Author
mitsubisa
View
152
Download
1
Tags:
Embed Size (px)
DESCRIPTION
nano pigment
Yun Shao, Ph.D.
Kobo Products, Inc.New Jersey, USA
Application and Dispersionof
Nano Pigments for Color Cosmetics
Outline
1. Introduction of nano pigments
2. Comparison of color strength
3. Dispersion and color development of nano pigments
4. UV protection by nano pigments
5. Color development of organic lakes
6. Conclusions
1. Introduction
Color General Formula Shape Size (m)
Red Fe2O3 Spheroid 0. 2 ~ 0.5
Yellow Fe2O3. H2O Acicular 0.1 ~ 0.25 x 0.6 ~ 0.8
Black FeO . Fe2O3 Spheroid 0. 2 ~ 0.5
Tan ZnO . Fe2O3; MgO . Fe2O3 Acicular 0.2 ~ 0.3 x 1 ~ 1.5
Brown Blend of R,Y and B Mixed 0.2 – 0.5
Common Iron oxides
1. Introduction
Color General Formula Shape Size (m)
Red Fe2O3 Spheroid 0. 2 ~ 0.5
Yellow Fe2O3. H2O Acicular 0.1 ~ 0.25 x 0.6 ~ 0.8
Black FeO . Fe2O3 Spheroid 0. 2 ~ 0.5
Tan ZnO . Fe2O3; MgO . Fe2O3 Acicular 0.2 ~ 0.3 x 1 ~ 1.5
Brown Blend of R,Y and B Mixed 0.2 – 0.5
Common Iron oxides
Pigmentary Titanium Dioxide
Structure: Rutile or AnataseFormula: TiO2
Size: 0.15 - 0.25 m
Higher opacity
Scattering
White light White light
1. TiO2
Generation of color
Refractive Index:
2.76 (R), 2.52 (A)
• White color (or opacity) is generated by scattering light.
• Maximum scattering occurs when the particle size is around 0.2 m.
When size gets smaller, it will loose opacity and get transparent
RedRedWhite light
Color Stronger & Deeper
ScatteringAbsorption
White light
2. Iron Oxides
• Color is generated by both Scattering and Absorption
• Absorption will increases as the size decreases
• Maximum scattering occurs when size is around 0.2 m
R.I.: 2.90 (R), 2.26 (Y), 2.42 (B)
Generation of color
Drawbacks of pigmentary grades
1. High refractive index leads to strong scattering and high opacitywhich results in a dull appearance
2. Large particle size often generates unpleasant skin feel
3. Size reduction can improve skin feel and absorption, but increasethe opacity in most cases.
4. Primary particle size now comes into play
Transparent pigments
Transparent pigments
1. Transparent oxides
Particle size: 100 nm in length, 10 - 20 nm in widthApplication: automotive paints
wood finishesartist coloursindustrial coatingssome plastic applicationscosmetics
Transparent pigments
1. Transparent oxides
Particle size: 100 nm in length, 10 - 20 nm in widthApplication: automotive paints
wood finishesartist coloursindustrial coatingssome plastic applicationscosmetics
2. Transparent TiO2
Particle size: 10 - 60 nm, larger size for some gradesApplication: mainly for use as sunscreens
Common nano iron oxides
Primary Particle Aggregate Agglomerate
Product SupplierPrimary particle
size (m)Mean Particle
Size (m)Trans-oxide Red Cookson Matthey 0.02 x 0.1 54.9Tarox TRR -100 Sakai 0.02 x 0.1 72.5Ferroxide Red Rockwood 0.08 – 0.1 ---
Trans-oxide Yellow Cookson Matthey 0.02 x 0.1 56.9Tarox TRY-100 Sakai 0.02 x 0.1 72.7
Trans-oxide Black Cookson Matthey ~ 0.01 ---Black NF Kobo 0.2 2.1
Ferroxide Orange Rockwood 0.07 ----
New Grade of nano iron oxide
FRO-3-LPConventional
Transparent OxidePigmentary Oxide
Particle shape Spherical Acicular Irregular
Particle size (nm) 30 20 x 100 700Oil Absorption(cc/100g)
14 48 12
Specific SurfaceArea (m2/g)
37 120 3
Less aggregation and easy to disperse
SEM Pictures of Iron Oxides (from Titan Kogyo)
Nano TiO2 for color cosmetics
100nm- High UV-A protection- Low oxidation/photocatalytic activity
- Moderate opacity (to be discussed)
Crystal form Rutile
TiO2 (%) 95-99
Surface Treatment Al(OH)3
Specific Surface Area(m2/g)
23-27
Particle size (nm) 60
KQ-1 from ISK
Nano TiO2 for color cosmetics
Crystal form Rutile
TiO2 (%) 94
Surface Treatment Al(OH)3
Specific Surface Area(m2/g)
130
Particle size (nm) 150
ST-490 from Titan Kogyo
- UV-A protection- Fan shape- Easy to disperse
2. Comparison of color strength
Color Analysis (CIE Lab) of Tint Strength(std: C33-128 Cosmetic Russet; C33-8073 Cosmetic Yellow)
2. Comparison of color strength
Color Analysis (CIE Lab) of Tint Strength(std: C33-128 Cosmetic Russet; C33-8073 Cosmetic Yellow)
-15
-10
-5
0
5
10
15
Δ L Δ a Δ b Δ C Δ H Δ E
Red
Yellow
Color Strength vs. StdTrans Red 49.0%
Trans Yellow 83.5%
2. Comparison of color strength
Color Analysis (CIE Lab) of Tint Strength(std: C33-128 Cosmetic Russet; C33-8073 Cosmetic Yellow)
-15
-10
-5
0
5
10
15
Δ L Δ a Δ b Δ C Δ H Δ E
Red
Yellow
Color Strength vs. StdTrans Red 49.0%
Trans Yellow 83.5%
-10
-5
0
5
10
15
Δ L Δ a Δ b Δ C Δ H Δ E
Red
Yellow
Color Strength vs. StdTRR-100 56.9%TRY-100 84.6%
0
5
10
15
20
25
30
35
L a b
Premix 1 2 3
No effect of additional grindingcan be observedPremix 1st 2nd 3rd
19 0.54 0.53 0.51 m
1. 75% ITT treated red iron oxide in cyclomethicone2. Dispersant : KP-575
Iron oxide dispersion (CMKP75R) -effect of size
Color Analysis (CIE Lab) of Masstone
More grinding makes color
• Darker
• Bluer
Dried Drawdown
0
10
20
30
40
L a b
Premix 1 2 3
Premix 1st 2nd 3rd19 0.54 0.53 0.51 m
CMKP75R Dispersion : Masstone
0
20
40
60
L a b
Premix 1st 2nd
• Similar to dried masstone
• More grinding results inhigher color strength
Iron oxide : TiO2 = 15 :85
Premix 1st 2nd 3rd
CMKP75R : Tint strength comparison
Color Analysis of Tint Strength
95
96
97
98
99
Premix 1st 2nd
0
0.2
0.4
0.6
0.8
Siz
e( m
m)
L Size
• More grinding results inslightly lower brightness
• Crowding effect
Dispersant: Abil EM 97Solids: 70%
Premix 1st 2nd
Silane treated TiO2 dispersion : Effect of Size
Color and Size Analysis
L
45
47
49
51
53
Premix 1st 2nd
-10
-8
-6
-4
-2
0
a b
Premix 1st 2nd
More grinding Higher opacity(Opposite to masstone)Bluer Color
TiO2 : Black iron oxide = 85 :15
Premix 1st 2nd
Tint strength comparison : silane treated TiO2
• General mechanism :
› Shear force
› Impact action
• Formulation Considerations :
› Primary particle size
› Surface treatment
› Carrier
› Dispersant
3. Dispersion of the pigment and color development
Chunky paste
Chunky paste
Viscous slurry
Fluid
w/o
dis
per
san
tw
/d
isp
ers a
nt
A B
C D
15nm TiO2 : 45% *
Treatment : Methicone (B & D)
Vehicle : Cyclopentasiloxane
Dispersant : 10 % KF-6017 (C & D)
* note : in mix A, only 33% TiO2was used (maximum amountpossible)
Untreated Treated
Surface Treatment -- Pre-Wetting of the Pigment
Easy handlingBetter dispersion
Common surface treatments
ChemicalSurface
property
Compatible
vehicle
Metal Soap (AHSA)
Isopropyl Titanium
Triisostearate
LipophilicEster
Oil
Organic
coating
Methicone
Dimethicone
Triethoxy Caprylylsilane
HydrophobicSilicones
Ester
C9-15 Fluoroalcohol phosphateLipophobic and
HydrophobicSilicones
Simethicone Amphoteric
Water
Oil
Silicones
Triethanolamine
PolyolHydrophilic Water
Inorganic
coating
Silica
Alumina
Zirconium oxide
Sodium hexametaphosphate
Hydrophilic Water
Effect of size on surface treatment and dispersibility
Nano pigment:• Small primary particle size, large surface area• High surface energy for more severe aggregation and reactivity
Surface treatment: Needs more coatingDispersion: Low pigment load and hard to grind
Pigment Surface Area% of
CoatingSolids% inDC 5225C
C33-218 Cosmetic Russet < 10 m2/g 1 –2 70
Trans-oxide Red ~ 80 m2/g 10 30
Nano iron oxide in C12-15 alkyl benzoate
Iron Red Iron YellowTN45TOR T N70R TN45TOY TN55Y
Raw Pigment Transoxide Pigmentary Transoxide PigmentarySurface treatment TCS ITT TCS ITTSolids,% 45 70 45 70Viscosity, cPs 178,400 247,000 210,000 85,000Dispersion size (nm) 112 290 102 350
TCS: triethoxy carprylylsilane; ITT: isopropyl titanium dioxide
TN45TOR TN70R TN45TOY TN55Y
-10
-5
0
5
10
15
20
Δ L Δ a Δ b Δ C Δ H Δ E
TN45TOR
TN45TOY
Nano iron oxides in ester ---tint strength
TN45TOY TN55Y
TN45TOR TN70R
TN45TOY TN55Y
Color Analysis (CIE Lab) of Tint Strength
Color Strength vs. StdTrans Red 69.3%
Trans Yellow 120.2%
Dispersion of 100 nm TiO2
DispersionPPS(nm)
Surfacetreatment
PS(nm)
%
INH65K9 100 ITT/w s 190 65
IN80C 170 ITT 263 80
Dispersion inIsononyl Isononanoate
INH65K9 IN80C-6
-4
-2
0
2
4
6
Δ L Δ a Δ b Δ C Δ H Δ E
Color Analysis of Tint Strength
TiO2 : Iron black = 85 : 15
Result: Less opaque, bluer
Dispersion inCyclomethicone
CM3K50KQM CM3FA70STC
DispersionPPS(nm)
Surfacetreatment
PS(nm)
%
CM3K50KQM 60 MS 185 50
CM3FA70STC 170 MS 280 70
Dispersion of 60 nm TiO2
-8
-6
-4
-2
0
2
4
6
8
Δ L Δ a Δ b Δ C Δ H Δ E
Color Analysis of Tint Strength
TiO2 : Iron black = 85 : 15
Result: much less opaque and more bluer
4. UV Protection from nano pigments
0
20
40
60
80
100
280 320 360 400 440 480 520 560 600 640 680
Wavelength (nm)
T%
0.001%
UV Visible
Nano Yellow
Nano red
Pig. yellow
Pig. red
UV/Vis transmittance curves of nano iron oxides
UV/Vis transmittance curves - TiO2 Dispersions
0
20
40
60
80
100
280 320 360 400 440 480 520 560 600 640 680
Wavelength (nm)
T%
UV Visible
PPS:
60 nm
100 nm
180 nm
Premix Milled
5. Color development of organic lakes
Raw Pigment Red 6 Ba Lake
Surface treatment ITT
Solids,% 30
Dispersion size (nm) 386
Red 6 lake in synthetic wax(SW30R6B) Formula
* Size of powder: 3 - 6 microns.
Gloss and feel are much improved as particle size getsmilled down.
-2
0
2
4
6
8
DL* Da* Db* DC DH DE
Masstone
-4
-2
0
2
4
6
8
DL* Da* Db* DC DH DE
Tint Strength
Color development of lakes - Dispersion vs. Powder
Color property --Red 6 Ba lake dispersion vs. powder
Color strength is greatly increased when the particle sizeis reduced to submicron
Conclusions:
Conclusions:
1. Nano pigments have their unique properties and requiremore considerations in:
• Surface treatment• Color development
Conclusions:
1. Nano pigments have their unique properties and requiremore considerations in:
• Surface treatment• Color development
2. Nano pigments can provide more UVA protection and helpboost SPF.
Conclusions:
1. Nano pigments have their unique properties and requiremore considerations in:
• Surface treatment• Color development
2. Nano pigments can provide more UVA protection and helpboost SPF.
3. Milling organic lakes is important for their color development.
Conclusions:
1. Nano pigments have their unique properties and requiremore considerations in:
• Surface treatment• Color development
2. Nano pigments can provide more UVA protection and helpboost SPF.
3. Milling organic lakes is important for their color development.
4. Although nano pigments have been available on marketplacefor many years, use in cosmetics still needs to be explored.