26
NAMING IONS & FORMULAS FOR IONIC COMPOUNDS Sections 9.1 & 9.2

Naming IONS & formulas for Ionic Compounds

  • Upload
    euclid

  • View
    79

  • Download
    0

Embed Size (px)

DESCRIPTION

Sections 9.1 & 9.2. Naming IONS & formulas for Ionic Compounds. Type of Ion Formed. Remember that the representative elements behave in a predictable manner when determining the type of ion they will form. The group # ( 1A-8A ) tells how many valence electrons each has (except for helium). - PowerPoint PPT Presentation

Citation preview

Page 1: Naming IONS & formulas for Ionic Compounds

NAMING IONS & FORMULAS FOR IONIC COMPOUNDS

Sections 9.1 & 9.2

Page 2: Naming IONS & formulas for Ionic Compounds

Type of Ion Formed

• Remember that the representative elements behave in a predictable manner when determining the type of ion they will form.

• The group # (1A-8A) tells how many valence electrons each has (except for helium).

Page 3: Naming IONS & formulas for Ionic Compounds

Forming an Ion

Page 4: Naming IONS & formulas for Ionic Compounds

Forming an Ion• Remember

that ions are different in size from the atomic form of the element. This affects crystalline structure, but not ratios in formulas.

Page 5: Naming IONS & formulas for Ionic Compounds

Review of Naming Cations

• For metallic elements, naming cations that are formed is easy. The name of the ion is the same as the name of the atom, just followed by the word “ion” or “cation.”

Page 6: Naming IONS & formulas for Ionic Compounds

Transition Metal Cations

• Transition metals are not easy to predict. Several will readily form more than one type of ion. Roman numerals also are part of their names. • Others to know are silver (Ag+),

gold (Au+), zinc (Zn2+) and cadmium (Cd2+).

Page 7: Naming IONS & formulas for Ionic Compounds

Review: Naming Anions

• The atom name endings (suffix) is changed to –ide, and it is followed by either “ion” or “anion.”

• Fluorine atom becomes a fluoride ion, sulfur atom becomes sulfide ion, and phosphorus atom becomes phosphide ion.

• Group 4A and 8A tend not to form ions.

Page 8: Naming IONS & formulas for Ionic Compounds

Transition Metal Ion Use

• The transition metal compounds are frequently very bright in color, so they are frequently used as pigments (to color other materials).

• For example:• chromium compounds are used to make yellow,

orange, red or green paints.• Cadmium compounds produce colors from

yellow to red to maroon.

Page 9: Naming IONS & formulas for Ionic Compounds

Practice

Write the symbol (including the charge) for the ion formed by each element and then name the ion and classify it as an anion or a cation:ArsenicBerylliumAstatineGallium

Page 10: Naming IONS & formulas for Ionic Compounds

Mono- versus Poly-

• All of these ions we’ve discussed are called monatomic ions – ions formed when one atom forms an ion.

• Ions also exist that are polyatomic ions – these are tightly bound groups of atoms that behave as a unit and carry a charge.

• Most polyatomic ions are anions and usually end in “ite” or “ate;” however, there are some exceptions to this rule.

Page 11: Naming IONS & formulas for Ionic Compounds

Polyatomic Suffixes• The two exceptions included

in the table are cyanide and hydroxide.

• You may also encounter a couple of polyatomic cations, which end in “ium”: the ammonium ion (NH4

+) and hydronium ion (H3O+).

• You should study your ion flashcards again this chapter.

Page 12: Naming IONS & formulas for Ionic Compounds

Polyatomic Suffixes

• One thing you may notice about polyatomic anions ending in “ite” or “ate” is that they always refer to anions containing oxygen.

• The “ite” suffix indicates that the ion has one less oxygen than a polyatomic ion with the “ate” ending (but it doesn’t tell you how many that is).

Page 13: Naming IONS & formulas for Ionic Compounds

Similar Polyatomics

• Notice also that some of these ions are similar, they just have an H as part of the formula – think of this as having a hydrogen ion (H+) combined with the polyatomic ion (notice that the anionic charge is one less when H is part of the formula – from adding a +1 to the charge).

• Look at PO43-, HPO42- and H2PO4-.

Page 14: Naming IONS & formulas for Ionic Compounds

Classical Naming• One other thing you should

be aware if is that initially their naming system differed from the system we use today.

• In the “classical” system, the elements that had more than one possible charge were named using “ous” or “ic” as suffixes, with “ous” being used on the cation with the lower charge, as shown in the table:

Page 15: Naming IONS & formulas for Ionic Compounds

Naming Compounds

• Scientists used to make up their own names for compounds so its name described its properties, source or use:• Baking soda – used to

make cakes rise when baked

• Plaster of paris – plaster used to make face masks

Page 16: Naming IONS & formulas for Ionic Compounds

Naming Systematically

• Antoine Lavoisier and other chemists decided to come up with a systematic method for naming compounds (so they wouldn’t have to memorize all the names).

• The easiest ones to name are binary ionic compounds – these consist of two types of ions joined together: the name of the compound is just the combination of the ion names, with the cation name always given first.

Page 17: Naming IONS & formulas for Ionic Compounds

Naming Systematically

• Before we practice naming binary ionic compounds, first recall that ions will combine in a way that the result has no charge (the positive and negative charges will balance).

Sn4+ bound to F- would be: SnF4

This is called: tin(IV) fluoride

Page 18: Naming IONS & formulas for Ionic Compounds

Naming Systematically

• Also, you should know that if you wish to indicate that there are 2 or more units of a polyatomic ion in one formula unit of the compound, use parentheses around the polyatomic ion formula.

• It would take 2 nitrate cations to balance with one calcium ion in calcium nitrate:

Ca2+ bound to NO3- would be: Ca(NO3)2

Page 19: Naming IONS & formulas for Ionic Compounds

Practice Naming Binary Ionic:

NaF MgCl2

Cs2O FeCl2

MnF3 CaSO4

Page 20: Naming IONS & formulas for Ionic Compounds

Practice Naming Binary Ionic:

Na2CO3 NaHCO3

Cu(NO2)2 KC2H3O2

Zn(OH)2 NH4Cl

Page 21: Naming IONS & formulas for Ionic Compounds

Taking it the other way:

• If you know the name of a binary ionic compound, you can write the formula – just remember to make sure that your formula has the proper number of each type of ion to insure that the charges add to give zero.

• Start with the formulas of the ions involved along with their charges. Then “crisscross” the charges to get the subscripts – finish by making sure the ions are in a simplified ratio in the formula.

Page 22: Naming IONS & formulas for Ionic Compounds

Using the Crisscross Method• Iron(III) oxide

• Iron(II) oxide

• Cobalt(II) phosphate

• Silver sulfite

• Calcium dihydrogen phosphate

Page 23: Naming IONS & formulas for Ionic Compounds

Practice

Write formulas for compounds formed from these pairs of ions, then name the compounds:Ba2+, S2- Li+, O2-

Ca2+, CN- NH4+, I-

Page 24: Naming IONS & formulas for Ionic Compounds

Practice

Write formulas for these compounds:Sodium iodide Stannous chloride

Potassium sulfide Plumbic fluoride

Lithium hydrogen sulfate Chromium(III) nitrite

Page 25: Naming IONS & formulas for Ionic Compounds

Review:

• Three things must be considered when naming ionic compounds:• The identity of ions• The order of the names (cation first)• The possibility that an element may form

cations with more than one charge (so you must use roman numerals)

• Name FeN, Mg(NO3)2 and (NH4)2C2O4.

Page 26: Naming IONS & formulas for Ionic Compounds

References http://www.calzim.com/online/online2_1/class_material/unit1/ion.gif http://www.roymech.co.uk/images14/lewis_elements.gif http://

www.middleschoolchemistry.com/img/content/multimedia/chapter_4/lesson_6/lewis_dot_table.jpg http://www.kanescience.com/_images/chem_ionic/sodium_ions.png http://www.calzim.com/online/online2_1/class_material/unit1/unit1.htm http://www.personal.kent.edu/~cearley/ChemWrld/compounds/ionictable.gif http://

www.chem.uwec.edu/Chem103_F08_F0F/pages/resources/media/transitions_metal_ions_Silberberg_table_2.4.jpg

http://wps.prenhall.com/wps/media/objects/1053/1078773/tools/HPMP.table.2.4.gif http://www.behsscience.com/apchem/chapter7/ion_size.jpg http://www.chemicalregister.com/storefront/cr/3099/f-Pigments.gif http://3.bp.blogspot.com/-

tM9zAA_mvZ0/Td-V4G0HG_I/AAAAAAAAAXE/x_Zx-i-OICo/s1600/baking-795089.JPG http://images.melissaesplin.com/wp-content/uploads/2009/03/_dsc1749sm.jpg http://reich-chemistry.wikispaces.com/file/view/HSantoin.jpg/44989145/HSantoin.jpg