21
Nanoscopy with foc used ligh t Stefan W. Hell Max-Planck-Institut fO rbiophysika lische C hemie, Abteilung, Nano Biophoton ik, G6ttingen, Germany Wednesday, 4 May- 2:10 p.m. In 1873, ErnstAbbe discovered thatthe resolution offocusing ('far-field') optical microscopy is limited to -200nm which has been thepractical resolution limit ever since . Inthis lecture I discuss concepts that, byestablishing certain molecular states in sub-diffraction regions, neutralize the resolution-limiting role of diffraction in fluorescence microscopy. The first viable concept ofthiskind, Stimulated Emission Depletion (STED) microscopy [1], establishes a fluorescent molecular state in a nano-sized area using a focal intensity distribution featuring a zero. The doughnut confines the fluorescent statenear its central zero in such a way thatthe effective fluorescence spot(point spread function) can bearbitrarily reduced insize [1-4]. The concept underlyingSTED microscopy can be expanded byemployingother molecular transitions that switch fluorescence emission: (i) shelving thefluorophore ina metastable triplet state [3,5], and(ii) photo-switching optically bistable markers between a 'fluorescence on' anda 'fluorescence off' conformationalstate[2]. Examples forthe latterinclude photo-switchable organic compounds and fluorescent proteins ,which undergo a photo-induced cis-trans isomerization or cyclization reaction. Due to their optical bistability, the diffraction barrier can be broken at low intensity values. Byproviding appropriate bistable molecular markers, organic chemistry andprotein biotechnology playa key role in overcoming the diffraction barrier [2] . Hnally.l discuss recent work showing that far-field 'nanoscopy' solves fundamental problems in biology [7]. 111 s.W. Hell and J. Wie hmann. Opt.Let!. 19 (11) 780 (1994) 121 S. W. Hell . NatureBioteehnof. 21(11) 1347 (2003) 131 S. W. Hell ,in Topics in RuoreseeneeSpeetroseopy, ed. J. R. Lakowiez (Plenum, NY, 1997) 5, pp. 361 141 M. Dyba andS. W. Hell. Phys. Rev. Let!. 88, 163901(2002): v. Westphal and S. W. Hell, Phys. Rev.Let!.94 143903(2005); G. Donnert, et aI, Proe. Natl. Aead. Se;. 103,11440(2006) 151 S. W. Hell andM. Kro ug, Appl. Phys. B60, 495 (1995) 161 K.!. Willig, S. O.Rizzoli, V.Westphal etal. Nature440 (7086) 935 (2006) 1 71 S. W. Hell, Science316 1153 (2007)

Nanoscopy withfocused light Stefan W. Hellimages.iop.org/journals_icons/Info/0295-5075/presentations/hell.pdf · Nanoscopy withfocused light Stefan W. Hell Max-Planck-InstitutfO rbiophysikalische

  • Upload
    lamphuc

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Nanoscopy with focused lightStefan W. HellMax-Planck-Institut fO rbiophysikalische Chemie,Abteilung, NanoBiophotonik,G6ttingen, Germany

Wednesday, 4 May- 2:10 p.m.

In1873, ErnstAbbe discovered thattheresolution offocusing ('far-field')optical microscopy is limitedto -200nm which has been thepracticalresolution limitever since. Inthislecture Idiscuss conceptsthat,byestablishing certain molecular states insub-diffraction regions, neutralize theresolution-limitingrole ofdiffraction influorescence microscopy.The firstviable concept ofthiskind, Stimulated EmissionDepletion(STED) microscopy [1], establishes afluorescent molecular state in a nano-sized area usingafocal intensity distribution featuring azero. The doughnut confines thefluorescent statenear itscentral zero insuch a way thattheeffective fluorescence spot(pointspread function) can bearbitrarilyreduced insize [1-4].The concept underlyingSTED microscopy can beexpanded byemployingothermolecular transitions thatswitch fluorescence emission: (i) shelving thefluorophore ina metastabletripletstate [3,5], and(ii) photo-switching optically bistable markers between a 'fluorescenceon'anda 'fluorescenceoff' conformationalstate[2]. Examples forthe latterinclude photo-switchableorganic compounds and fluorescent proteins,whichundergo a photo-induced cis-trans isomerizationorcyclization reaction. Due to theiroptical bistability, thediffraction barriercan bebroken at lowintensityvalues. Byproviding appropriatebistable molecular markers, organic chemistry andproteinbiotechnology playa key role inovercoming thediffraction barrier [2] . Hnally.ldiscuss recent workshowing that far-field 'nanoscopy' solves fundamental problems inbiology [7].

111 s.W. Hell andJ. Wiehmann. Opt.Let!. 19 (11)780(1994)121 S.W. Hell .NatureBioteehnof. 21(11) 1347(2003)131 S.W. Hell , inTopics in RuoreseeneeSpeetroseopy,ed.J. R. Lakowiez (Plenum, NY, 1997) 5,pp.361141 M. Dyba andS. W. Hell. Phys. Rev. Let!. 88, 163901(2002):v. Westphal andS. W. Hell,Phys. Rev.Let!.94 143903(2005);

G. Donnert,etaI,Proe. Natl. Aead.Se;. 103,11440 (2006)151 S.W. Hell andM. Kroug,Appl. Phys. B60, 495(1995)161 K.!. Willig,S.O.Rizzoli,V.Westphal etal.Nature440 (7086) 935 (2006)171 S.W. Hell, Science316 1153 (2007)

Stefan W. Hell

Max Planck Institute for

Biophysical

Chemistry

Department of NanoBiophotonics

Göttingen, Germany

[email protected]

Max PlanckSociety Fluorescence Nanoscopy

4Pi / STED / RESOLFT

200 nm

Lens

500 nm

α

Wavelength

αλ=Δsinn2

x

λ

α

E. Abbe

(1873), Arch. Mikroskop. Anat.

9, 413.

4Pi-

Microscopy:

resolution improvement in Z

Max PlanckSociety

4Pi-

Microscopy:

70 -

140 nm

( ) ( ) ( )41 2, , , , , ,PiE r z E r z E r zϕ ϕ ϕ= + −

r r r

Coherent illumination

and/or

fluorescence

detection

S.W. Hell (1990), Europ. Patent

OS 0491289.S.W. Hell, et al. (1992), Opt. Commun.

93, 277.M. Schrader, et al. (1998), Biophys. J.

75, 1659.H. Gugel, et al. (2004), Biophys. J.

87, 4146.

2 µm2 µm

Confocal 4Pi

Z

X

Microtubules, mouse fibroblastImmunofluor, Oregon Green

S.W. Hell, et al. (1992), Opt. Commun.

93, 277.M. Schrader, et al. (1998), Biophys. J.

75, 1659.H. Gugel, et al. (2004), Biophys. J.

87, 4146.

Commercial 4Pi-microscope

Z- resol < 90 nm (Live cells /aqueous cond.)

H. Gugel, et al. (2004), Biophys J 87, 4146.

STED microscopy

1st

physical concept to break the diffraction barrier in

far-field fluorescence microscopy

S.W. Hell & J. Wichmann

(1994), Opt. Lett.

19, 780.

Max PlanckSociety

STED Microscopy

Detector

yx

z

200 nm

ExcitationDepletion

(STED)

x

y

PhaseMod

0 3 6 9

1.0

0.5

0.0

ISTED [GW/cm2]

Fluo

resc

ence

50 ps 50-200 ps

S0

S1

Absorption Stimulated Emission

Fluorescence

1 psvibτ p

1 sfl nτ ≈

S.W. Hell & J. Wichmann (1994), Opt. Lett. 19, 780.

The stronger the STED beam the narrower the fluorescent spot!

-250 -150 -50 50 150 250

x [nm]

Focal spot

... probed with 1 molecule

254 nm

200nm48 nm

λSTED = 770 nm

STED

Confocal

20II sat ≅

0 3 6 9ISTED

1.0

0.5

0.0

Fluo

resc

ence

20II sat ≅

V. Westphal & S.W. Hell (2005), Phys. Rev. Lett. 94, 143903.

10 counts/0,3ms 204 5 counts/0,3ms 89 1µm XY

Confocal STED

Imaging 40 nm fluorescence beads:

... just physics !

...just physics !

Confocal: STED:

Imaging protein distribution on cell membrane: SNAP 25

Heavy subunit of neurofilaments in neuroblastoma

Confocal STED

G. Donnert, et al. (2006), PNAS 103, 11440.

Max PlanckSociety

(a)

(c)

Confocal STED(b)

(d)

200nm

y

x

y

x

1µmy

xy

x

STED Microscopy:

Sometimes

only

resolution…

Pores in a porous membrane marked with a fluorescent dye

Fluorescence dye marked nanostructures produced by electron beam lithography in a polymer

…makes

subdiffraction

images

!

V. Westphal, S.W. Hell (2005), Phys. Rev. Lett.

94, 143903.V. Westphal, J. Seeger, T. Salditt, S. W. Hell (2005) , J. Phys. B

38, S695.

STED microscopy

-

Resolution is not limited by the wavelength of light!

- Resolution just depends on the level of fluorescence depletion.

- Resolution at the molecular scale

is possible with visible light and regular lenses!

- Resolution follows a new law; a modification of Abbe’s law:

αλ≈Δ

sinn2x

satII+1

0 3 6 9

1.0

0.5

0.0

Fluo

resc

ence

I>>IsatIsat

S.W. Hell (2003), Nature Biotech. 21, 1347.S.W. Hell (2004), Phys. Lett. A

326, 140.V. Westphal

& S.W. Hell (2005), Phys. Rev. Lett.

94, 143903.

4Pi-

STED Microscopy

Axial (z) resolution 30-50 nm and beyond …

Max PlanckSociety

M. Dyba, S. Jakobs, S.W. Hell (2003), Nature Biotechnol.

21, 1303.

Fluorescently tagged microtubuliwith an axial resolution of 50-70 nm

The

combination:

STED-4Pi-Microscopy

Monolayer Monolayer

M. Dyba, S. W. Hell

53 nm

confocal STED-4Pi

8

Max PlanckSociety

RESOLFT

Reversible Saturable

(Switchable) Linear Fluorescence Transitions

is

the generalized principle of STED microscopy

Max PlanckSociety

RESOLFT:

Reversible Saturable

Optical

(Fluorescent) Transition

S.W. Hell (2003), Nature Biotechnol.

21, 1347.S.W. Hell, M. Dyba, S. Jakobs (2004), Curr. Opin. Neurobiol. 14, 599.

9

Max PlanckSociety

G. Donnert et al PNAS, 103 (2006)

K. Willig, J. Keller, M. Bossi, S.W. Hell New J Phys, 8 (2006)

V. Westphal, S.W. Hell Phys Rev Lett, 94 (2005)

L. Kastrup, H. Blom, C. Eggeling, S.W. Hell Phys Rev Lett, 94 (2005)

M. Hofmann, C. Eggeling, S. Jakobs, S.W. Hell PNAS, 102 (2005)

Acknowledgements / References:

K. Willig, S. Rizzoli, R. Jahn, S.W. Hell Nature, April 13, (2006)

R. Kittel, et al Science, May 19, (2006)

Applications:

Physics:

Pictures/Movieswww.nanoscopy.de