhoursincludesfillingoneofthe

    thermalcontrolsystemswithammoniabefore

    thefinalretractionofthesolararrayintoitscanister.

    Onceautomaticsuntrackingisconfirmedfor

    thenewP4arrays,thestageissetforthenext

    dayssecondspacewalktoreconfigurepower

    totheoutboardarrays. Thisrequiresprecise

    coordinationbetweenthegroundandcrewto

    ensureelectricalpowerisnotflowing.

    TheUnitedStatesOrbitalSegment(USOS)

    electricalpowersystem(EPS)isdividedintothreemainsubsystems: primary,secondary

    andsupportsystems. ThegoalwhileDiscovery

    isdockedistoreconfigurethestationspower

    systemfromthecurrenttemporarystatustoits

    assemblycompleteconfiguration.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    12/135

    December 2006 MISSION OVERVIEW 8

    TheS0trusssegmentsitsinthemiddleposition

    onthetrussstructureontopoftheU.S.Destiny

    Laboratory,flankedbytheS1andP1truss

    elements.That

    truss

    and

    the

    S1

    and

    P1

    trusses

    containthemajorelectricalcomponentsofthe

    permanentelectricalsystem. Thosearethe

    MainBusSwitchingUnits(MBSUs)andlarge

    transformerscalledDCtoDCconverterunits

    (DDCUs)thatservetomodulatesolararray

    powertotheproperlevelsrequiredtooperate

    stationsystems.

    S1andP1alsohousethestationstwo

    independentcoolingsystems,eachofwhich

    includelargeammoniatanks,anitrogengaspressurizationsystemandamassivepump

    moduletoenableammoniatoflowthrough

    plumbinglinestoradiatorsthatwilldissipate

    heatfromtheavionicssystemsonthestation.

    TherearethreesuchradiatorsonS1andthree

    onP1. Tofacilitatethatheatrejection,the

    radiatorsaremountedonarotatingbeamthat

    canpoint

    them

    toward

    deep

    space

    and

    away

    fromthesun.

    Forthesecondtimeinthreedays,Curbeamand

    FuglesangwillheadoutoftheQuestAirlockon

    themissionssecondspacewalkonthesixth

    dayofthemissiontoreconfigurepartofthe

    powerchannel(2/3)byroutingprimarypower

    throughtheMBSUs.

    WilliamsjoinsCurbeamonthethirdspacewalk

    onthe

    eighth

    day

    of

    the

    mission

    to

    do

    the

    same

    reconfigurationontheotherhalfofthepower

    channel(1/4). Oefeleinwillserveasthein

    cabinchoreographerforallspacewalksand

    spacesuitcheckout.

    AstronautsSunitaL.Williams(left),Expedition14flightengineer,and

    JoanE.Higginbotham,STS116missionspecialist,usethevirtualreality

    labattheJohnsonSpaceCentertotrainfortheirdutiesaboardthespace

    shuttle. Thistypeofcomputerinterface,pairedwithvirtualreality

    traininghardwareandsoftware,helpstopreparetheentireteam

    fordealingwithspacestationelements.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    13/135

    December 2006 MISSION OVERVIEW 9

    Mountedonthecentraltrusssegment(S0)

    launchedinApril2002,thesefourMBSUshave

    neverbeenactivated,butwerecheckedout

    duringthat

    mission

    and

    again

    in

    December

    2002.

    Whilethecrewmembersprepareforthesecond

    andthirdspacewalks,alengthysetofpower

    downcommandswillbeexecutedbyflight

    controllerstoplaceallassociatedequipmentin

    asafeconfigurationbeforeopeningtheDirect

    CurrentSwitchingUnitremotebusisolators.

    BecausetheMBSUsgenerateheatwhencurrent

    isflowing,

    they

    require

    cooling

    via

    the

    ammonialoops. EstimatesshowtheMBSUs

    canrunwithoutcoolingforaboutonehour,so

    wellchoreographedcommandingisplannedto

    activatetheammoniapumpmoduletoprovide

    coolingtotheMBSUswithinthattimeframe.

    Oncethepowerreconfigurationiscomplete,

    thestationsnewestpairofsolararraysonthe

    portsideofthetrusswillbebroughttolifeto

    provideelectricalpowertothestation.

    Throughoutthemission,transferofcargofrom

    thepressurizedmodule(SPACEHAB)in

    Discoveryspayloadbaytakesplaceto

    resupplythestation.

    Hardwarestowedinthemoduleincludesa

    VideoBasebandSignalProcessor,aRotaryJoint

    MotorControllerAssembly,anExternalTV

    CameraGroup(ETVCG),OxygenGeneration

    System,AdjustableGrappleBar;RemotePower

    ControlModule(s),NickelRemovalAssembly

    Kit,CharcoalBedAssembly,

    Desiccant/Adsorbentreplacementunit,Control

    MomentGyroElectricalAssemblyandan

    AvionicsAirAssembly.

    Aftertheoutsideworkiscompletedandbefore

    Discoverydeparts,thestationsMobile

    Transporterwillberelocatedtothestarboard

    endofthetrussandwillundergoacheckoutin

    preparationforthenextshuttlevisit,scheduled

    forMarch

    2007,

    to

    deliver

    another

    truss

    segmentandthethirdpairofsolararraysa

    mirrorimageflighttothatofAtlantisonthe

    STS115missioninSeptember.

    Onflightday9,(thedayafterEVA3),the

    MobileTransporterwillbemovedtothe

    starboardendofthetrussandundergoa

    checkoutinpreparationforitssupportofthe

    nextassemblymissionnextMarch.

    Oncetransfers

    are

    complete,

    the

    shuttle

    will

    undockfromthestation,conductaflyaround

    andmovetoastationkeepingdistanceofabout

    40miles.

    Backonitsown,Discoveryscrewwilloversee

    afinalinspectionoftheorbitersthermal

    protectionsystemtoensureithasnotsustained

    anydamagefrommicrometeoroiddebrisbefore

    theshuttleisclearedforentry. Thecrewwill

    alsoremotelydeploythreesmalltechnology

    demonstrationsatellitesmountedinside

    canistersalonganequipmentcarrierinthe

    payloadbay.

    ThecarrieralsoholdstheServiceModule

    DebrisPanels,15AdjustableMassPlatesand

    anISSPassiveFlightReleasableAttachment

    Mechanism.

    Activitiesonthedaybeforelandinginclude

    stowageofgearandcheckoutoforbiterentry

    andlandingsystems,includingtheflight

    controlsurfacesandthrusterjetsusedfor

    on-orbitandentrysteering.

    Discoveryisscheduledtolandthefollowing

    dayattheKennedySpaceCenter,completing

    the117thshuttlemission.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    14/135

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    15/135

    December 2006 TIMELINE OVERVIEW 10

    STS-116 TIMELINE OVERVIEW

    FLIGHT DAY 1: Launch PayloadBayDoorOpening SpacehabModuleActivation KuBandAntennaDeployment ShuttleRobotArmPowerUp ExternalTankHandheldVideo,Umbilical

    WellImagery

    and

    Wing

    Leading

    Edge

    SensorDataDownlinkFLIGHT DAY 2:

    ShuttleRobotArmCheckout

    ShuttleRobotArmGrappleofOrbiter

    BoomSensorSystem(OBSS)

    InspectionofShuttleThermalProtection

    SystemandWingLeadingEdgeReinforced

    CarbonCarbon

    (RCC)

    OBSSBerthing

    SpacesuitCheckout

    OrbiterDockingSystemOuterRing

    Extension

    AirlockPreparations

    RendezvousToolCheckout

    FLIGHT DAY 3: RendezvousOperations

    TerminalInitiationEngineFiring

    RendezvousPitchManeuverandISSDigital

    PhotographyofDiscovery

    DockingtotheInternationalSpaceStation

    HatchOpening

    and

    Welcoming

    by

    Expedition14Crew

    SuniWilliamsjoinsExpedition14crewwith

    Soyuzseatlinertransfer;ThomasReiter

    joinsshuttlecrew

    ShuttlerobotarmgrappleofP5spacertruss

    andhandofftostationrobotarm

    CurbeamandFuglesangsleepinQuest

    Airlockforspacewalkprebreathecampout

    protocol

    FLIGHT DAY 4:

    StationrobotarminstallsP5spacertruss

    installationonP4trussattachment

    CurbeamandFuglesangEVA#1toconnect

    P5/P4powercables,releaselaunch

    restraintsandtochangeoutTVcameraon

    S1truss

    MobileTransporter

    moves

    from

    Worksite

    7

    toWorksite3

    FLIGHT DAY 5:

    P6trussportarrayisretractedtoenable

    SolarAlphaRotaryJointactivationand

    rotationonP4truss

    P4SolarAlphaRotaryJointactivationand

    autotrackingofthesun

    Portside

    loop

    of

    External

    Active

    Thermal

    ControlSystemisfilledwithammonia

    CurbeamandFuglesangsleepinQuest

    Airlockforspacewalkprebreathe

    campoutprotocol

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    16/135

    December 2006 TIMELINE OVERVIEW 11

    FLIGHT DAY 6:

    ISSpowerdownofelectricalchannels2

    and3

    CurbeamandFuglesangEVA#2to

    reconfigureelectricalchannels2and3,

    relocateCrewEquipmentTranslationAid

    (CETA)carts1and2

    ISSTreadmillVibrationIsolationSystem

    gyroscopereplacementandmaintenance

    PortsideloopoftheExternalActive

    ThermalControlSystemisactivatedto

    allow

    ammonia

    to

    flow

    ISSpowerupofelectricalchannels2and3

    FLIGHT DAY 7:

    ShuttletoISStransferwork

    JointCrewNewsConference

    Crewoffdutytime

    StarboardsideloopofExternalActive

    ThermalControl

    System

    is

    filled

    with

    ammonia

    CurbeamandWilliamssleepinQuest

    Airlockforspacewalkprebreathecampout

    protocol

    FLIGHT DAY 8:

    ISSpowerdownofelectricalchannels1

    and4

    Curbeamand

    Williams

    EVA

    #3to

    reconfigureelectricalchannels1and4and

    transferServiceModuleDebrisPanelsto

    PressurizedMatingAdapter3

    StarboardsideloopoftheExternalActive

    ThermalControlSystemisactivatedto

    allowammoniatoflow

    ISSpowerupofelectricalchannels1and4

    FLIGHT DAY 9:

    ShuttletoISStransferwork

    MobileTransporter

    moves

    to

    Worksite

    2for

    S3/S4surveyforSTS117,thenreturnsto

    Worksite4

    Rendezvoustoolcheckoutinpreparation

    forundocking

    FLIGHT DAY 10:

    Finaltransferwork

    FarewellsandHatchClosing

    UndockingandISSflyaround

    FinalseparationfromISS

    MEPSIpicosatellitedeploy

    ANDEpicosatellitedeploy

    FLIGHT DAY 11:

    FlightControlSystemCheckout

    Reaction

    Control

    System

    Hot

    Fire

    Test

    CabinStowage

    RAFTpicosatellitedeploy

    DeorbitTimelineReview

    RecumbentSeatSetUpforReiterin

    middeck

    KuBandAntennaStowage

    FLIGHT DAY 12: DeorbitPreparations

    PayloadBayDoorClosing

    DeorbitBurn

    KSCLanding

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    17/135

    December 2006 MISSION PRIORITIES 12

    MISSION PRIORITIES

    1.Perform

    inspection

    of

    space

    shuttle

    reinforcedcarboncarbon(RCC)and

    downlinksensordataforevaluationonthe

    ground.

    2. Documentspaceshuttletileduring

    rendezvouswithstationusingISSimagery

    resourcesduringtherendezvouspitch

    maneuver(RPM),followedbydocking.

    3. CompleteISScrewmemberswap

    (Expedition14

    Flight

    Engineer

    Suni

    WilliamsforExpedition13FlightEngineer

    ThomasReiter).

    InstalltheSoyuzseatliner,knownas

    theIndividualEquipmentLinerKit

    (IELK)

    CheckouttheRussianlaunch/entrysuit,

    knownastheSokolsuit

    ISSsafety

    briefing

    Transfermandatorycrewrotationitems

    (a) TransferrequiredoxygentoISS(~100

    pounds).

    (b) TransferandreturnElektron.

    4. Transferwater.

    5. InstalltheP5trusssegmentontoP4using

    theshuttleandstationroboticarms.

    RemoveP5inboardlaunchlocks

    (requiredformatingwithP4)

    Installfourtrussattachmentboltsto

    structurallymateP5toP4

    RemoveP5

    grapple

    fixture

    and

    relocate

    toP5keel(willallowP4betagimbal

    assemblytorotate)

    6. DeactivateP62BloadsandreconfigureU.S.

    segmentloadstoreceivepowerdistribution

    fromP42AandP6EBviamainbus

    switchingunits2and3. Thisincludes

    establishmentofactivecoolingforchannel

    2/3MBSUsandDCtoDCconverterunits

    viaexternalactivethermalcontrolsystem

    loopB.

    RetractP64Bsolararraywingtoone

    bayandinitiateP3/P4solaralpharotary

    jointtracking.

    RemoveP13ADCtoDCconverter

    unitEthermalcovers.

    7. DeactivateP64BloadsandreconfigureU.S.

    segmentloadstoreceivepowerdistribution

    fromP4

    4A

    main

    buss

    switching

    unit

    1and

    4. Thisincludesestablishmentofactive

    coolingforchannelMBSUs/DDCUsvia

    externalactivethermalcontrolsystemloop

    A. (P64Bchannelconfiguredto

    dormant/parachutemode.

    RemoveS14BandS04BDCtoDC

    converterunitEthermalcovers.

    UplinktheD1patchtoportable

    computersystem

    R9.

    8. Transfercriticalcargoitemspertransfer

    prioritylist.

    9. TransferZvezdaServiceModuledebris

    panelsandadaptertopressurizedmating

    adapter3aftgrapplefixture.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    18/135

    December 2006 MISSION PRIORITIES 13

    10.RelocatebothCrewandEquipment

    TranslationAid(CETA)cartsfromthe

    starboardsidetotheportside.

    (a) Performcontingencyspacewalkto

    completeprimarymissionobjectives.

    (b) PerformlateinspectionofDiscoverys

    wingleadingedgeandnosecap.

    11.Performminimumcrewhandover

    (12hours)forrotatingcrewmembers.

    (a) PerformtheOxygenRecharge

    CompressorAssembly

    and

    Carbon

    DioxideRemovalAssemblyremoval

    andreplacementandreturnremoved

    hardwareviashuttle.

    12.Performutilizationactivitiestosupport

    experiments,includingmidodrine,ALTEA,

    LatentVirus,SleepShort,andPMDIS.

    13.PerformdailyISSpayloadstatuschecksas

    required.

    14.Transferremainingcargoitemspermission

    rules.

    15.Performexternalwirelessinstrumentation

    systempowerconnectionsbetweenP5and

    P4.

    16.RemoveandreplaceExternalTelevision

    CameraGroup(ETVCG)atCameraPort3,

    Starboard1OutboardLower.

    17.Transfertheadjustablegrapplebarfrom

    insidethestationtotheflexhoserotary

    coupleronexternalstowageplatform2.

    18.PerformP64Bfinalretractionandlatching

    ofthesolararrayblanketbox.

    19. InstallpowercablesforS0channels1/42/3.

    20.PerformpayloadoperationstosupportSTP

    H2

    (ANDE,

    MEPSI,

    RAFT).

    21.Performthefollowingtoallowreturnof

    onorbithardware:

    Treadmillgyroremovaland

    replacement

    Charcoalbedassembly

    Respiratorysupportpackcheckout

    22.Transfer

    nitrogen

    from

    the

    shuttle

    to

    the

    ISS

    QuestAirlockhighpressuretanks.

    23.PerformU.S.andRussianpayloadresearch

    operationtasks.

    24.PerformanadditionalfourhoursofISS

    crewhandover(16hourstotal).

    25.PerformimagerysurveyoftheISSexterior

    fromshuttleafterundocking.

    26.Performpayloadoperationstosupport

    MauiAnalysisofUpperAtmospheric

    Injections(MAUI)andRamBurn

    Observations(RAMBO)

    27.ReboostISS(altitudeTBDbasedon

    availableshuttlepropellant).

    28.Thefollowingtasksfitwithintheexisting

    spacewalktimelines;however,theymaybe

    deferredif

    the

    spacewalk

    is

    behind

    schedule. TheEVAwillnotbeextendedto

    completethesetasks.

    Installstationrobotarmforcemoment

    sensor(FMS)insulation

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    19/135

    December 2006 MISSION PRIORITIES 14

    Installthestarboardandportfluid

    quickdisconnectbagsontheQuest

    Airlock

    InstallS0/UnityNodeprimarypower

    cable(S0sideonly)andreconfigureZ1

    patchpanelsandRussianpowerto

    operatefromprimarypower(i.e.,

    MBSU)

    29.Performprogramapprovedspacewalkget

    aheadtasks. Thefollowinggetaheadtasks

    donotfitintheexistingspacewalk

    timelines;however,theteamwillbetrained

    andready

    to

    perform

    any

    of

    these

    tasks

    shouldtheopportunityarise.

    ConnectP5toP4umbilicals(6)

    OpenP5capturelatchassembly(CLA)

    andpartiallyclose(~1turn)

    RemoveP5toP6trussattachment

    systemlaunchlocks

    Installthepumpmodulejumperbagon

    theQuestAirlock

    Installtheventtoolextensionbagon

    Quest

    30.Perform:

    DevelopmentTestObjective(DTO)257

    StructuralDynamicsModelValidation

    FlightTestandSupplementary

    ObjectivesDocument(InternalWireless

    InstrumentationSystem,

    known

    as

    IWIS,isrequired)

    PerformISSStructuralLifeValidation

    andExtensionfortheshuttleundocking

    (IWISrequired).

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    20/135

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    21/135

    December 2006 LAUNCH & LANDING 15

    LAUNCH AND LANDING

    LAUNCH

    AswithallpreviousSpaceShuttlelaunches,

    DiscoveryonSTS116willhaveseveralmodes

    availablethatcouldbeusedtoaborttheascent

    ifneededduetoenginefailuresorother

    systemsproblems. Shuttlelaunchabort

    philosophyaimstowardsaferecoveryofthe

    flightcrewandintactrecoveryoftheorbiter

    anditspayload. Abortmodesinclude:

    ABORT-TO-ORBIT (ATO)

    Partiallossofmainenginethrustlateenoughto

    permitreachingaminimal105by85nautical

    mileorbitwithorbitalmaneuveringsystem

    engines.

    TRANSATLANTIC ABORT LANDING

    (TAL)

    Lossofoneormoremainenginesmidway

    throughpoweredflightwouldforcealandingateitherZaragoza,Spain;Moron,Spain;or

    Istres,France. Forlaunchtoproceed,weather

    conditionsmustbeacceptableatoneofthese

    TALsites.

    RETURN-TO-LAUNCH-SITE (RTLS)

    Earlyshutdownofoneormoreengines,and

    withoutenoughenergytoreachZaragoza,

    wouldresultinapitcharoundandthrustback

    towardKSCuntilwithinglidingdistanceofthe

    ShuttleLandingFacility. Forlaunchto

    proceed,weatherconditionsmustbeforecastto

    beacceptableforapossibleRTLSlandingat

    KSCabout20minutesafterliftoff.

    ABORT ONCE AROUND (AOA)

    AnAOAisselectedifthevehiclecannot

    achieveaviableorbitorwillnothaveenough

    propellanttoperformadeorbitburn,buthas

    enoughenergytocircletheEarthonceandland

    about9i0minutesafterliftoff.

    LANDING

    TheprimarylandingsiteforDiscoveryon

    STS116istheKennedySpaceCentersShuttleLandingFacility. Alternatelandingsitesthat

    couldbeusedifneededduetoweather

    conditionsorsystemsfailuresareatEdwards

    AirForceBase,California,andWhiteSands

    SpaceHarbor,NewMexico.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    22/135

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    23/135

    December 2006 MISSION PROFILE 16

    MISSION PROFILE

    CREWCommander: MarkPolansky

    Pilot: BillOefelein

    MissionSpecialist1: NicholasPatrickMissionSpecialist2: BobCurbeamMissionSpecialist3: ChristerFuglesangMissionSpecialist4: JoanHigginbothamMissionSpecialist5: SuniWilliams/

    ThomasReiterLAUNCHOrbiter: Discovery(OV103)LaunchSite: KennedySpaceCenter

    LaunchPad39B

    LaunchDate: NoEarlierThanDecember7,2006

    LaunchTime: 9:36p.m.EST(PreferredInPlanelaunchtimefor

    12/7)

    LaunchWindow: 5MinutesAltitude: 123NauticalMiles(142

    Miles)OrbitalInsertion;

    190NM(218Miles)

    Rendezvous

    Inclination: 51.6DegreesDuration: 10Days18Hours40

    Minutes

    VEHICLE DATA

    ShuttleLiftoffWeight: 4,521,350pounds

    Orbiter/PayloadLiftoffWeight: 265,466pounds

    Orbiter/PayloadLandingWeight: 225,350pounds

    SoftwareVersion: OI30

    Space Shuttle Main Engines:

    SSME1: 2050SSME2: 2054SSME3: 2058ExternalTank: ET123SRBSet: BI128RSRMSet: 95SHUTTLE ABORTS

    Abort Landing Sites

    RTLS: KennedySpaceCenterShuttleLandingFacility

    TAL: PrimaryZaragoza,Spain.AlternatesMoronandIstres,France

    AOA: PrimaryKennedySpaceCenterShuttleLandingFacility;Alternate

    WhiteSandsSpaceHarbor

    Landing

    LandingDate: NoEarlierThanDecember18,2006LandingTime: 4:16p.m.ESTPrimarylandingSite: KennedySpaceCenter

    ShuttleLandingFacility

    PAYLOADS

    lntegratedTrussSegment(ITS)P5,SPACEHAB

    SingleModule

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    24/135

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    25/135

    December 2006 CREW 17

    STS-116 DISCOVERY CREW

    TheSTS116patchdesignsignifiesthe

    continuingassemblyoftheInternationalSpace

    Station. Theprimarymissionobjectiveisto

    deliverandinstalltheP5trusselement. TheP5

    installationwillbeconductedduringthefirstof

    threeplannedspacewalks,andwillinvolveuse

    ofboththeshuttleandstationroboticarms.

    Theremainderofthemissionwillincludea

    majorreconfigurationandactivationofthe

    stationselectricalandthermalcontrolsystems,

    aswellasdeliveryofZvezdaServiceModule

    debrispanels,whichwillincreaseprotection

    frompotentialimpactsofmicrometeoritesand

    orbitaldebris. Inaddition,asingleexpedition

    crewmemberwilllaunchonSTS116toremain

    onboardthestation,replacinganexpedition

    crewmemberThomasReiter,whowillfly

    homewiththeshuttlecrew. Thecrewpatch

    depictsthespaceshuttlerisingabovetheEarth

    andthestation. TheUnitedStatesandSwedish

    flagstrailtheorbiter,depictingthe

    internationalcompositionoftheSTS116crew.

    ThesevenstarsoftheconstellationUrsaMajor

    areusedtoprovidedirectiontotheNorthStar,

    whichissuperimposedovertheinstallation

    locationoftheP5trussonthestation.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    26/135

    December 2006 CREW 18

    Thesesevenastronautstakeabreakfrom

    trainingtoposefortheSTS116crewportrait.

    ScheduledtolaunchaboardtheSpaceShuttle

    Discoveryare,frontrow(fromtheleft),

    astronautsWilliamA.Oefelein,pilot;JoanE.

    Higginbotham,missionspecialist;andMarkL.

    Polansky,commander. Onthebackrow(from

    theleft)areastronautsRobertL.Curbeam,

    NicholasJ.M.Patrick,SunitaL.Williamsand

    theEuropeanSpaceAgencysChrister

    Fuglesang,allmissionspecialists. Williamswill

    joinExpedition14inprogresstoserveasa

    flightengineeraboardtheInternationalSpace

    Station. Thecrewmembersareattiredin

    trainingversionsoftheirshuttlelaunchand

    entrysuits.

    Shortbiographicalsketchesofthecrewfollow

    withdetailedbackgroundavailableat:

    http://www.jsc.nasa.gov/Bios/

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    27/135

    December 2006 CREW 19

    CommanderMarkPolanskyAformerAirForcetestpilot,MarkPolansky

    willleadthecrewofSTS116onthe20thshuttle

    missionto

    the

    space

    station.

    Polansky

    served

    asthepilotonSTS98in2001. Makinghis

    secondspaceflight,hehasloggedmorethan

    309hoursinspace. Hehasoverall

    responsibilityfortheonorbitexecutionofthe

    mission,orbitersystemsoperationsandflight

    operationsincludinglandingtheorbiter. In

    addition,Polanskywillflytheshuttleina

    procedurecalledtherendezvouspitch

    maneuverwhileDiscoveryis600feetbelowthe

    stationbefore

    docking

    to

    enable

    the

    station

    crewtophotographtheorbitersheatshield.

    HewillthendockDiscoverytothestation.

    Polanskywillalsobeheavilyinvolvedin

    shuttleroboticarmoperationsforinspecting

    theorbitersheatshield,andtransferringcargo

    tothestationduringthedockedphaseofthe

    mission.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    28/135

    December 2006 CREW 20

    PilotBillOefeleinWilliamOefelein(Ohfeline),whohaslogged

    morethan3,000hoursflyingmorethan50

    aircraft,willmakehisfirstjourneyintospaceas

    thepilot

    for

    the

    STS

    116

    mission.

    Selected

    by

    NASAinJune1998,Oefeleinreportedtothe

    JohnsonSpaceCenterinHoustoninAugust

    1998. HehasservedintheAstronautOffice

    AdvancedVehiclesBranchandCAPCOM

    (capsulecommunicator)Branch. Hewillbe

    responsiblefororbitersystemsoperationsand

    assistingPolanskyintherendezvousand

    dockingtotheInternationalSpaceStation. He

    willalsoserveasthechoreographerinside

    Discoveryandthestationforthemissions

    threeplanned

    spacewalks,

    helping

    to

    suit

    up

    anddirectthespacewalkersthroughtheir

    activities. OefeleinwillundockDiscoveryfrom

    thestationattheendofthedockedphaseofthe

    missionandconductaflyaroundtoenablehis

    crewmatestophotographthestations

    configurationandassessitscondition.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    29/135

    December 2006 CREW 21

    MissionSpecialistNicholasPatrickAmemberofthe1998astronautclassanda

    formerflightinstructor,NicholasPatrickis

    assignedtoSTS116asmissionspecialist1

    (MS1). HereportedtoNASAsJohnsonSpace

    Centerin

    Houston

    for

    astronaut

    training

    in

    August1998. Hisinitialtrainingincluded

    scientificandtechnicalbriefings,intensive

    instructioninshuttleandInternationalSpace

    Stationsystems,physiological,survivaland

    classroomtraininginpreparationforT38

    flight. Makinghisfirstspaceflight,Patrickwill

    betheprimaryoperatoroftheshuttlesrobotic

    arm,usingittounberththeorbiterboomsensor

    systemtosurveyDiscoverysthermal

    protectionsystemonflightday2andto

    grapplethestationsP5trussforahandoffto

    thestation

    robotic

    arm

    operated

    by

    Mission

    SpecialistJoanHigginbothamonflightday3.

    Hewillberesponsiblefortheshuttlesvideo

    andcomputernetworks,andwillassistwith

    thetransferofcargobetweentheshuttleand

    thestation. Hewillbeseatedontheflightdeck

    forlaunchandonthemiddeckforlanding.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    30/135

    December 2006 CREW 22

    MissionSpecialistBobCurbeamAveteranoftwospaceshuttleflights,Mission

    Specialist2(MS2)BobCurbeamconducted

    threespacewalksbeforebeingassignedto

    STS116. HeflewonSTS85inAugust1997and

    onSTS98inFebruary2001. Heloggedmore

    than19hoursoverthecourseofthree

    spacewalksduringSTS98,completingdelivery

    oftheU.S.laboratoryDestinytothespace

    station. Hewillconductthreespacewalks

    duringSTS116. Curbeam,asEV1,will

    conductthefirsttwospacewalksofthemission

    withChristerFuglesangonflightdays4and6.

    Duringthefirstspacewalk,thetwowillinstall

    theP5trussandattachallmechanicaland

    electricalinterfacesbetweenitandtheexisting

    stationtruss. TheyalsowillchangeoutaTV

    cameraonthestarboard1(S1)truss. During

    thesecondspacewalk,theduowillunplug

    stationpowerchannels2and3fromtheP6

    powertrussandconnectthemtothemaintruss

    (permanent)powersystem. Theyalsowill

    movetheCrewandEquipmentTranslationAid

    cartsinpreparationthenextpower

    reconfigurationtooccurduringthethird

    spacewalkofthemission. Curbeamwill

    conductthethirdplannedspacewalkofthe

    missiononflightday8withSunitaWilliams.

    Theywillunplugstationpowerchannels2and

    3fromtheP6powertrussandconnectthemto

    themaintruss(permanent)powersystem.

    TheyalsowilltransferServiceModuledebris

    panelsfromtheshuttletothestation. Curbeam

    willbeseatedontheflightdeckforlaunchand

    landing,operatingastheflightengineerto

    assistCommanderMarkPolanskyandPilotBill

    Oefelein.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    31/135

    December 2006 CREW 23

    MissionSpecialistChristerFuglesangMakinghisfirstspaceflight,EuropeanSpace

    AgencyastronautChristerFuglesang

    (Fyugelsang)joinsthecrewofSTS116asa

    missionspecialist. Fuglesangisamemberof

    ESAsEuropeanAstronautCorps,whosehome

    baseistheEuropeanAstronautCentrein

    Cologne,Germany. Heenteredthemission

    specialistclassatNASAsJohnsonSpaceCenter

    inAugust1996andqualifiedforflight

    assignmentasamissionspecialistinApril1998.

    MissionSpecialist3(MS3)Fuglesang,asEV2,

    willconductthefirsttwoplannedspacewalks

    ofthemissionwithCurbeamonflightdays4

    and6. Fuglesangistheleadfordeployingthree

    smallsatellitesfromthepayloadbaytoward

    theendofthemission. Fuglesangwillsetup

    therecumbentseatreturningExpedition14

    crewmemberThomasReiterwilluseforthe

    triphomeaboardtheshuttle. Fuglesangwillbe

    seatedonthemiddeckforlaunchandlanding.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    32/135

    December 2006 CREW 24

    MissionSpecialistJoanHigginbothamMissionSpecialist4(MS4)JoanHigginbotham

    willbemakingherfirstflightintospaceaboard

    Discovery. Toassistwiththeconstructionof

    thespacestation,Higginbothamsprimarytask

    onSTS116willbetooperatethestations

    roboticarm. Amongotherrobotictasks,she

    willusethestationarmtoinstalltheP5truss

    ontotheP4trussattachmentonflightday4.

    Duringtherendezvous,dockingand

    undocking,shewillmanagetherendezvous

    navigationtoolsusedtoguidetheshuttles

    trajectoryrelativetothestation. Shewillserve

    astheleadcargotransferofficer,overseeingthe

    transferofsuppliesandequipmentbetweenthe

    shuttleandthestation. Shewilloversee

    payloadbaydoorclosingoperations. Shewill

    beseatedonthemiddeckforlaunchandthe

    flightdeckforlanding.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    33/135

    December 2006 CREW 25

    MissionSpecialist/Expedition14FlightEngineerSuniWilliamsMakingherfirstspaceflight,MissionSpecialist

    5(MS5)Sunita(Sooneetah)Williamswilljoin

    Expedition14inprogressandserveasaflight

    engineeraftertravelingtothestationonspace

    shuttlemissionSTS116. Williams,whogoesby

    thenameSuni(sunny),willjoinExpedition14

    onflightday3,whenherSoyuzseatlineris

    transferredfromtheshuttle3. Thetransferwill

    markthebeginningofherscheduledsixmonth

    stayaboardthestation. Williams,asEV3,will

    joinBobCurbeamforthethirdplanned

    spacewalkofthemissiononflightday8. She

    willbeseatedonthemiddeckforlaunch.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    34/135

    December 2006 CREW 26

    ThomasReiterInternationalSpaceStationFlightEngineer

    ThomasReiter(Toemahs Ryeturr)(FE2)of

    theEuropeanSpaceAgency(ESA)flewtothe

    spacestationaboardDiscoveryinJuly2006and

    becameamemberoftheExpedition13crew.

    HewillreturntoEarthaboardDiscoverywith

    theSTS116crew. InSeptember2006,Expedition13CommanderPavelVinogradov

    andFlightEngineerandNASAScienceOfficer

    JeffWilliamsleftthestationaboardaRussian

    Soyuzspacecraft. Reiterwasjoinedby

    Expedition14CommanderMikeLopezAlegria

    andFlightEngineerMikhailTyurin. Reiteris

    thefirstcrewmembertoserveontwo

    expeditions. Hespent179daysinspacein

    19951996foramissiontotheRussianMir

    spacestationduringwhichheconductedtwo

    spacewalksandabout40Europeanscientific

    experiments. ReiteristhefirstESAastronautto

    liveaboardtheInternationalSpaceStationfora

    longtermmission. Reiterworkedonthestationaspartofanagreementbetweenthe

    RussianFederalSpaceAgencyandESA. Reiter

    willbeonthemiddeckforlandingina

    speciallydesignedrecumbentseattofacilitate

    hisadaptationtoagravityenvironmentforthe

    firsttimeinsixmonths.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    35/135

    December 2006 MISSION PERSONNEL 27

    MISSION PERSONNEL

    KEY CONSOLE POSITIONS FOR STS-116

    Flt.Director CAPCOM PAOAscent SteveStich KenHam

    ChrisFerguson(Wx)KellyHumphries

    Orbit1(Lead) TonyCeccacci KevinFord KyleHerring(Lead)Orbit2 MattAbbott MeganMcArthur NicoleCloutierPlanning RickLaBrode ShannonLucid JohnIraPettyEntry NormKnight KenHam

    ChrisFerguson(Wx)KyleHerring

    ShuttleTeam4 RichardJones N/A N/AISSOrbit1 DerekHassmann TerryVirts N/AISSOrbit2(Lead) JohnCurry SteveRobinson N/AISSOrbit3 JoelMontalbano HalGetzelman N/AStationTeam4 DanaWeigel N/A N/AMissionControl,Korolev,Russia

    KwatsiAlibaruho N/A N/A

    JSCPAORepresentativeatKSCforLaunchKylieClemKSCLaunchCommentatorBruceBuckinghamKSCLaunchDirectorMikeLeinbachNASALaunchTestDirectorJeffSpaulding

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    36/135

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    37/135

    December 2006 RENDEZVOUS & DOCKING 28

    RENDEZVOUS AND DOCKING

    Discoverysfinal

    approach

    to

    the

    International

    SpaceStationduringtheSTS116rendezvous

    anddockingprocesswillincludethe

    nowstandardbackflippirouettemaneuverto

    allowstationcrewmemberstotakedigital

    imagesoftheshuttlesheatshield.

    WithshuttleCommanderMarkPolanskyatthe

    controls,theshuttlewillperformthecircular

    pitcharoundfromadistanceofabout600feet

    belowthestation. The9minuteflipoffers

    Expedition14CommanderMikeLopezAlegriaandFlightEngineerMikhailTyurintimeto

    documentthroughdigitalstillphotographythe

    requiredimageryofDiscoverysthermal

    protectionsystem.

    Thephotosthenwillbetransmittedtoimagery

    expertsintheMissionEvaluationRoomat

    MissionControl,Houston,viathestations

    Kubandcommunicationssystem.

    Thephotographywillbeperformedoutof

    windows6and8intheZvezdaServiceModule

    withKodakDCS760digitalcamerasand

    400mmand800mmlenses. TheRendezvous

    PitchManeuver(RPM)isoneofseveral

    inspectionproceduresdesignedtoverifythe

    integrityoftheshuttlesprotectivetilesand

    reinforcedcarboncarbonwingleadingedge

    panels.

    Thesequence

    of

    events

    that

    brings

    Atlantis

    to

    itsdockingwiththestationbeginswiththe

    preciselytimedlaunchoftheshuttle,placing

    theorbiteronthecorrecttrajectoryandcourse

    Thesequenceofeventsthatculminatewith

    Discoverysdockingtothestationactually

    beginswiththepreciselytimedlaunchthat

    bottomside_800mm.cnv

    NOTE

    1. indicates

    critical focuspoint.

    2. Sequence is~16 shots;repeatsequence, astime allows.

    bottomside_800mm.cnv

    NOTE

    1. indicates

    critical focuspoint.

    2. Sequence is~16 shots;repeatsequence, astime allows.

    placestheorbiteroncourseforitstwoday

    chasetoarriveatthestation. The43hour

    rendezvousincludesperiodicthrusterfirings

    thatultimatelywillplaceDiscoveryabout9

    statutemilesbehindthestation,thestarting

    pointforfinalapproach.

    About2.5hoursbeforethescheduleddocking

    timeon

    flight

    day

    3,

    Discovery

    will

    reach

    a

    pointabout50,000feetbehindthestation.

    Discoverysjetswillbefiredinwhatiscalled

    theTerminalInitiation(TI)burntobeginthe

    finalphaseoftherendezvous. Discoverywill

    closethefinalmilestothestationduringthe

    nextorbit.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    38/135

    December 2006 RENDEZVOUS & DOCKING 29

    AsDiscoverymovesclosertothestation,the

    shuttlesrendezvousradarsystemand

    trajectorycontrolsensor(TCS)willbegin

    trackingthe

    complex,

    and

    providing

    range

    and

    closingrateinformationtothecrew. During

    thefinalapproach,Discoverywillexecutefour

    smallmidcoursecorrectionswithitssteering

    jetstopositiontheshuttleabout1,000feet

    directlybelowthestation. Fromthispoint,

    Polanskywilltakeoverthemanualflyingofthe

    shuttleupanimaginarylinedrawnbetween

    thestationandtheEarthknownastheRBar

    orradialvector.

    HewillslowDiscoverysapproachatabout600feetand,ifrequired,waitforproperlighting

    conditionstooptimizeinspectionimagery

    gatheringaswellascrewvisibilityforthefinal

    rendezvoustodocking.

    Rendezvous Approach Profile

    Space Shuttle Rendezvous ManeuversOMS-1 (Orbit insertion)-Rarely used ascentburn.OMS-2 (Orbit insertion)-Typically used tocircularize the initial orbit following ascent,completing orbital insertion. For ground-uprendezvous flights, also considered arendezvous phasing burn.NC (Rendezvous phasing)-Performed to hit arange relative to the target at a future time.NH (Rendezvous height adjust)-Performedto hit a delta-height relative to the target at afuture time.

    NPC (Rendezvous plane change)- Performed

    to remove planar errors relative to the target ata future time.

    NCC (Rendezvous corrective combination)-First on-board targeted burn in the rendezvoussequence. Using star tracker data, it isperformed to remove phasing and height errorsrelative to the target at Ti.Ti (Rendezvous terminal intercept)- Secondon-board targeted burn in the rendezvoussequence. Using primarily rendezvous radardata, it places the orbiter on a trajectory tointercept thetarget in one orbit.MC-1, MC-2, MC-3, MC-4 (Rendezvousmidcourse burns)-These on-board targetedburns use star tracker and rendezvous radardata to correct the post-Ti trajectory inpreparation for the final, manual proximityoperations phase.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    39/135

    December 2006 RENDEZVOUS & DOCKING 30

    bottomside_800mm.cnv

    NOTE

    1. indicatescritical focuspoint.

    2. Sequence is~16 shots;repeatsequence, astime allows.

    OnverbalconfirmationbyPilotBillOefeleinto

    alertthestationcrew,Polanskywillcommand

    Discoverytobeginanoseforward,three

    quartersofadegreepersecondrotationalback

    flip. AtRPMstart,thestationcrewwillbegina

    seriesofpreciselytimedphotographyfor

    inspection. Thesequenceofmapping

    optimizesthelightingconditions.

    Boththe400mmand800mmdigitalcamera

    lenseswillbeusedtocaptureimageryoftherequiredsurfacesoftheorbiter. The400mm

    lensprovidesupto3 inchresolutionandthe

    800mmlenscanprovideupto1inch

    resolutionanddetectanygapfillerprotrusions

    greaterthan1/4inch. Theimageryincludesthe

    uppersurfacesoftheshuttleaswellas

    Discoverysunderside,nosecap,landinggear

    doorsealsandtheelevoncoveareaswith

    1inchanalyticalresolution. Thephotography

    includesdetection

    of

    any

    gap

    filler

    protrusions

    whentheorbiterisat145and230degreeangles

    duringtheflip. Themaneuverandlighting

    typicallyoffersenoughtimefortwosetsof

    pictures.

    WhenDiscoverycompletesitsrotation,itwill

    returntoanorientationwithitspayloadbay

    facingthestation.

    PolanskythenwillmoveDiscoverytoa

    positionabout400feetinfrontofthestation

    alongtheVBar,orthevelocityvectorthe

    directionof

    travel

    for

    both

    spacecraft.

    Oefelein

    willprovidenavigationinformationto

    Polanskyastheshuttleinchestowardthe

    dockingportattheforwardendofthestations

    DestinyLaboratory.

    OefeleinwilljoinMissionSpecialistsNicholas

    PatrickandJoanHigginbothaminplayingkey

    rolesintherendezvous. Theywilloperate

    laptopcomputersprocessingthenavigational

    data,thelaserrangesystemsandDiscoverys

    dockingmechanism.

    UsingacameraviewfromcenterofDiscoverys

    dockingmechanismasakeyalignmentaid,

    Polanskywillpreciselymatchthedockingports

    ofthetwospacecraftandflytoapoint30feet

    fromthestationbeforepausingtoverifythe

    alignment.

    ForDiscoverysdocking,Polanskywillclose

    thefinal30feetatarelativespeedofabout

    onetenthofafootpersecond(whileboth

    spacecraftaretraveling17,500mph),andkeep

    thedockingmechanismsalignedwithina

    toleranceofthreeinches.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    40/135

    December 2006 RENDEZVOUS & DOCKING 31

    Atcontact,preliminarylatcheswill

    automaticallyattachthetwospacecraft.

    ImmediatelyafterDiscoverydocks,the

    shuttlessteering

    jets

    will

    be

    deactivated

    to

    eliminateforcesactingatthedockinginterface.

    Shockabsorberlikespringsinthedocking

    mechanismwilldampenanyrelativemotion

    betweentheshuttleandthestation.

    Oncemotionbetweenthetwospacecrafthas

    beenstopped,MissionSpecialistsBobCurbeam

    andChristerFuglesangwillsecurethedocking

    mechanism,sendingcommandsforDiscoverys

    dockingringtoretractandtocloseafinalsetof

    latchesbetweenthetwovehicles.

    UNDOCKING, SEPARATION AND

    DEPARTURE

    WithadditionalinspectionsofDiscoverysheat

    shieldexpectedtobescheduledafter

    undocking,theorbiterwilldepartthestation

    withtheshuttleroboticarmandOrbiterBoom

    SensorSystem(OBBS)intheirstowed

    configuration.

    The

    OBSS

    will

    be

    unstowed

    to

    accommodatetheinspections.

    OnceDiscoveryisreadytoundock,Fuglesang

    willsendacommandtoreleasethedocking

    mechanism. Atinitialseparationofthe

    spacecraft,springsinthedockingmechanism

    willpushtheshuttleawayfromthestation.

    Discoveryssteeringjetswillbeshutoffto

    avoidanyinadvertentfiringsduringtheinitial

    separation.

    OnceDiscoveryisabouttwofeetfromthe

    station,withthedockingdevicesclearofone

    another,Oefeleinwillactivatethesteeringjets

    tovery

    slowly

    move

    away.

    From

    the

    aft

    flight

    deck,OefeleinmanuallywillcontrolDiscoverywithinatightcorridorasitseparatesfromthe

    stationessentiallythereverseofthetask

    performedbyPolanskyduringrendezvous.

    Discoverywillcontinueawaytoadistanceof

    about450feet,whereOefeleinwillguidethe

    shuttleinacircularflyaroundofthestation.

    OnceDiscoverycompletes1.5revolutionsof

    thecomplex,OefeleinwillfireDiscoverysjets

    todepartthestationsvicinityforthefinaltime.

    Discoverywillseparatetoadistanceofabout

    40nauticalmilesandremaintheretoprotectfor

    areturntothecomplexintheunlikelyevent

    thelateinspectionrevealsanydamagetothe

    shuttlesthermalheatshield.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    41/135

    December 2006 ELECTRIC POWER SYSTEM 32

    INTERNATIONAL SPACE STATION

    ELECTRIC POWER SYSTEM (EPS)

    TheInternationalSpaceStation(ISS)electrical

    powersystemconsistsofpowergeneration,

    energystorage,powermanagement,and

    distribution(PMAD)equipment. Electricityis

    generatedinasystemofsolararrays. Besides

    thesolararraysontheRussianelement,the

    stationcurrentlyhastwophotovoltaicmodules,

    atermthatreferstoasetofsolararrays,

    batteriesandtheassociatedelectronics,on

    orbit,withtwomorescheduledfordelivery.

    TheElectricPowerSystem(EPS)providesall

    userloadsandhousekeepingelectricalpower

    andiscapableofexpansionasthestationis

    assembledandgrows. Eightindependent

    powerchannelsforhighoverallreliability

    supplytheelectricpower.

    Aphotovoltaic(PV)electricpowergeneration

    subsystemwasselectedforthespacestation. A

    PVsystemusessolararraysforpower

    generationandchemicalenergystorage

    (Nickelhydrogen)batteriestostoreexcesssolar

    arrayenergyduringperiodsofsunlightand

    providepowerduringperiodswhenthestation

    isinEarthsshadow(eclipse). Thestation

    orbitstheearthevery90minutesandforabout

    35minutes,thestationmustrunonbatteries

    whilethestationisineclipse.

    Flexible,deployable

    solar

    array

    wings

    that

    are

    coveredwithsolarcellsprovidepowerforthe

    ISS. EachPVmodulecontainstwowings,and

    eachwingconsistsoftwoblanketassemblies.

    Thesolararraywingsaretightlyfoldedinsidea

    blanketforlaunch. Theyaredeployedinorbit

    andsupportedbyanextendablemast.

    Analogybetween

    municipal

    utility

    andthestationsEPS

    Nominalelectricaloutputofeachpower

    channelisabout11kilowatts(kW),or20.9kW

    perPVmodule. FourPVmoduleswillsupply

    approximately83.6kW.

    TheprimarypurposeoftheEnergyStorage

    Subsystem(ESS)istoprovideelectricalpower

    duringperiodswhenpowerfromthesolar

    arraysisnotenoughtosupportchannelloads.

    TheESSstoresenergyduringperiodswhen

    solararrayscangeneratemorepowerthan

    necessarytosupportloads. Thesystemconsists

    ofthreenickelhydrogen(NiH2)batteriesper

    powerchannelandeachbatteryconsistsoftwo

    batteryOrbitalReplacementUnits(ORUs).

    Eachbatteryalsohasacharge/dischargeunit

    (BCDU). TheNi/H2batterydesignwaschosen

    becauseofitshighenergydensitylightweight

    andprovenheritageinspaceapplicationssincethelate1970stoearly1980s.

    TheentireEPSmaybedividedintotwopower

    subsystems. Theprimarypowersubsystem

    operatesatavoltagerangeof137to173volts

    directcurrent(Vdc)andconsistsofpower

    generation,storageandprimarypower

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    42/135

    December 2006 ELECTRIC POWER SYSTEM 33

    distribution. Thesecondarypowersubsystem

    operatesatavoltagerangeof123to126Vdc

    andisusedtosupplypowertouserloads.

    DirectCurrent

    to

    Direct

    Current

    Converter

    Units(DDCUs)areusedtoconvertprimary

    powertosecondarypower.

    TheU.S.powersystemisalsointegratedwith

    Russianpowersources,sothatpowerfromthe

    Americanpowerbuscanbetransferredtothe

    Russianpowerbusandviceversa. TheRussian

    powersystemoperatesatanominalvoltageof

    28Vdc. AmericantoRussianConverterUnits

    (ARCUs)andRussiantoAmericanConverter

    Units(RACUs)areusedtoconvertpowerfromtheAmericansecondarypowerbustothe

    Russianpowerbusandviceversa.

    SOLAR POWER

    Themostpowerfulsolararraysevertoorbit

    Earthcapturesolarenergytoconvertitinto

    electricpowerfortheISS.

    Eightsolararraywingssupplypoweratan

    unprecedentedvoltagelevelof137to173Vdcthatisconvertedtoanominal124Vdcto

    operateequipmentontheISS. TheSpace

    Shuttleandmostotherspacecraftoperateat

    nominal28Vdc,asdoestheRussianISS

    segment.

    ThehighervoltagemeetsthehigheroverallISS

    powerrequirementswhilepermittinguseof

    lighterweightpowerlines. Thehighervoltage

    reducesohmic

    power

    losses

    through

    the

    wires.

    Someeightmilesofwiredistributepower

    throughoutthestation.

    EachPVmodulecontainstwosolararray

    wings. Anindividualwingis110feetlongby

    38feetwide. Eachwingconsistsoftwoarray

    blanketsthatarecoveredwithsolarcells. The

    blanketscanbeextendedorretractedbya

    telescopicmastwhichislocatedbetweenthe

    twoblankets. Eachsolararraywingis

    connectedtotheISSs310footlongtrussandextendoutwardatrightanglestoit(P4andP6

    arecurrentlyonorbit). Aseriesof400solar

    cells,calledastring,generateselectricityathigh

    primaryvoltagelevelswhile82stringsare

    connectedinparalleltogenerateadequate

    powertomeetthepowerrequirementforeach

    powerchannel. Thereareatotalof32,800cells

    perpowerchannelor65,600solarcellsoneach

    PVmodule.

    Asolarcellassemblyisaboutthreeinches

    square. Thecellsaremadeofsiliconandhavea

    nominal14.5percentefficiencyforsunlightto

    electricityconversion. Cellsareweldedontoa

    flexibleprintedcircuitlaminatethatconnects

    cellselectrically. Thesunfacingsurfaceofthe

    cellisprotectedbyathincoverglass. Each

    groupofeightcells,connectedinseries,is

    protectedbyabypassdiodetominimize

    performanceimpactoffracturedoropencells

    onastring. Solararraysaredesignedforan

    operatinglifeof15years.

    Twomutuallyperpendicularaxesofrotation

    areusedtopointsolararraystowardstheSun.

    EachsolararraywingisconnectedtooneBeta

    GimbalAssembly(BGA),locatedoneachPV

    module,thatisusedtorotatethatsolararray

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    43/135

    December 2006 ELECTRIC POWER SYSTEM 34

    wing. Anotherrotaryjoint,calledSolarAlpha

    RotaryJoint(SARJ),ismountedonthetruss

    androtatesthefoursolararraywingstogether.

    Whenthe

    station

    is

    complete,

    there

    will

    be

    eightBGAsandtwoSARJs. Theserotaryjoints

    arecomputercontrolledandensurefullsun

    trackingcapabilityastheISSgoesaroundthe

    earthunderawiderangeoforbitsandISS

    orientations.

    ELECTRIC POWER SYSTEM OVERVIEW

    Likeacityscentralpowerplant,thePV

    modulesgenerateprimarypoweratvoltage

    levelstoohighforconsumeruse,rangingfrom137to173Vdc. Theprimarypowerisroutedto

    BCDUsforchargingbatteriesandtoswitching

    unitsthatrouteittolocaldistributionnetworks.

    TheDCDCConverterUnits,DDCUs,

    stepdown theprimarypowertoamore

    tightlyregulatedsecondarypowervoltage,

    nominally124.5Vdcthatisregulatedplusor

    minus1.5Vdc,anddistributeittoISSloads.

    OnMainStreet,USA,theuserswouldbeshops

    andhomes. OntheISS,theyarelaboratories,

    livingquartersandothermodules.

    EventhoughtheStationspendsaboutonethird

    ofeveryorbitinEarthsshadow,theelectrical

    powersystemcontinuouslyprovidesusable

    power(about84kWatassemblycomplete)to

    ISSsystemsandusers.WhentheISSisin

    eclipse,thebatteriesthatstoredenergyfrom

    solararraysduringthesunlitportionofthe

    orbitsupply

    power.

    Thepowersystemiscooledbyathermal

    systemthroughwhichexcessheatisremoved

    byliquidammoniacoolantintubesthat

    ultimatelyloop

    through

    radiator

    panels

    that

    radiatetheheattospace.

    RussiassegmentoftheISSprovidesitsown

    powersources,supplying28voltdctothe

    Russianmodules. Powerissharedbetweenthe

    twosegmentswhenrequiredtosupport

    assemblyandoperationsforallISSpartners.

    RussiantoAmericanConverterUnits(RACUs)

    andAmericantoRussianConverterUnits

    (ARCUs)stepupandstepdownconverters,

    respectively,dealwiththedifferencebetweenU.S.andRussianbusvoltagelevels. AsISS

    assemblycontinues,Russiansolararrays

    (a72footpaironControlModuleZaryaanda

    97footpairontheRussianServiceModule)

    willreceivemoreshadow,whichwilldiminish

    theirpowergenerationcapability.

    TheoveralldesignandarchitectureoftheISS

    EPSwasmanagedbyNASAsGlennResearch

    Center

    in

    the

    early

    1990s.

    Boeings

    Rocketdyne

    PropulsionandPowerdivision(nowPratt&

    WhitneyRPP)builtmostofthehardwarefor

    theelectricalpowersystem. LockheedMartin

    builtthesolararraysandtheSolarAlpha

    RotaryJointforRocketdyne. Boeing,along

    withPratt&WhitneyRPP,asasubcontractor,

    continuestoprovideEPSsustaining

    engineeringtoNASA.MostEPScomponents

    andcargoassembliesundergofinalacceptance

    testingatKennedySpaceCenterbeforeflightto

    ISS.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    44/135

    December 2006 ELECTRIC POWER SYSTEM 35

    ElectricalPowerDistributionOverview

    EPS BLOCK DIAGRAM OVERVIEW

    Thisblockdiagramgivesanoverviewofhow

    thestationselectricalsystemfunctionswhen

    assembly

    is

    complete.

    The

    Solar

    Array

    Wing

    (SAW)cangeneratepoweratawiderangeof

    voltage,however,theSequentialShuntUnits

    (SSU),locatedclosetotheSAWinthe

    IntegratedEquipmentAssembly(IEA),regulate

    thevoltagethatcomesoutofthesolararraysat

    anestablishedsetpointofabout160Vdc.When

    asolararraycanproducesufficientpower,then

    thesurpluspowerisroutedtotheBattery

    Charge/DischargeUnits(BCDU),whichcharge

    thebatteries.Whenasolararraycannot

    producesufficientpowertosatisfyISSloads

    thenthebusvoltagestartstodropbelowthe

    SSUsetpoint,andwhenitdropsbelowthe

    BCDUsetpoint,thentheBCDUsstartto

    dischargebatteriestosupportISSloads. The

    primarybusvoltagevariesbetweentheSSU

    andBCDUvoltagesetpointsplusasmall

    voltageregulationband.

    TheprimarypowerisprovidedtotheMainBus

    SwitchingUnits(MBSU)forsubsequent

    distributiontoISSelectricalloads. FourMBSUs

    arelocatedontheS0trussthatisfedbyeight

    independentpower

    channels

    and

    the

    MBSU

    outputssupplyallISSloads. Undernormal

    operations,eachpowerchannelsuppliespower

    toaspecificsetofloads.However,ifthat

    channelfails,theMBSUenablesfeedingpower

    tothoseloadsfromanotherchannel. This

    greatlyenhancesthefailuretoleranceofthe

    EPS.

    AllEPSoperationsarecomputercontrolledand

    controlscanbeexercisedbytheonorbitcrew

    orbyoperatorsonground. Operatorsonthegroundtofreeupcrewtimeformoreimportant

    onorbitoperationsperformmostofthese

    functions. Allcontrolsetpointsarestoredon

    onorbitcomputersandcanbechangedwhen

    needed.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    45/135

    December 2006 ELECTRIC POWER SYSTEM 36

    TheMBSUsroutepowertotheDCtoDC

    ConverterUnits(DDCUs). TheDDCUsconvert

    primarypowertosecondarypowerat123to

    126Vdc.

    Several

    DDCUs

    are

    located

    inside

    pressurizedcompartments,suchasUSLab,

    whileseveralarelocatedexternallyontrusses.

    DDCUssupplyregulatedsecondarypowerto

    RemotePowerControllerModules(RPCMs).

    RPCMsareboxeswithmultipleswitcheswith

    severaldifferentloadratingstoroutepowerto

    userloads. TheRPCMsprovideremote

    switchingofloadsandovercurrentprotection.

    AnRPCMcanalsofeedotherRPCMsandcan

    feedRussianpowerconverters,outletpanels,

    etc. Therewillbethousandsofindividual

    switchesinapproximately184RPCMsonthe

    stationatassemblycomplete. Thereareabout

    119RPCMsonthestationcurrently.

    TheEuropeanandJapaneselaboratory

    moduleshavetheirowninternalpower

    distributionsystem. Thosemoduleswilldraw

    powerfromDDCUs,fromNode2. Their

    uniquetransformersandpowercontrol

    modulesequivalent

    to

    U.S.

    RPCMs

    will

    handle

    power. NASAandBoeinghaveresponsibility

    fordistributingpowertothoseelements,but

    theindividualinternationalpartnerswillbe

    responsibleforpowerwithintheirrespective

    elements.

    PRIMARY POWER DISTRIBUTION

    OVERVIEW

    PrimaryPowerDistributionprovidesa

    commandableinterfacebetweengeneratedor

    storedpowertoloadsthatarelocateddown

    stream. Powerdistributionwithinapower

    channelisperformedbyaDCSwitchingUnit

    (DCSU)andthepowerdistributiontoloadsis

    performedbytheMBSU. AtISSassembly

    complete,therewillbeeightDCSUsandfour

    MBSUsinvolvedinprimarypower

    distribution. TheDCSUsandMBSUsusea

    networkofhighpowerswitchescalledRemote

    BusIsolators(RBIs)todirectthepowerflow.

    TheRBIs

    do

    not

    physically

    control

    the

    direction

    ofthecurrentflowingthroughthembutthey

    doprovideameansofisolatingacurrentpath

    intheeventofamalfunctionorifarepairis

    neededontheprimarypowersystem. The

    RBIsinboththeDCSUandMBSUarefully

    commandablebyonboardcomputers.

    EachpowerchannelcontainsoneDCSUto

    performpowerdistributionontheIntegrated

    EquipmentAssembly(IEA). Duringinsolation,

    theDCSUroutespowerfromthearraystoanMBSUdistributionbus,aswellastotheBCDUs

    forbatterycharging. Duringeclipse,theDCSU

    routesbatterypowertothesameMBSU

    distributionbustosatisfypowerdemands,and

    italsosendsasmallamountofpowerbackto

    theSSUtokeeptheSSUfirmwarefunctioning

    inpreparationforthenextinsolationcycle. In

    additiontoprimarypowerdistribution,the

    DCSUhastheadditionalresponsibilitiesof

    routingsecondary

    power

    to

    components

    on

    the

    PVmodules(i.e.,theElectronicsControlUnit

    andothersupportcomponents). This

    secondarypowerisprovidedbytheDDCU

    locatedontheIEA. TheDDCUreceives

    primarypowerfromtheDCSU,convertsitinto

    secondarypower,andsendsittoRemote

    PowerControllerModules(RPCMs)for

    distribution. ThePVmoduleRPCMsare

    housedwithintheDCSU.

    TheMBSUsactasthedistributionhubforthe

    EPSsystem. ThefourMBSUsonboardtheISS

    arealllocatedontheStarboardZero(S0)truss.

    EachofMBSUreceivesprimarypowerfrom

    twopowerchannelsanddistributesit

    downstreamtotheDDCUsandotherusers

    includingServiceModule(SM)Americanto

    RussianConverterUnits(ARCUs). Inaddition,

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    46/135

    December 2006 ELECTRIC POWER SYSTEM 37

    theMBSUscanbeusedtocrosstiepower

    channels(i.e.,feedonepowerchannelloads

    withadifferentpowerchannelsource)toassist

    infailure

    recovery

    and

    assembly

    tasks.

    TheBGAsandSARJsontheISSalsoplayarole

    inprimarypowerdistribution. TheBGA

    providesforthetransmissionofprimarypower

    fromthesolararraywingstotheIEAandthe

    SARJprovidesfortransmissionofprimary

    powerfromtheDCSUstotheMBSUs. The

    BGAsandSARJsincorporatearollringdesign

    toprovideconduitsforpower(anddata),while

    allowingacontinuous360rotation.

    SECONDARY POWER DISTRIBUTION

    Theworkhorseofthesecondarypower

    distributionsystemistheRPCM,anOrbital

    ReplacementUnit(ORU),whichcontainssolid

    stateorelectromechanicalswitches,knownas

    RemotePowerControllers(RPCs). RPCscanbe

    remotelycommanded,byonboardcomputers,

    tocontroltheflowofpowerthroughthe

    distributionnetworkandtotheusers. There

    aredifferenttypesofRPCMs,containing

    varyingnumbersofRPCsandvaryingpower

    ratings. Asshownabove,secondarypower

    flowsfromaDDCUandisthendistributed

    throughanetworkofORUscalledSecondary

    PowerDistributionAssemblies(SPDA)or

    RemotePowerDistributionAssemblies

    (RPDA).Essentially,

    SPDAs

    and

    RPDAs

    are

    housingsthatcontainoneormoreRPCMs. The

    onlydistinctionbetweenSPDAsandRPDAsis

    thelocationdownstreamofaDDCU. RPDAs

    arealwaysfedfromotherRPCMsinside

    SPDAs. NotethatRPCMshaveonlyonepower

    input;thus,ifpowerislostatanylevelofthe

    SecondaryPowerSystem,alldownstreamuser

    loadswillbewithoutpower.

    ThereisnoredundancyintheSecondaryPower

    System;rather,redundancyisafunctionoftheusersloads. Forexample,acriticaluserload

    maybeabletoselectbetweentwoinputpower

    sourcesthatusedifferentpowerchannelsand

    thusdifferentsecondarypowerpaths.

    AswithDDCUs,SPDAsandRPDAsmaybe

    locatedinsidepressurizedcompartmentsor

    outside. Dependingontheirspecificlocation,

    SPDAsorRPDAsmayinterfacewiththeLab

    Internal

    Thermal

    Control

    System

    (ITCS)

    or

    use

    heatpipestodissipateheat. RPCMsarealso

    locatedwithintheDCSUontheIEAsto

    providesecondarypowertopowerchannel

    components,asrequired.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    47/135

    December 2006 ELECTRIC POWER SYSTEM 38

    REDUNDANCY

    Eachofthepowerchannelsispreconfiguredto

    supplypower

    for

    particular

    ISS

    loads;

    however,

    toprovideabackupsourceofpowerforcritical

    equipment,theassemblycompletedesign

    providesforrerouting(i.e.,crosstying)

    primarypowerbetweenvariouspower

    channels,asnecessary. Atassemblycomplete,

    theISSwillhavefourPVmodulescontaining

    eightpowerchannelswithfullcrossstrapping

    capability. However,itisimportanttonote

    thatonlyprimarypowercanbecrossstrapped.

    Oncepowerisconvertedintosecondarypower,

    powerflowthroughthedistributionnetwork

    cannotbererouted.

    Asaresult,ifthereisafailurewithinthe

    SecondaryPowerSystem,thereisno

    redundancy,andtheentiredownstreampath

    fromthefailureisunpowered. Instead,user

    loadsgenerallydetermineredundancy. There

    arethreetypesofuserredundancyschemesas

    listedbelow:

    Componentsmaybewiredwithmultiple

    powerinputsources,providingthe

    capabilityofswappingamongthem.

    Twoormorecomponentsthatperformthe

    samefunctioncanbefedbydifferentpower

    sources;thus,theresponsibilitiesofone

    componentcanbeassumedbyanother.

    Multiplecomponentscanworktogetherto

    performafunction;withthelossofasingle

    component,operationalcapabilitiesare

    degradednotlost.

    Setofavailablejumpersthatcanbeusedto

    temporarilyregainpowertoaloaduntilthe

    secondarysystemcanbefixed.

    SYSTEM PROTECTION

    TheEPSisdesignedtoprotectequipmentfrom

    powersurges

    and

    overheating

    at

    several

    points

    alongthepowerpathfromthesourcetothe

    users. Current,voltage,andtemperature

    sensorsarelocatedinnearlyalltheEPS

    equipment(ORUs)andaremonitoredby

    firmwarelocatedonthehardwareoronboard

    computers,orboth. Ifavoltage,current,or

    temperatureisoutofrange,anappropriate

    safingactionwillbeinitiatedeitherbythe

    firmwareorbycomputersoftware. Thesafing

    actionisdesignedtolimittheamountoftime

    thattheboxisexposedtohighpowerorhigh

    temperature. Incaseofpowersurges,itisalso

    designedtolimittheimpactofthatsurgeon

    otherequipmentalongthepowerpath.

    Thesystemprotectionfunctionincludesthe

    architecturesabilitytodetectthatafault

    conditionhasoccurred,confinethefaultto

    preventdamagingconnectingcomponents,and

    executeanappropriaterecoveryprocessto

    restorefunctionality,

    if

    possible.

    This

    process

    is

    usuallyreferredtoasFaultDetection,Isolation,

    andRecovery(FDIR). Forexample,upon

    detectionofafault,componentscanbeisolated,

    therebypreventingpropagationoffaults. In

    responsetoovercurrentconditions,the

    architectureisdesignedsuchthateach

    downstreamcircuitprotectiondeviceissettoa

    lowercurrentratingandrespondsmore

    quicklythantheprotectiondevicedirectly

    upstream. Thisensuresthatelectricalfaultsor

    shortsinthesystemdonotpropagatetoward

    thepowersource. Anotherfunctionofthe

    architecturessystemprotectionshutsdownthe

    productionofpowerwhenarrayoutputvoltage

    dropsbelowaspecifiedlowerlimitthreshold.

    ThispreventsthePVcellsfromcontinuingto

    feedadownstreamfault. Insummary,allthe

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    48/135

    December 2006 ELECTRIC POWER SYSTEM 39

    variousimplementationsofsystemprotection

    worktogethertoisolatefaultsorshortsatthe

    lowestlevel. Thisapproachminimizesimpacts

    tothe

    users

    of

    the

    EPS

    and

    protects

    the

    EPS

    fromdamagebylowlevelfaults.

    KEY EPS COMPONENTS

    SOLAR ARRAY WING (SAW)

    TheprinciplefunctionoftheSAWistoproduce

    electricalpowerfromsolarenergy. TheSAW

    contains32,800solarcells,16,400perblanket,

    whichcanproduceapproximately31kilowatts

    (kW)ofelectricalpoweratBeginningofLife

    (BOL),andabout26kWafter15years,attheir

    designedEndofLife(EOL). However,itisimportanttonotethatpoweravailabilityis

    influencedbyISSattitude,operationalmode

    (e.g.,proximityoperations),Sunalphaandbeta

    angle,shadowing,etc.

    BETA GIMBAL ASSEMBLY (BGA)

    ThefunctionoftheBGAistoprovideminor

    arraypointingcorrectionalongtheBetaAngle.

    Thebetaangleistheanglebetweentheorbit

    planeandthesolardirection(changes

    ~4/day))tocompensateforapparentsolar

    motioninducedbyseasonalvariations. There

    isoneBGAassociatedwitheachSAW. The

    BGAprovidesoneaxisofrotationforasolar

    arraywing. TheBGAiscapableofafull

    360degreesofrotationormaybecommanded

    toaspecificlocationviacomputercommand.

    Electricpowergeneratedbythesolararray

    wingistransferredthroughtheBGAoverthe

    entirerange

    of

    BGA

    axis

    rotation.

    The

    transfer

    ofpowerisaccomplishedbyarotarycoupling,

    therollringsubassembly,whichismounted

    coaxiallywiththeaxisbearingandtorque

    motor.

    TheBGAmaybecommandedtothefollowing

    modesofoperation:

    AngleCommandMode. BGAaxisof

    rotationalignedtoacommandedangle

    position.

    LatchMode. TheBGAaxisofrotationis

    lockedatspecifiedlocationandprevented

    fromfurtherrotation.

    ManualOperatingMode. Allnonessential

    functionsaredisabledandthedrivemotor

    isdisabled. BGAaxismayberotatedby

    manualactionfromtheIEAside.

    Rate

    Mode.

    BGA

    may

    be

    commanded

    to

    rotateataspecifiedrate.

    ELECTRONICS CONTROL UNIT (ECU)

    TheECUislocatedontheBGA. Itisthe

    commandandcontrollinkforthesolararray

    wingandBGA. TheECUprovidespowerand

    controlforextensionandretractionofthesolar

    arraymast,latchingandunlatchingofthe

    blanketboxes,BGArotation,andBGAlatching.

    SOLAR ALPHA ROTARY JOINT

    ThepurposeoftheSARJistorotatethePVMs

    toprovidealphaanglearraypointing

    capability. TheportSARJandstarboardSARJ

    arelocatedattheoutboardendoftheP3andS3

    trusssegmentsandprovide360continuous

    rotationalcapabilitytothesegmentsoutboard

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    49/135

    December 2006 ELECTRIC POWER SYSTEM 40

    ofP3andS3. TheSARJwillnormallycomplete

    onecomplete360degreerevolutionperorbit.

    TheSARJtransferelectricalpowerthrougha

    setof

    roll

    rings,

    which

    provide

    acontinuous

    rollingelectricalconnectionwhilerotating.

    INTEGRATED EQUIPMENT ASSEMBLY

    (IEA) EachIEA,locatedonP4,S4,P6andS6,has

    manycomponents:12BatterySubassembly

    orbitalreplacementunits(ORUs),sixBattery

    Charge/DischargeUnits(BCDU)ORUs,two

    DirectCurrentSwitchingUnits(DCSUs),two

    DirectCurrenttoDirectCurrentConverterUnits(DDCUs),twoPhotovoltaicController

    Units(PVCUs),andintegratestheThermal

    ControlSubsystemwhichconsistsofone

    PhotovoltaicRadiator(PVR)ORUandtwo

    PumpFlowControlSubassembly(PFCS)ORUs

    usedtotransferanddissipateheatgeneratedby

    theIEAORUboxes. Inaddition,theIEA

    providesaccommodationforammonia

    servicingoftheoutboardPVmodulesaswell

    aspass

    through

    of

    power,

    data

    to

    and

    from

    the

    outboardtrusselements. Thestructural

    transitionbetweentheP3andP4 (andS3and

    S4whenlaunchednextyear)segmentsis

    providedbytheAlphaJointInterfaceStructure.

    TheIEAmeasures16feet(4.9meters)by16feet

    (4.9meters)by16feet((4.9meters),weighs

    nearly17,000poundsa(7,711.1kilograms)and

    isdesigned

    to

    condition

    and

    store

    the

    electrical

    powercollectedbythephotovoltaicarraysfor

    useonboardtheStation.

    TheIEAintegratestheenergystorage

    subsystem,theelectricaldistribution

    equipment,thethermalcontrolsystem,and

    structuralframework. TheIEAconsistsofthree

    majorelements:

    1. Thepowersystemelectronicsconsistingof

    theDCSU

    used

    for

    primary

    power

    distribution;theDDCUusedtoproduce

    regulatedsecondarypower;theBCDUused

    tocontrolthecharginganddischargingof

    thestoragebatteries;andthebatteriesused

    tostorepower.

    2. ThePhotovoltaicThermalControlSystem

    (PVTCS)consistingof: thecoldplate

    subassemblyusedtotransferheatfroman

    electronicboxtothecoolant;thePump

    FlowControlSubassembly(PFCS)usedto

    pumpandcontroltheflowofammonia

    coolant;andthePhotovoltaicRadiator

    (PVR)usedtodissipatetheheatintodeep

    space.

    3. ThecomputersusedtocontroltheP4

    moduleORUsconsistoftwoPhotovoltaic

    ControllerUnit(PVCU)

    Multiplexer/Demultiplexers(MDMs).

    TheIEApowersystemisdividedintotwo

    independentandidenticalchannels. Each

    channeliscapableofcontrol(fineregulation),

    storageanddistributionofpowertotheISS.

    Thetwopowermodulesareattachedoutboard

    oftheAJIS.

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    50/135

  • 8/14/2019 NASA Space Shuttle STS-116 Press Kit

    51/135

    December 2006 ELECTRIC POWER SYSTEM 42

    ThebatteryORUscanbechangedout

    roboticallyusingaspecialpurposemanipulator

    ontheendofthestationsroboticarm. Each

    batterymeasures

    41

    inches

    (104.1

    cm)

    by

    37inches(94cm)by19inches(48.3cm)and

    weighs372pounds(168.7kilograms).

    BATTERY CHARGE/DISCHARGE UNIT

    (BCDU)

    TheBCDUservesadualfunctionofcharging

    thebatteriesduringisolationandproviding

    conditionedbatterypowertotheprimary

    powerbussesduringeclipse.

    TheControlPowerRemoteBusIsolator

    (CPRBI)controlstheflowofpowertotheDC

    controlpoweroutputbusandalsofunctionsas

    acircuitbreaker,limitingtheloadcurrent

    duringfaults. TheFaultIsolator(FI)limitsthe

    batterydischargecurrent,intheeventofafault,

    to85to127amps. TheBCDUalsoincludes

    provisionsforbatterystatusmonitoringand

    protectionfrompowercircuitfaults.

    EachBCDUmeasures28inches(71.1cm)by

    40inches(101.6cm)by12inches(30.5cm)and

    weights235pounds(106.6kilograms). The

    BCDUhasan8.4kWbatterychargecapability

    witha6.6kWdischargecapability. Itprovides

    70to120voltsdccontrolpoweroutputandcan

    regulatepowerbetween130to180voltsdc.

    ThepowerstoragesystemconsistsofaBCDU

    andtwoBatterySubassemblyORUs.

    MAIN BUS SWITCHING UNIT (MBSU)

    Locatedon

    the

    S0

    truss,

    the

    four

    MBSUs

    distributeprimarypowerfromthepower

    channels,downstreamtotheDDCUs,andother

    loads. Theyalsoprovidethecapabilitytocross

    tiePrimaryPowerChannelstofeedthose

    DDCUloadsintheeventofaPrimaryPower

    Failure.

    Command,communication,healthmonitoring,

    andRBIdrivefunctionsareprovidedbythe

    SwitchgearControllerAssembly(SCA). The

    MBSUshaveadesignlifeofapproximatelyfifteenyears. ThereisaspareMBSUlocatedon

    orbit.

    Thesystemsdesigncanaccommodatetheloss

    ofPVmodulesandotherproblemsbyremotely

    accessingtheMBSUs,byeitherthegroundor

    onstation,andinternallyredirectingpowerto

    bypassfaultsorfailuresintheEPS. Thefour

    MBSUsthemselvesarenotredundant. All

    MBSUsarerequiredtopowerallstationloads.

    However,MBSUsprovideredundancyfor

    powermodulesupstream. TheMBSUoutput

    voltagerangeisfrom133to177Vdc.

  • 8/14/2019 NASA Space Shuttle STS-116 Press