43
1 Nanometer IC Design for Manufacturability and Reliability in Extreme Scaling and Beyond David Z. Pan Dept. of Electrical and Computer Engineering The University of Texas at Austin http:// www.cerc.utexas.edu / utda

Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

1

Nanometer IC Design for Manufacturability and Reliability in Extreme Scaling and Beyond

David Z. Pan Dept. of Electrical and Computer Engineering

The University of Texas at Austin http://www.cerc.utexas.edu/utda

Page 2: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Nanometer Issues

-nce

Temp(oC)

Page 3: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Lithography Status & Challenges

3

t  The industry forced to extend 193nm lithography ›  Immersion, extreme RET ›  Double/Triple Patterning Lithography for 22nm/14nm, …

1980 1990 2000 2010 2020

10

1

0.1

um

[Courtesy Intel]

X

-nce

?

Page 4: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Resolution Limit of Optical Lithography

4

bottom lens elements

exposure field

aperture

pitch

nm  7235.1193*5.0

sin5.0pitch

=

=

>θλ

n

With single exposure, the practical limit is ~80 nm

Page 5: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

5

What is Double Patterning?

Overlay Error

mindp

Stitch A E

Page 6: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

6

Back in 2003

Jeffrey: ”Daddy, don’t worry. I can show you some bright ideas!”

“Double patterning!!!”

Page 7: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

7

Emerging Lithography EUV

mindp

193i w/ DPL

E-beam

Quadruple patterning

DSA 3D-IC

Page 8: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

8

The “Moore”, the Merrier!

t More Moore •  Nano-Patterning for Extreme Scaling

•  Lithography Aware Physical Design

t A different kind of “Moore” •  3D Integration

•  New devices (e.g., nanophotonics) …

è Need synergistic design and technology co-optimization for cross-layer resilience

Page 9: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

DPL Layout Decomposition

9

1st patterning

C1 -∆C1

1st patterning C2 -∆C2

2nd patterning 2nd patterning

2nd patterning

C1 -∆C1 C2 +∆C2

2nd patterning

1st patterning

Overlay Compensation

Stitch

[Lucas SPIE’08]

Stitch

Minimum Stitch Insertion

1)  Minimize stitch # 2)  A bit more overlap margin for stitch, but area increases

1st patterning

Without Overlay Compensation With Overlay Compensation

[Yang+, ASPDAC10]

Page 10: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

10

A Graph-Partitioning Based, Multi-Objective Decomposer

Decomposition Graph Construction

A

Ā

A

Ā

A

Ā

E

Ē

E

Ē

E

Ē

X Y Z

10

Ā(20) A(17)

X(9)

E(15)

Y(9)

Ē(17)

1 2

2 1

Z(5)

1

1

Constraint: (A, Ā) and (E, Ē) are repulsive pairs.

Theorem : Stitch minimization problem is equivalent to the min-cut partitioning of the decomposition graph Extensions of the framework: to incorporate other constraints and costs into graph partitioning, e.g., balanced density, overlay compensation, and so on

[Yang+, ASPDAC10]

Page 11: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

11

Overlay Compensation & Density Balancing

11

C432:27% and 73% (7 stitches)

C432:50% and 50% (17 stitches)

[Yang+, ASPDAC10]

Page 12: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Triple Patterning

t Extension of double patterning concept t Original layout is divided into three masks

›  Resolve native conflicts of DPL ›  Achieve further feature-size scaling (14nm, 11nm)

t Very active research area! t DAC’12 Best Paper; ICCAD’13 Best Paper t  ICCAD’13 Special Session

›  Session 3B: Triple Patterning, Triple the Trouble?

12

Page 13: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Electronic Beam Lithography

t Maskless technology, which shoots desired patterns directly into a silicon wafer

t Low throughput is its major hurdle ›  E.g., Variable Shaped Beam (VSB)

5 6 7 8

9

10

11

1

2

3

4

Total number of 11 shots are needed

Page 14: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Character Projection (CP) Technology

t Print some complex shapes in one electronic beam shot, rather than writing multiple rectangles.

Electron Gun

Wafer

Stencil

Shaping aperture

Character

Electron Gun

Wafer

Stencil

Shaping aperture

Electron Gun

Wafer

Stencil

Shaping aperture

Electron Gun

Wafer

Stencil

Shaping aperture

3 shots only

Page 15: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Overlapped Characters Planning [Yuan and Pan, ISPD’11 Best Paper Award] t The number of characters is limited due to the

area constraints of the stencil

Character

W

Hwh

t  By over-lapping adjacent characters, more characters are allowed to be put on the stencil

Layout A Layout B

Character A Character BM

in(BlankA

, BlankB

)

Layout A Layout B

Character A Character B

BlankA

BlankB

Layout A

Character A

Blank A

Spanned regionof electron beamfrom shapingaperture

Layout B

Blank B

Character B

Page 16: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

16

The “Moore”, the Merrier!

t More Moore •  Nano-Patterning for Extreme Scaling

•  Lithography Aware Physical Design

t A different kind of “Moore” •  3D Integration

•  New devices (e.g., nanophotonics) …

è Need synergistic design and technology co-optimization for cross-layer resilience

Page 17: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

LAPD

t Double/multiple patterning layout compliance/decomposition

t Post-layout, maybe too late! t Lithography Aware Physical Design

(LAPD) è t Litho Hotspot Detection t Litho Friendly Design

›  Hotspot Avoiding/Correction ›  Correct by Construction/Prescription

17

Another LAPD

Correction

Detection

Page 18: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

18

Lithography Hotspot Detection

t Lithographic hotspots ›  What you see (at design) is NOT what you get (at fab) ›  Hotspots mean poor printability ›  Highly dependent on manufacturing conditions ›  Exist after resolution enhancement techniques

t Litho-simulations are extremely CPU intensive ›  Full-blown OPC could take a week ›  Impossible to be used in inner design loop

Litho simulations

Page 19: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Various Approaches

19

Pattern/Graph Matching

t  Pros and cons ›  Accurate and fast for known

patterns ›  But too many possible

patterns to enumerate ›  Sensitive to changing

manufacturing conditions ›  High false-alarms

Data Mining/Machine Learning

SVM [J. Wuu+ SPIE09][Drmanac+ DAC09] Neural Network Model [Norimasa+ SPIE07][Ding+ ICICDT09] Regression Model [Torres+ SPIE09]

[Xu+ ICCAD07] [Yao+ ICCAD08, [Khang SPIE06], etc.

t  Pros and cons t  Good to detect unknown or

unseen hotspots t  Accuracy may not be good for

“seen” patterns (cf. PM) ›  Hard to trade-off accuracy and

false alarms

Page 20: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

A New Unified Formulation (EPIC) Good for detecting all types of hotspots with advantageous accuracy/false-alarm (Meta-Classifier)

A New Meta-Classification Paradigm

t Meta-Classification combines the strength of different types of hotspot detection techniques

20

Pattern Matching Methods Good for detecting previously known types of hotspots

Machine Learning Methods Good for detecting new/previously unknown hotspots

[Ding et al, ASPDAC 2012]

Page 21: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Components of Meta-Classifier Core

t Base classifier results are first collected t Weighting functions to make the overall meta

decision (e.g., quadratic programming) t Threshold with accuracy and false-alarm trade-off

21

Critical Pattern/Feature Extraction

Weighting Functions and Decision Parameters

Base Classifier Decision

Meta-Classifier Core

Page 22: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

False-alarm Rate and Accuracy

22

Page 23: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

23

AENEID Router [Ding+, DAC’11]

t  Using the machine learning models, we built a new detailed router AENEID to avoid hotspot patterns

Initialize Lagrangian Multiplier

Solve the MCSP Problem

Update Layout Fragmentation Database

Stopping criteriaSatisfied?

N

Y

Update Lithography Cost : litho(e)

solution

Update Lagrangian Multiplier

Hotspot Detection Kernel

Routing Path Prediction Kernel

AENEID

Page 24: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Abstraction to Synthesis & Above?

t Can we further extend the abstraction up to logic synthesis?

›  Not just lithography hotspot, but other hotspots such as reliability metrics including BTI, oxide breakdown

t Machine learning to raise the abstraction? t NSF/SRC FRS program (started April 1, 2003) t NSF/SRC/DFG Cross-Layer Resilience

Workshop in Austin, July 11 and 12

24

Page 25: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

25

The “Moore”, the Merrier!

t More Moore •  Nano-Patterning for Extreme Scaling

•  Lithography Aware Physical Design

t A different kind of “Moore” •  3D Integration

•  New devices (e.g., nanophotonics) …

è Need synergistic design and technology co-optimization for cross-layer resilience

Page 26: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

26

Thermal/Mechanical Stress

CTE : Coefficient of thermal expansion

TSV: 250 °C ~400 °C process (Higher than operating temperature) Since Cu has larger CTE than Si è tensile stress in Si near TSV.

Page 27: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Stress => Variability/Reliability t  Systematic Variations

›  Mobility ›  Timing

t  Reliability (interfacial crack, EM, etc.)

Si  Cu  

Electromigration Effect – Open

Electromigration Effect – Short Interfacial Crack

Page 28: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Lateral Linear Superposition

TSV1 TSV2

TSV3 TSV4

stress influence zone (25um)

P: point under consideration

TSV4 doesn’t affect P

TSV1, TSV2, and TSV3 affect P

[ECTC’11, DAC’11]

t  Full-chip stress analysis considering multiple TSVs

Page 29: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

(Lateral &) Vertical Superposition

t Stress components are added up “vertically”

LVLS works well

Page 30: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Reliability/Variability Impact of Stress

1.  Von  Mises  Reliability  

2.  Crack:  Energy  release  rate  (ERR)  

3.  Mobility/  Vth  varia?on  of  MOS  

•  Von Mises Yield is function of stress tensor

•  TSV stress affects ERR of TSV structure à aggravate crack

Cu  shrinking  

d:  ini?al  crack  length  

crack  propaga?on  direc?on  

crack  front  

(a)  Side  view    

TSV  

substrate  

(b)  Top  view  

liner  

•  TSV stress changes mobility of hole/electron à timing, Vth variation

(a)  Hole  mobility  varia?on  

(b)  Electron  mobility  varia?on  

(a)  Von  Mises  stress  with  TSV  array  

(b)  Von  Mises  stress  with  three  TSVs  

[J. Mitra et al., ECTC’11] [M. Jung et al., ICCAD’11] [J. Yang et al., DAC’10]

Page 31: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

From Stress to Reliability t Von Mises Reliability Metric

t Physical meaning

2)σσ6(σ)σ(σ)σ(σ)σ(σ

σ2zx

2yz

2xy

2xxzz

2zzyy

2yyxx

v

+++−+−+−=

linear elastic

plastic L

strain LLΔ

ε

σv

If σv > yielding strength, deformation will be permanent and non-reversible Yielding strength - Cu: 225 ~ 600 MPa - Si: 7,000 MPa

yielding strength

∆L

Page 32: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Wide I/O 3D DRAM 8mm

8mm

Bank0 Bank1

Bank2 Bank3

2x128 TSV array 1024 TSVs in total

Bank0 Bank1

Bank2 Bank3 (a) Pkg-bumps are placed

underneath TSV arrays (b) Pkg-bumps are placed

200um apart from TSV arrays

Pkg-bump

200um

… …

case von Mises stress distribution (MPa)

780-810 810-840 840-870 870-900 900-930 (a) 30 114 52 220 608 (b) 182 842 0 0 0

case (b) shows that chip/package co-design can greatly reduce mechanical reliability problem in TSV-based 3D ICs

[Jung et al, DAC’12]

Page 33: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

TSV Interfacial Crack

Cu shrinking d: initial crack length

crack propagation

direction

crack front TSV

substrate

(a) Side view (b) Top view

liner

•  Cu shrinks faster than Si under negative thermal load (∆T = -250°C) •  Model through Energy Release Rate (ERR) •  Full chip model with design-of-experiments of different layout styles

and multiple TSV structures

[Jung et al, ICCAD’11]

Page 34: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Full-Chip Crack Analysis and Study t Regular vs. irregular TSV arrays

(a) IrregA (b) RegA

(c) ERR map of IrregA (d) ERR map of RegA

100um

ERR (J/m2)

2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80

1.95 ~ 2.00

1.90 ~ 1.95

Page 35: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

35

Stress Effect on Mobility & Current

TSV

CMOS (Stress: 200MPa, R=r)

Cmos

NMOS: 0.5 ∆µ (∆Ids:+1.5%) PMOS: 0.6∆µ (∆Ids:+1.8%)

Cmos

NMOS: ∆µ(∆Ids:+3%) PMOS: -∆µ(∆Ids:-3%)

Cmos

NMOS: 0.75∆µ (∆Ids:+2.25%) PMOS: -0.1∆µ(∆Ids:-0.3%)

Cell characterizations based on distance and orientation are needed

FS corner

[Yang+, DAC’10]

Page 36: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

36

Stress Aware Design Flow [Yang+, DAC’10]

36

Stress estimation induced by TSVs

Mobility change (∆µ/µ) calculation

Verilog, SPEF merging for 3D STA

Cell characterization with mobility (Cell name change in Verilog)

TSV stress aware layout optimization

Pre-placed TSV location

Liberty file having cell timing with different

mobility

Stress aware Verilog netlist

Critical gate selection

3D Timing Analysis with PrimeTime

Optimized layout with TSV stress

Verilog netlist

Page 37: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

37

Stress-Aware ECO

3

7

2

4

8 9

3

7

2

4

8 9 Rising critical optimization

with hole contour

Falling critical optimization

with electron contour

Original cell placement After cell perturbation

Page 38: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

38

The “Moore”, the Merrier!

t More Moore •  Nano-Patterning for Extreme Scaling

•  Lithography Aware Physical Design

t A different kind of “Moore” •  3D Integration

•  New devices (e.g., nanophotonics) …

è Need synergistic design and technology co-optimization for cross-layer resilience

Page 39: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Nanophotonics On-chip Integration

t Holistic Optical Interconnect Planning and Synthesis ›  Co-design and optimization with electrical interconnect ›  Optical interconnect library (OIL) ) [Ding+, DAC’09,

SLIP’09, and available http://www.cerc.utexas.edu/~ding/oil.htm] ›  WDM, partitioning, routing, …

t Nanophotonics is a very active field t Many new research problems for CAD community!

Electro-Optical Interconnect Planning

Electro-Optical Interconnect Synthesis

Page 40: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Case Study 1: O-Router [Ding et al, DAC’09]

t  Objectives: performance (throughput, latency, power), cost ($$, economics)

t  Constraints (SNR, signal integrity, reliability, system-level reqs.)

pin2

Si

Metal  L ayerspin1

pin2

transistor  layeroptical  waveguide

SiDedicated  transistor  layer

Metal  L ayerspin1

pin3

Si

dedicated  photonic  layer

Metal  L ayers

optical  waveguide

pin1

Metal  L ayers

-­‐ optical  and  electrical  data  conversion

-­‐ wafer-­‐to-­‐wafer  T SV

pin2pin2

Si

Metal  L ayerspin1 pin3

pin4

transistor  layeroptical  waveguide

SiDedicated  transistor  layer

Metal  L ayerspin1

pin3

Si

dedicated  photonic  layer

Metal  L ayers

optical  waveguide

pin1

Metal  L ayers

-­‐ optical  and  electrical  data  conversion

-­‐ wafer-­‐to-­‐wafer  T SV

-­‐ optical  and  electrical  data  conversion

-­‐ wafer-­‐to-­‐wafer  T SV-­‐ wafer-­‐to-­‐wafer  T SV

pin4

(b)(a)

R R

R

R R

P2-1

P1-1P1-2

P3-1

P2-1

P1-1P1-2

P1-3

P1-4P2-2P3-2

P1-3

P1-3P2-1P1-1

P1-2

P1-2

P1-1

P2-1 P1-3

P1-1

P1-2

P1-3

P1-4

P2-3

P2-2

P2-1

P3-1

P3-2

P3-3

P4-1 P4-2

P4-3

(c)

pin2

Si

Metal  L ayerspin1

pin2

transistor  layeroptical  waveguide

SiDedicated  transistor  layer

Metal  L ayerspin1

pin3

Si

dedicated  photonic  layer

Metal  L ayers

optical  waveguide

pin1

Metal  L ayers

-­‐ optical  and  electrical  data  conversion

-­‐ wafer-­‐to-­‐wafer  T SV

pin2pin2

Si

Metal  L ayerspin1 pin3

pin4

transistor  layeroptical  waveguide

SiDedicated  transistor  layer

Metal  L ayerspin1

pin3

Si

dedicated  photonic  layer

Metal  L ayers

optical  waveguide

pin1

Metal  L ayers

-­‐ optical  and  electrical  data  conversion

-­‐ wafer-­‐to-­‐wafer  T SV

-­‐ optical  and  electrical  data  conversion

-­‐ wafer-­‐to-­‐wafer  T SV-­‐ wafer-­‐to-­‐wafer  T SV

pin4

pin2pin2

Si

Metal  L ayerspin1

pin2

transistor  layeroptical  waveguide

SiDedicated  transistor  layer

Metal  L ayerspin1

pin3

Si

dedicated  photonic  layer

Metal  L ayers

optical  waveguide

pin1

Metal  L ayers

-­‐ optical  and  electrical  data  conversion

-­‐ wafer-­‐to-­‐wafer  T SV

-­‐ optical  and  electrical  data  conversion

-­‐ wafer-­‐to-­‐wafer  T SV-­‐ wafer-­‐to-­‐wafer  T SV

pin2pin2

Si

Metal  L ayerspin1 pin3

pin4

transistor  layeroptical  waveguide

SiDedicated  transistor  layer

Metal  L ayerspin1

pin3

Si

dedicated  photonic  layer

Metal  L ayers

optical  waveguide

pin1

Metal  L ayers

-­‐ optical  and  electrical  data  conversion

-­‐ wafer-­‐to-­‐wafer  T SV-­‐ wafer-­‐to-­‐wafer  T SV

-­‐ optical  and  electrical  data  conversion

-­‐ wafer-­‐to-­‐wafer  T SV-­‐ wafer-­‐to-­‐wafer  T SV

pin4

(b)(a)

R R

R

R R

P2-1

P1-1P1-2

P3-1

P2-1

P1-1P1-2

P1-3

P1-4P2-2P3-2

P1-3

P1-3P2-1P1-1

P1-2

P1-2

P1-1

P2-1 P1-3

P1-1

P1-2

P1-3

P1-4

P2-3

P2-2

P2-1

P3-1

P3-2

P3-3

P4-1 P4-2

P4-3

(c)

Page 41: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

Case Study 2: GLOW

t Global router for low-power thermal-reliable optical interconnect synthesis using Wavelength Division Multiplexing (WDM)

41

Minimize Power (Laser driving power)

Circuit implementation

Max{inter. Delay} <= A

Max{SNR} <= B

Min{Ther. Reliability} >= C

Min{Pathend power} >= D

Synthesis Engine GLOW for On-Chip Optical/Electrical Interconnect

[Ding et al, ASPDAC’12]

Page 42: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

42

Conclusion

t  Optical lithography still pushing ahead for 14nm, 11nm, 7nm è extreme scaling ›  Multiple patterning, EUV, DSA, and hybrid lithography

t  Design enablement with lithography capability co-optimization from mask to physical synthesis (and higher level, e.g., NSF/SRC FRS) ›  Cross-layer resilience

t  Horizontal scaling è Vertical scaling: 3D-IC ›  Reliability/Variability issues

t  New material/devices è new CAD paradigms and tools

Page 43: Nanometer IC Design for Manufacturability and Reliability in …ewh.ieee.org/r5/central_texas/ceda/other_files/CEDA... · 2013. 11. 12. · Triple Patterning! Extension of double

43

Acknowledgment

t Support/collaboration from NSF, SRC, NSFC, Sematch, IBM, Intel, Oracle, Fujitsu, Qualcomm, Synopsys, Mentor Graphics, Toshiba, …

t The materials in this talk include results from many former/current PhD students at UTDA

›  They are the ones who did the real work!

t Collaborators ›  DFM: IBM, Intel, Globalfoundries, Mentor, Synopsys, etc. ›  3D-IC: Prof. Sung Kyu Lim’s group at Georgia Tech ›  Optical: Prof. Ray Chen’s group at UT Austin