40
Nanoscale III-V CMOS J. A. del Alamo Microsystems Technology Laboratories Massachusetts Institute of Technology IEEE Electron Devices Society Webinar July 13, 2016 Acknowledgements: Students and collaborators: D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao Sponsors: Applied Materials, DTRA, KIST, Lam Research, Northrop Grumman, NSF, Samsung Labs at MIT: MTL, EBL

Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Nanoscale III-V CMOS

J. A. del Alamo

Microsystems Technology Laboratories

Massachusetts Institute of Technology

IEEE Electron Devices Society Webinar

July 13, 2016

Acknowledgements:

• Students and collaborators: D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao

• Sponsors: Applied Materials, DTRA, KIST, Lam Research, Northrop Grumman,

NSF, Samsung

• Labs at MIT: MTL, EBL

Page 2: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Moore’s Law at 50: the end in sight?

2

Page 3: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Moore’s Law

Moore’s Law = exponential increase in transistor density

3

Intel microprocessors

2016:

Intel 22-core Xeon

Broadwell-E5

7.2B transistors

Page 4: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Moore’s Law

4

?

How far can Si support Moore’s Law?

Page 5: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Transistor scaling Voltage scaling Performance suffers

5

Transistor current density:

Goals:

• Reduced footprint with moderate short-channel effects

• High performance at low voltage

Intel microprocessors Intel microprocessors

Supply voltage:

Page 6: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

6

Moore’s Law: it’s all about MOSFET scaling

1. New device structures with improved scalability:

2. New materials with improved transport characteristics:

n-channel: Si Strained Si SiGe InGaAs

p-channel: Si Strained Si SiGe Ge InGaSb

Page 7: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

7

III-V electronics in your pocket!

Page 8: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Contents

8

Page 9: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

1. Self-aligned Planar InGaAs MOSFETs

9

Lin, IEDM 2012, 2013, 2014

W

Mo

Lee, EDL 2014; Huang, IEDM 2014

selective MOCVD

Sun, IEDM 2013, 2014 Chang, IEDM 2013

reacted NiInAs

dry-etched recess

implanted Si + selective epi

Page 10: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Self-aligned Planar InGaAs MOSFETs @ MIT

10

Lin, IEDM 2012, 2013, 2014

Recess-gate process:

• CMOS-compatible

• Refractory ohmic contacts

• Extensive use of RIE

W

Mo

0.0 0.1 0.2 0.3 0.4 0.50.0

0.2

0.4

0.6

0.8

1.0 Lg=20 nm

Ron

=224 m0.4 V

I d (

mA

/m

)

Vds

(V)

Vgs

-Vt= 0.5 V

Page 11: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

• Ohmic contact first, gate last

• Precise control of vertical (~1 nm), lateral (~5 nm) dimensions

• MOS interface exposed late in process

Fabrication process

11

W/Mo n+ InGaAs/InP

InGaAs/InAs

InAlAs

SiO2

InP

d-Si

Resist

Mo

Pad

HfO2

Mo/W ohmic contact

+ SiO2 hardmask SF6, CF4 anisotropic RIE CF4:O2 isotropic RIE

Cl2:N2 anisotropic RIE Digital etch

Waldron, IEDM 2007

Finished device

Lin, EDL 2014

O2 plasma H2SO4

Page 12: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

• Channel: In0.7Ga0.3As/InAs/In0.7Ga0.3As

• Gate oxide: HfO2 (2.5 nm, EOT~ 0.5 nm)

Highest performance InGaAs MOSFET

12

Lg=70 nm:

• Record gm,max = 3.45 mS/mm at Vds= 0.5 V

• Ron = 190 Ω.mm Lin, EDL 2016

3.45 mS/m

Page 13: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Excess OFF-state current

13

OFF-state current enhanced with Vds

Band-to-Band Tunneling (BTBT) or Gate-Induced Drain

Leakage (GIDL) Lin, IEDM 2013

-0.6 -0.4 -0.2 0.010

-11

10-9

10-7

10-5

Lg=500 nm

Vds

=0.3~0.7 V

step=50 mV

I d(A

/

m)

Vgs

(V)

Transistor fails to turn off:

Vds ↑

Page 14: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

-0.4 -0.2 0.0 0.210

-11

10-9

10-7

10-5

W/ BTBT+BJT

W/O BTBT

Vds

=0.3~0.7 V

step=50 mV

I d (A

/

m)

Vgs

(V)

Excess OFF-state current

14

Lg↓ OFF-state current ↑

bipolar gain effect due to floating body

Lin, EDL 2014

-0.6 -0.4 -0.2 0.010

-11

10-9

10-7

10-5

Lg=500 nm

Vds

=0.3~0.7 V

step=50 mV

I d(A

/

m)

Vgs

(V)-0.6 -0.4 -0.2 0.0

10-8

10-7

10-6

10-5

10-4

500 nm

280 nm

120 nm

T=200 K

Vds

=0.7 V

I d (A

/

m)

Vgs

-Vt (V)

Lg=80 nm

Vds ↑

Simulations w/ BTBT+BJT

w/o BTBT+BJT

Lg=500 nm

Lin, TED 2015

Page 15: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

2. InGaAs FinFETs

15

Intel Si Trigate MOSFETs

Page 16: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Bottom-up InGaAs FinFETs

16

Si

Waldron, VLSI Tech 2014

Aspect-Ratio Trapping

Fiorenza, ECST 2010

Epi-grown

fin inside

trench

Page 17: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Top-down InGaAs FinFETs

17 Kim, IEDM 2013

60 nm

dry-etched fins

Radosavljevic, IEDM 2010

Page 18: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

0 20 40 600.0

0.5

1.0

1.5

2.0

1.8

1

0.8

0.57

InGaAs FinFETs

5.3

4.3

Si FinFETs

gm[m

S/

m]

Wf [nm]

0.630.6

0.23

0.66 1

0.18

InGaAs FinFETs: gm

18

Thathachary,

VLSI 2015

gm normalized by width of

gate periphery

• Narrowest InGaAs FinFET fin: Wf=15 nm

• Best channel aspect ratio of InGaAs FinFET: 1.8

• gm much lower than planar InGaAs MOSFETs

Oxland, EDL 2016

Radosavljevic,

IEDM 2011

Kim, IEDM 2013

Natarajan,

IEDM 2014

channel

aspect

ratio

Page 19: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

InGaAs FinFETs @ MIT

19

Vardi,

DRC 2014,

EDL 2015,

IEDM 2015

Key enabling technologies: BCl3/SiCl4/Ar RIE + digital etch

• Sub-10 nm fin width

• Aspect ratio > 20

• Vertical sidewalls

Page 20: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

InGaAs FinFETs @ MIT

20

Vardi, VLSI Tech 2016 • CMOS compatible process

• Mo contact-first process

• Fin etch mask left in place double-gate MOSFET

Page 21: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

At VDS=0.5 V:

• gm=1.4 mS/µm

• Ron=170 Ω.µm

• Ssat=170 mV/dec

InGaAs FinFETs @ MIT

21 Vardi, VLSI Tech 2016

Lg=30 nm, Wf=22 nm, Hc=40 nm

(AR=1.8):

0.0 0.2 0.4 0.6 0.8 1.00

200

400

600

800

1000

1200 VGS

= 0.75V

0.5

0.25

0

-0.25

I d [

A

m]

VDS

[V]

-0.5

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.80

200

400

600

800

1000

Wf=22 nm

Lg=30 nm

VDS

=500mV

VGS

[V]

I d [

A

m]

0

400

800

1200

1600

gm [

S

m]

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.61E-8

1E-7

1E-6

1E-5

1E-4

1E-3

DIBL=220 mV/V

VGS

[V]

I d [A

m]

Wf=22 nm

Lg=30 nm

VDS

=500 mV

50 mV

S=140 mV/dec

170

Hc

Current normalized by 2xHc

Page 22: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

22

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.61E-10

1E-9

1E-8

1E-7

1E-6

1E-5W

f=7 nm

Lg=20 nm

VDS

=500 mV

VGS

[V]I d

[A

m]

50 mVS=120 mV/dec

DIBL~150

0.0 0.2 0.4 0.6 0.8 1.00

10

20

30

40 VGS

= 0.75 V

0.5

0.25

0-0.25

I d [

A

m]

VDS

[V]

Most aggressively scaled FinFET

Lg=20 nm, Wf=7 nm, Hc=40 nm (AR=5.7):

Vardi, VLSI Tech 2016

At VDS=0.5 V:

• gm=170 µS/µm

• Ron=4 kΩ.µm

• Ssat=130 mV/dec

Page 23: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

InGaAs FinFETs: gm benchmarking

23

gm normalized by width of gate periphery:

• First InGaAs FinFETs with Wf<10 nm

• Severe gm degradation for thin Wf sidewall roughness?

Hc

Wf

Vardi, VLSI Tech 2016

Hc

Double gate Trigate

0 20 40 600.0

0.5

1.0

1.5

2.0

1.8

1

0.8

0.57

5.7

3.3

2.3

1.8

InGaAs FinFETs

5.3

4.3

Si FinFETs

gm[m

S/

m]

Wf [nm]

0.630.6

0.23

0.66 1

0.18

Page 24: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Latest results

24

Record results for InGaAs FinFETs with Wf < 25 nm

• Scaled gate oxide: HfO2 with EOT=0.6 nm

• Attention to line-edge roughness

0 20 40 600.0

0.5

1.0

1.5

2.0

1.8

1

0.8

0.57

5.7

3.3

2.3

1.8

InGaAs FinFETs

5.3

4.3

Si FinFETs

gm[m

S/

m]

Wf [nm]

0.630.6

0.23

0.66 1

0.18Latest!

Vardi, submitted 2016

Page 25: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

InGaAs FinFETs: gm benchmarking

25

gm normalized by fin width (FOM for density):

• Doubled gm/Wf over earlier InGaAs FinFETs

• Still far below Si FinFETs poor sidewall charge control

Vardi, submitted 2016

Hc

Wf Wf

Hc

Page 26: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Impact of fin width on VT

26

• Strong VT sensitivity for Wf < 10 nm; much worse than Si

• Due to quantum effects

InGaAs doped-channel FinFETs: 50 nm thick, ND~1018 cm-3

Vardi, IEDM 2015

T=90K

Page 27: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

3. Nanowire InGaAs MOSFETs

27

Waldron, EDL 2014

Tomioka, Nature 2012 Persson, EDL 2012

• Nanowire MOSFET: ultimate scalable transistor

• Vertical NW: uncouples footprint scaling from Lg and Lc scaling

Tanaka, APEX 2010

Page 28: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

InGaAs Vertical Nanowires on Si by direct growth

28 Björk, JCG 2012

Selective-Area Epitaxy

Au seed

Vapor-Solid-Liquid

(VLS) Technique

InAs NWs on Si by SAE

Riel, MRS Bull 2014

Page 29: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

29

InGaAs VNW MOSFETs by top-down approach @ MIT

• Sub-20 nm NW diameter

• Aspect ratio > 10

• Smooth sidewalls

Zhao, EDL 2014

Key enabling technologies:

• RIE = BCl3/SiCl4/Ar chemistry

• Digital Etch (DE) =

O2 plasma oxidation

H2SO4 oxide removal

15 nm

240 nm

Page 30: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Process flow Tomioka, Nature 2012 Persson, DRC 2012 Zhao, IEDM 2013

30

Page 31: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

-0.4 -0.2 0.0 0.2 0.4

0

100

200

300

400

500

600

700

Vgs(V)

Vds=0.5 V

gm

,pk(

S/

m)

NW-MOSFET I-V characteristics: D=40 nm

31

Single nanowire MOSFET:

• Lch= 80 nm

• 3 nm Al2O3 (EOT = 1.5 nm)

• gm,pk=620 μS/μm @ VDS=0.5 V

• Ssat=110 mV/dec @ VDS=0.5 V

• Approaches best bottom-up devices

[Berg, IEDM 2015]

0.0 0.1 0.2 0.3 0.4 0.50

50

100

150

200

250

300

350Bottom electrode as the source (BES)

Vgs=-0.2 V to 0.7 V in 0.1 V step

Vds (V)

I d (A

/m

)

Zhao, 2016

(submitted)

-0.4 -0.2 0.0 0.2 0.4

10-9

10-8

10-7

10-6

10-5

10-4

Vds=0.5 V

Vgs(V)

I d (

A/

m) Vds=0.05 V

S=98 mV/dec, Vds

=0.05 V

S=110 mV/dec, Vds

=0.5 V

DIBL = 177 mV/V

Page 32: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Self-aligned Bottom-up InAs NW-MOSFETs

32

VNW MOSFET array:

• VLS growth

• D=28 nm

• Lch= 190 nm

• gm,pk=850 μS/μm @ VDS=0.5 V

• Ssat=154 mV/dec @ VDS=0.5 V

Berg, IEDM 2015

Page 33: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

4. InGaSb p–type MOSFETs

33

Nainani, IEDM 2010

Planar InGaSb MOSFET demonstrations:

Takei, Nano Lett. 2012

Page 34: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

InGaSb p–type FinFETs @ MIT

34 Lu, IEDM 2015

Key enabling technology:

• BCl3/N2 RIE

• [digital etch under development]

15 nm fins, AR>13

20 nm fins, 20 nm spacing

• Smallest Wf = 15 nm

• Aspect ratio >10

• Fin angle > 85° • Dense fin patterns

Page 35: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Si-compatible contacts to p+-InAs

35

Lu, IEDM 2015

Ni/Ti/Pt/Al on p+-InAs (circular TLMs):

Record ρc: 3.5x10-8 Ω.cm2 at 400oC

Page 36: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

InGaSb p-type FinFETs

36 Lu, IEDM 2015

• Fin etch mask left in place double-gate MOSFET

• Channel: 10 nm In0.27Ga0.73Sb (compressively strained)

• Gate oxide: 4 nm Al2O3 (EOT=1.8 nm)

Page 37: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

InGaSb FinFET I-V characteristics

37

• Lg = 100 nm, Wf = 30 nm (AR=0.33)

• Normalized by conducting gate periphery

Lu, IEDM 2015

0.01 0.1 1 10 10010

100

Yuan, 2013 [7]

Nainani, 2010 [8]

Chu, 2014 [11]

Xu, 2011 [12]

Nagaiah, 2011 [13]In

0.36Ga

0.64Sb

GaSb

gm (

S/

m)

Lg (m)

This work

(FinFET)

In0.27

Ga0.73

Sb

GaSb In0.35

Ga0.65

Sb

In0.2

Ga0.8

SbPlanar MOSFETs

• First InGaSb FinFET

• Peak gm approaches best InGaSb planar MOSFETs

• Poor turn off

Page 38: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

5. Co-integration of SiGe p-MOSFETs and InGaAs MOSFETs on SOI

38

InGaAs

n-MOSFET

Czornomaz, VLSI Tech 2016

SiGe

p-MOSFET

6T-SRAM

SiGe InGaAs

Si

SiO2

Confined Epitaxial Lateral Overgrowth

Page 39: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

Conclusions

1. Great recent progress on planar, fin and nanowire

InGaAs MOSFETs

2. Device performance still lacking for multigate designs

3. P-type InGaSb MOSFETs in their infancy

4. Many, MANY issues to work out:

sub-10 nm fin/nanowire fabrication, self-aligned contacts, device

asymmetry, introduction of mechanical stress, VT control, sidewall

roughness, device variability, BTBT and parasitic HBT gain, trapping, self-

heating, reliability, NW survivability, co-integration on n- and p-channel

devices on Si, …

39

Page 40: Nanoscale III-V CMOS...DS =500mV V GS [V] I d [P A P m] 0 400 800 1200 1600 g m [P S P m @-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 DIBL=220 mV/V V GS [V] I d [A

40

A lot of work ahead but… exciting future for III-V electronics