40
Narcis Avarvari MOLTECH-Anjou, UMR 6200 CNRS - University of Angers, FRANCE Chiral molecular electroactive precursors and conductors Conferinţa Diaspora în Cercetarea Ştiinţifică şi Invăţământul Superior din România Timisoara, 25-28 April 2016

Narcis Avarvari MOLTECH-Anjou, UMR 6200 CNRS ......Narcis Avarvari MOLTECH-Anjou, UMR 6200 CNRS - University of Angers, FRANCE Chiral molecular electroactive precursors and conductors

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • Narcis Avarvari

    MOLTECH-Anjou, UMR 6200 CNRS - University of Angers, FRANCE

    Chiral molecular electroactive precursors and conductors

    Conferinţa Diaspora în Cercetarea Ştiinţifică şi Invăţământul Superior din România Timisoara, 25-28 April 2016

  • Current research topics in the group 1. Chirality in tetrathiafulvalenes (TTF)

    2. Electroactive ligands: TTF-Py, -phosphines, -Ox,-triazoles - multifunctional materials - enantioselective catalysis

    3. Covalent donor-acceptor compounds

    4. Multifunctional ligands

    Coord. Chem. Rev. 2009, 253, 1398. Coord. Chem. Rev. 2010, 254, 1523. Inorg. Chem. 2012, 51, 8545. Chem. Eur. J. 2012, 18, 16097. CrystEngComm 2014, 16, 6612.

    Chem. Eur. J. 2009, 15, 380. Inorg. Chem. 2013, 52, 5023.

    N N

    N S

    S

    S

    S

    MeO

    OMe

    CrystEngComm 2012, 14, 3096. Inorg. Chem. 2014, 53, 2708.

    Chem. Eur. J. 2013, 19, 2504. Org. Biomol. Chem. 2015, 13, 1040.

    Dalton Trans. 2015, 44, 8855.

    Chem. Commun. 2016, feature art.

  • Outline 1. Introduction: tetrathiafulvalenes and chirality

    4. Conclusions and outlook

    3. Helical chirality in conducting crystals

    2. Supramolecular helical chirality

  • ++

    +

    +

    - -

    -

    -

    ++++

    +

    -

    -

    -

    0

    0

    0

    0

    0+

    +

    +++++

    +

    +

    - -

    -

    -

    +

    ++++

    +

    +

    -

    -

    -

    • crystallization in the presence of anions

    Tetrathiafulvalene (TTF) and Derivatives

    S

    S S

    S S

    S S

    S

    +-e

    -

    +e-

    S

    S S

    S

    + +-e

    -

    +e-

    Electrocrystallization Chemical oxidation

    salts and charge transfer compounds with conducting and/or magnetic propertiesdetermined by the solid state organization

    E1/21 = 0,33 V E1/2

    2 = 0,71 V

    organic-inorganic segregation

    mixed valence

    HOMO TTF and SOMO TTF+•

    Pt electrode

  • Strong interactions

    metals (superconductors)

    Weak interactions (paramagnetic dimers)

    insulators or semiconductors

    HOTTF HOTTF +.

    N OM2 OM

    ¾ filled band

    Metallic character

    Mixed valence systems

    Energy band formation

    Interactions between radicals

    HOTTF +.

    HOTTF +.

    Diamagnetic dimers

    insulators

    Fully oxidized systems

    Fermi level

  • TTF-TCNQ an organic metal

    TTF Eox = 0.33 V

    TCNQ Ered = 0.17 V

    TTFδ+-TCNQδ-

    Chemical oxidation

    Peierls distortion

    J. Ferraris, D. O. Cowan, V. Walatka Jr, J. H. Perlstein, J. Am. Chem. Soc. 1973, 95, 948.

    1D conductor

    Metallic conductivity

    incommensurate charge transfer degree

    E

    O p/b

    k

    kF = 0.295 p/b

    EF

    TTF TCNQ

    Band diagram

  • (TM-TSF)2X (X = PF6-, ClO4

    -, ReO4-) :a series of superconducting salts

    D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, J. Phys. Lett. 1980, 41, L195. K. Bechgaard et al., J. Am. Chem. Soc. 1981, 103, 2440.

    The Bechgaard salts Electrocrystallization

  • Supramolecular chemistry (rotaxanes and catenanes)

    Dendrimers

    OFET

    Crystalline conductors and superconductors

    Conducting polymers

    NLO materials

    Organic magnets

    Langmuir-Blodgett

    Catalysis

    Solid state Solution

    Modulation of physical properties (fluorescence)

    Electrochemical sensors

    TTF

    Tetrathiafulvalene (TTF) and Derivatives

    J.-I. Yamada, TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene, Springer-Verlag, 2004. J. L. Segura, N. Martin, Angew. Chem. Int. Ed., 2001, 40, 1372. D. Canevet, M. Sallé, G. Zhang, D. Zhang, D. Zhu, Chem. Commun., 2009, 2245.

  • III. Chiral redox active ligands for enantioselective catalysis

    The control of the metal complexes reactivity upon oxidation - reduction

    Influence on the catalytic processes?

    substitutionally inert redox-switchable ligands redox-switchable hemilabile ligands

    C. A. Mirkin et al. Angew. Chem. Int. Ed. Engl. 1998, 37, 894

    Chiral tetrathiafulvalenes - Interests

    II. Chiroptical redox switches, chiral recognition

    I. Synthetic challenge

    IV. Chiral molecular conductors

  • Chiral molecular conductors

    Influence on the conducting properties

    S

    S

    S

    S

    S

    SN

    OCH3

    EDT-TTF-Me-oxazoline

    racemic, R and SJ. Am. Chem. Soc. 2005, 127, 5748.

    TTF-OX

    Chem. Eur. J. 2010, 16, 528.

    Multifunctional materials 1. Optical activity + Electrical conductivity

    2. Enantiopure forms are inherently less disordered in the crystalline state

    Chiral SWNT Krstić, Rikken et al. J. Chem. Phys. 2002, 117, 11315

    Electrical resistance R D/L(I,B) = R0 {1 + b B2 + cD/LI•B} cD = - cL

    handedness of the chiral conductor

    eMChA effect (very weak) R (H, I) # R (H, -I)

    3. Reports by Rikken et al. on electrical magneto-chiral anisotropy (eMChA) effects

    4. Superconductivity in non-centrosymmetric systems R. Roy, C. Kallin, Phys. Rev. B 2008, 77, 174513.

    need of a library of chiral precursors in which the chiral information is addressed in different ways

    Chirality 2013, 25, 466.

  • C12H25

    C12H25

    OR

    OR

    83 R =

    (S)-84 R =

    (R)-84 R =

    OO

    O

    O

    O

    O

    O

    O

    Hexabenzocoronenes

    SEM image

    T. Yamamoto, T. Fukushima, A. Kosaka, W. Jin, Y. Yamamoto, N. Ishii, T. Aida, ACIE 2008, 47, 1672.

    1. Supramolecular chirality

  • Using a C3 symmetric platform

    helical chirality

    propeller like conformation

    O

    O

    O

    O

    O

    O

    O O O O O

    O O O O O

    O O O O O

    R =

    C3 symmetric tetrathiafulvalenes

    O

    O

    O

    R

    O

    NH

    N

    NHN

    R

    OHN

    N

    N

    NH

    RO

    NH

    NN

    HN

    p-p stacking hydrogen bonds

    A. R. A. Palmans, J. A. J. M. Vekemans, E. E. Havinga, E. W. Meijer Angew. Chem. Int. Ed. Engl. 1997, 36, 2648 L. Brunsveld, H. Zhang, M. Glasbeek, J. A. J. M. Vekemans, E. W. Meijer J. Am. Chem. Soc. 2000, 122, 6175. J. van Gestel, A. R. A. Palmans, B. Titulaer, J. A. J. M. Vekemans, E. W. Meijer J. Am. Chem. Soc. 2005, 127, 5490.

  • Preferential helical twist induction R chiral group

    Introduction of TTF units

  • C3 symmetric TTFs: convergent synthesis

    S

    S S

    S

    S ZnS

    SS

    S

    S

    2-

    R Br S

    SS

    S

    S

    R

    R

    S

    S CO2Me

    CO2Me

    O

    P(OMe)3 S

    S

    S

    SS

    S

    R

    R

    CO2Me

    CO2Me

    3. (COCl)2

    1. LiBr2. LiOH·H2O

    S

    S

    S

    SS

    S

    R

    R

    COCl

    O

    O

    O

    S

    S

    S

    SS

    S

    O

    NN

    NN

    R

    R

    S

    SS

    S

    S

    S

    ON

    N

    N

    N

    R

    SS

    SS

    S

    S

    O

    N

    NN

    N

    RR

    R

    H

    H

    H

    H

    H

    H

    COCl

    COCl

    ClOC

    85%

    NH2

    N

    N

    NH2

    S

    S

    S

    SS

    S

    O

    NH

    N

    NNH2

    R

    R

    80%

    R, R = -CH2CH2 -

    R = -CH3

    R = -C2H5

    R =

    R =

    R=

    I. Danila, F. Riobé, J. Puigmarti, A. Pérez del Pino, J. D. Wallis, D. Amabilino, N. Avarvari, J. Mater. Chem. 2009, 19, 4495.

  • I. Danila, F. Riobé, F. Piron, J. Puigmartí-Luis, J. D. Wallis, M. Linares, H. Ågren, D. Beljonne, D. B. Amabilino, N. Avarvari, J. Am. Chem. Soc. 2011, 133, 8344.

    S R

    Introduction of chiral TTF units

  • 250 300 350 400 450 500 550 600

    -50

    -40

    -30

    -20

    -10

    0

    A

    (m

    de

    g)

    (nm)

    initial signal

    250 300 350 400 450 500 550 600

    -50

    -40

    -30

    -20

    -10

    0

    A

    (m

    de

    g)

    (nm)

    initial signal

    60°C

    250 300 350 400 450 500 550 600

    -50

    -40

    -30

    -20

    -10

    0

    A

    (m

    de

    g)

    (nm)

    initial signal

    60°C

    20°C

    10 20 30 40 50

    -60

    -50

    -40

    -30

    -20

    -10

    0

    A

    (m

    de

    g)

    time (min)

    CD spectra and evolution of the signal at 387 nm in dioxane

    Supramolecular chirality

    Temperature dependent circular dichroism measurements

    C = 2x10-5 M

    I. Danila, F. Riobé, F. Piron, J. Puigmartí-Luis, J. D. Wallis, M. Linares, H. Ågren, D. Beljonne, D. B. Amabilino, N. Avarvari, J. Am. Chem. Soc. 2011, 133, 8344.

  • CW

    CW CCW

    CCW

    Molecular Mechanics and Molecular Dynamics simulations

    helical pitch 8°

    Estab = 104.8 kcal/mole Estab = 106.8 kcal/mole M. Linares, KTH Stockholm, Sweden

    Formation of fibres: first hierarchical level

    d = 43 Å

    The stabilization energy per molecule: Estab = (nEisol – Estack)/n

    M helicity in solution for the primary fibers!

  • Mesoscopic size fibres in the solid state

    Optical images

    O

    O

    O

    S

    S

    S

    SS

    S

    O

    NH

    N

    N

    HN

    S

    SS

    S

    S

    S

    OHN

    N

    N

    NH

    SS

    SS

    S

    S

    O

    NH

    NN

    HN

    (S,S,S,S,S,S)

    P helicity !

    I. Danila, F. Riobé, F. Piron, J. Puigmartí-Luis, J. D. Wallis, M. Linares, H. Ågren, D. Beljonne, D. B. Amabilino, N. Avarvari, J. Am. Chem. Soc. 2011, 133, 8344.

  • A sensitive system

    SEM images Obtained with a heatgun Obtained with a hotplate

    Microcroissants ! Fibres

    I. Danila, F. Pop, C. Escudero, L. N. Feldborg, J. Puigmartí-Luis, F. Riobé, N. Avarvari, D. B. Amabilino, Chem. Commun. 2012, 48, 4552.

  • SEM image

    250 300 350 400 450 500 550 600

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    A

    (m

    de

    g)

    (nm)

    R enantiomer

    S enantiomer

    Supramolecular chirality

    M helicity (R,R,R,R,R,R) enantiomer

    CD measurements

    I. Danila, F. Riobé, F. Piron, J. Puigmartí-Luis, J. D. Wallis, M. Linares, H. Ågren, D. Beljonne, D. B. Amabilino, N. Avarvari, J. Am. Chem. Soc. 2011, 133, 8344.

  • The racemic system

    SEM images 2 mg/ml

    I. Danila, F. Riobé, F. Piron, J. Puigmartí-Luis, J. D. Wallis, M. Linares, H. Ågren, D. Beljonne, D. B. Amabilino, N. Avarvari, J. Am. Chem. Soc. 2011, 133, 8344.

  • Amphiphilic systems

    Odd-even effect

    CW CCW

    Estab = 131.3 kcal/mole Estab = 130.6 kcal/mole

  • Amphiphilic systems

    (S) M helicity

    (R) P helicity

    M

    P

    Inversion

    P

    M

    M

    M

    P

    M

    M

    MEK:THF 9:1 MEK

    M: 66%; P: 8%; M+P: 18%; not defined: 8%

    F. Pop, C. Melan, I. Danila, M. Linares, D. Beljonne, D. B. Amabilino, N. Avarvari, Chem. Eur. J. 2014, 20, 17443.

  • Current directions in the C3 systems

    T.-L. Lai, F. Pop, C. Melan, D. Canevet, M. Sallé, N. Avarvari, Chem. Eur. J. 2016, 22, 5839

    Pyrenes Luminescent donor-acceptor organogels

    65 mg/mL (C2H2Cl4)

    exc = 344 nm (C2H2Cl4) exc = 405 nm (C2H2Cl4) TCNQ

    8 mg/mL (C2H2Cl4)

    bipy bipy

    {Pyr-Pyr}*

    exc = 344 nm (C2H2Cl4)

    bipy {Pyr-TCNQ}*

  • 2. BEDT-TTF related donors with stereogenic carbon atoms

    J. D. Dunitz, A. Karrer, J. D. Wallis, Helv. Chim. Acta, 1986, 69, 69.

    J.-P. Griffiths, N. Hui, R. J. Brown, P. Day, J. D. Wallis, Org. Biomol. Chem., 2005, 3, 2155.

    Only few examples of conducting salts with the simply methylated ETs and no complete series

    (S,S,S,S) 2:1 semiconducting salts with XF6– (S,S,S,S) 3:2 metallic salts with BF4– and ClO4–

    A. Karrer, J. D. Wallis, J. D. Dunitz, B. Hilti, C. W. Mayer, M. Bürkle, J. Pfeiffer, Helv. Chim. Acta 1987, 70, 942.

    J. S. Zambounis, C. W. Mayer, K. Hauenstein, B. Hilti, W. Hofherr, J. Pfeiffer, M. Buerkle, G. Rihs, Adv. Mater. 1992, 4, 33.

    (S,S) 2:1 superconducting salt with ClO4– below 2K under 5 kbar (S,S,S,S) (TM-ET)x[MnCr(ox)3] metallic ferromagnet

    J. R. Galán-Mascarós, E. Coronado, P. A. Goddard, J. Singleton, A. I. Coldea, J. D. Wallis, S. J. Coles, A. Alberola, J. Am. Chem. Soc. 2010, 132, 9271.

  • J. D. Dunitz, A. Karrer, J. D. Wallis, Helv. Chim. Acta 1986, 69, 69. S. Matsumiya, A. Izuoka, T. Sugawara, T. Taruishi, Y. Kawada, Bull. Chem. Soc. Jpn. 1993, 66, 513. F. Pop, S. Laroussi, T. Cauchy, C. J. Gómez-García, J. D. Wallis, N. Avarvari, Chirality 2013, 25, 466.

    Synthesis of chiral methylated TTFs

  • Orthorhombic P212121 a=9.1424(6) Å b=11.0497(5) Å c=13.7839(11) Å V=1392.46(16) Å3

    (S,S) (R,R) Racemic

    I3- 1:1, P1 1:1, P1 1:1, P-1

    PF6– 2:1, P21 2:1, P21 2:1, P-1

    ClO4– , ReO4

    – 2:1, P6222 2:1, P6422 1:1, P21/c

    DM-EDT-TTF

    Me-axial

  • Monoclinic P21 a=13.147(1) Å b=15.675(3) Å c=15.485(2) Å β=107.286(10)° V=3047.07(70) Å3 Z=4

    (S,S) (R,R) Racemic

    PF6– 2:1, P21 2:1, P21 2:1, P-1

    (R,R), (S,S) and racemic (DM-EDT-TTF)2PF6 Triclinic P-1 a=6.666(4) Å b=8.384(8) Å c=15.221(1) Å α=86.281(8)° β=77.464(7)° γ=67.141(6)° V=765.03(13) Å3 Z=1

  • Me-eq

    (R,R), (S,S) (DM-EDT-TTF)2PF6

    Semiconducting

  • Me-eq

    racemic (DM-EDT-TTF)2PF6

    σ = 250 S cm-1 at 295 K

    b intrastack 0.7769/0.6498 eV

    b interstack 0.0599/0.0301/ 0.0645 eV

    Pseudo-1D-metal at r.t.

    No structural change at 100 K solutions with ee of 50% provide both phases

    F. Pop, P. Auban-Senzier, A. Frąckowiak, K. Ptaszyński, I. Olejniczak, J. D. Wallis, E. Canadell, N. Avarvari, J. Am. Chem. Soc. 2013, 135, 17176.

  • From stereogenic centers to enantiomorphic crystals

    Hexagonal P6222 a = 7.2053(4) Å c = 48.639(7) Å V = 2186.85(40) Å3 Z=3

    (S,S) (R,R)

    ClO4– 2:1, P6222 2:1, P6422 S·····S contacts (Å )

    Me-eq

    (DM-EDT-TTF)2ClO4

    Me-axial

  • (R,R) and (S,S)-(DM-EDT-TTF)2ClO4 b intrastack 0.4031 eV

    b interstack 0.2090 eV

    Open Fermi surface

    Metallic conductivity

  • (R,R) and (S,S)-(DM-EDT-TTF)2ClO4

    F. Pop, P. Auban-Senzier, E. Canadell, G. L. J. A. Rikken, N. Avarvari, Nature Commun. 2014, 5:3757, DOI:10.1038/ncomms4757.

    First evidence for the eMChA effect in a bulk chiral conductor

    (R,R) (S,S)

    ΔR/RIB = −0.6 10−2 T−1A−1 ΔR/RIB = +0.6 10−2 T−1A−1

    / / 2

    0( ) (1 )D L D LR R B b B,I B I

    ΔR(I, B) ≡ R(I, B) – R(–I, B)

    /2 D LR

    R

    B I

    =VeMChA /2GRBI2

    G is a preamplifier gain

  • (R,R) and (S,S)-(DM-EDT-TTF)2ClO4

    D/L D/L 2

    0ˆ( ) (1 )R R B b B,J B J

    / / 2

    0( ) (1 )D L D LR R B b B,I B I

    F. Pop, P. Auban-Senzier, E. Canadell, G. L. J. A. Rikken, N. Avarvari, Nature Commun. 2014, 5:3757, DOI:10.1038/ncomms4757.

    (R,R)

    (S,S)

  • CONCLUSIONS and OUTLOOK

    2. TM-BEDT-TTF, DM-BEDT-TTF, DM-EDT-TTF

    - first evidence for the eMChA effect in a bulk chiral conductor

    - complete series of chiral conducting salts

    - inverse magneto-chiral anisotropy

    - spin filtering

    1. C3-symmetry and supramolecular chirality

    - electroactive organogel and conducting nanofibers

    - formation of homochiral helical fibers

    - induction of chirality: non-linear effects

    - tuning the helical pitch and the solubility

    - conducting fibers

  • Acknowledgements

    Dr. Ion Danila

    Dr. Loan Lai

    Dr. Flavia Pop

    Dr. Caroline Melan Dr. Cristina Oliveras

    Dr. David Canevet, Prof. Marc Sallé: pyrene organogels

    Dr. François Riobé

  • Acknowledgements

    Collaborations

    Dr. E. Canadell ICMAB, Barcelona Band structure calculations

    Dr. P. Auban-Senzier LPS, Univ. d’Orsay Conductivity measurements

    Dr. G. L. J. A. Rikken LNCMI, Toulouse eMChA effect

    Dr. D. Amabilino Univ. of Nottingham, UK C3 systems

    Dr. M. Linares Dr. D. Beljonne Univ. of Mons, Belgium

    MM and MD calculations CD calculations

    Univ. of Linköping, Sweden

    Dr. J. Crassous Univ. of Rennes 1, France helicenes

    Dr. N. Vanthuyne Univ. of Marseille, France chiral HPLC