108
N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al (Lockheed Missiles and Space Unclas Co.) Oct. 1971 94 p CSCL 03B 1 1.3 61 . G3/13 361 r1RAA LK UK IMA UK AU NUMBER) f (CATEGORY) Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151 https://ntrs.nasa.gov/search.jsp?R=19720006714 2018-07-19T13:24:27+00:00Z

N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Embed Size (px)

Citation preview

Page 1: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. ttNende, et al (Lockheed Missiles and Space

Unclas Co.) Oct. 1971 94 p CSCL 03B1 1.3 61 . G3/13361 r1RAA LK UK IMA UK AU NUMBER) f (CATEGORY)

Reproduced by

NATIONAL TECHNICALINFORMATION SERVICE

Springfield, Va. 22151

https://ntrs.nasa.gov/search.jsp?R=19720006714 2018-07-19T13:24:27+00:00Z

Page 2: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

NASA CR 114379

AIRBORNE AURORAL DATA

AND SATELLITE DATA ANALYSIS

FINAL REPORT

By S.B. Mende and R.H. Eather

Distribution of this report is provided

in the interest of information exchange.

Responsibility for the contents resides

in the author or organization that pre-

pared it.

October 1971

Prepared Under Contract No. NAS2-6299

By

Lockheed Palo Alto Research Laboratories

For

Ames Research Center

National Aeronautics and Space Administration

Page 3: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

SUMMARY

The photometric data taken during the 1969 CV990 expedition

were analyzed in more detail. It was found that the so-called soft

auroral zone extends right through the night side auroral zone.

The soft precipitation is a permanent feature of the night side

auroral zone and probably signifies the position of the plasma

sheet. The harder auroras which include the conventional visible

auroras occur less frequently. The intensity and mean energy of

auroral electrons is correlated suggesting that the fluctuation in

auroral intensity comes primarily from the variability of the

acceleration mechanism rather than the variations in the particle

population densities. The results were published in a number of

oral presentations and in scientific journals. During the 1969

CV990 expedition, coordinated data was taken with the Lockheed

particle experiments on OV1-18 and ATS-5 satellites. The satellite

data was reduced to facilitate coordinated investigations with the

airborne experimenters. The airborne photometric X5200 NI data

were analyzed and the effective life time was found to be 4.5

minutes.

-1-

Page 4: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

OBJECTIVE

To provide a final summary of the work accomplished in the

program entitled "Satellite Data Analysis" under Contract Number

NAS2-6299.

INTRODUCTION

In the framework of a previous program entitled "6 Channel

Photometric Observations from the CV990 Aircraft" (NASw 1997),

Lockheed instrumentation and scientific personnel took part in

the 1969 NASA CV990 auroral aircraft expedition.

The data taken during this expedition was combined with the

data taken during the 1968 expedition and was analyzed during the

present program.

The data obtained during the two expeditions constitutes an

extremely fine body of absolute photometric observations of the

aurora. No comparable body of data having such extensive coverage,

high sensitivity, and high resolution exists. The absolute

calibration permits the direct interpretation of the measurements.

The regularity and frequency of the observations permits the use

of statistical methods. The zenithal total column intensity

measurements can be very simply interpreted as absolute particle

intensities. The high altitude aircraft platform permitted the

spatial scanning of the aurora. The uncertainties normally intro-

duced by lower atmospheric scattering and absorption are minimized

by the high altitude aircraft platform.

The analysis of the data did produce some very significant

results in the understanding of the auroras. Further analysis

of this type of data still promises great returns and there are

a large number of questions which could be answered by the more

detailed analysis of these data.

-2-

Page 5: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

There have been a number of observations during the 1969 air-

craft expedition which were coordinated with the Lockheed experiments

on OV1-18 and ATS-5 satellites. One of the purposes of this contract

was to reduce the satellite data into a form which is amenable for

analysis and comparison with the airborne data.

ACCOMPLISHMENTS

New Results From Photometric Data

The Lockheed airborne data was analyzed in more detail and a

number of new discoveries were made during the period of this con-

tract as regards to the properties of the aurora.

1. The dayside soft-zone is associated with the dayside cusp region

and the particles are soft being of magnetosheath energies

(Eather and Mende, 1971a).

2. In the nightside auroral zone, two types of electron auroras

occurred; namely, the hard aurora generated by electrons in the

keV range and the softer aurora, often subvisual, generated by

electrons in the 100-1000 eV range (Eather and Mende, 1971b).

3. The occurrence of soft auroras are very widespread and occur con-

tinuously within the nightside of the oval. The hard types occur

less frequently. The nightside soft zone at higher latitude is

caused by the absence of the hard components (Eather and Mende,

1971c).

4. The soft precipitation is related to the plasma sheet, both in

mean energy and flux of electrons (Eather and Mende, 1971b).

5. The intensity of auroras are correlated with mean energy. The

ratio of 6300 and 4278 intensities decreases with increasing 4278

intensity. The 5577 to 4278 intensity ratio also follows this

same tendency, but to a lesser extent (Eather and Mende, 1971c).

6. The mean electron energy at precipitation fluctuates very largely

in the aurora while the number flux is relatively constant (Eather

and Mende, 1971b,c).

7. A technique was developed in which a rough measurement of auroral

primary parameters could be obtained from ground based observa-

tions. These parameters are: proton flux, electron energy flux,

-3-

Page 6: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

mean electron energy parameter. This provides a technique of

monitoring these quantities without the use of a spacecraft

(Eather and Mende, 1971c).

Reduction of Satellite Data

The satellite data were reduced to absolute calibrated partikcIe

fluxes for the coordination periods listed. The satellite data are

included in this report as Appendix 2.

Dissemination of the Airborne Phobometer Data

The Lockheed photometric airborne data was distributed in March

1971 in a format requested by the other experimenters. The program

was rerun and the required number of output copies were generated by

Lockheed.

X5200 NI Analysis

X5200 NI is a forbidden line from atomic nitrogen with a very

long upper-level lifetime of 26 hours. Hence, quenching is severe,

but the line still appears in auroral spectra with appreciable

intensity, implying that the excitation rate to the upper level

must be exceedingly large.

We have previously reported statistical plots of the rates of

X5200/X4278 as a function of latitude, and shown that such a plot

confirms the existence of soft-electron precipitation at high lati-

tudes (Eather and Mende, 1971).

Page 7: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

We have also attempted to determine the effective lifetime

of the D upper level. Fig. 1 shows a plot of X5200, x6300 and

X5577 during about 1 hour of active aurora. It may be seen that

X5200 and x6300 show very similar behavior, and both are sluggish-

compared to x5577. This implies X5200 and x6300 have quite simi-

lar effective lifetimes. We filtered the X5577 signal with a

t = 100 sec filter, using digital computer techniques and got the

curve labeled "filtered 5577.' From this we see that during the

first 20 minutes of the event, 100 sec is a fair estimate of effec-

tive lifetime of both X6300 and X5200.

We used data from all flights to determine the fractional

change in X5200 intensity and x6300 intensity for a given fractional

change in the excitation rate (proportional to X4278 N2 intensity),2

and these results are shown in Figure 2. It may be seen that, on the

average, X5200 is more sluggish then x6300 and does not follow changes

in the excitation rate as quickly as does x6300. To a first approxi-

mation, the ratio of slopes on the graph gives ratios of effective upper-

level lifetimes.

i.e. NI 2D effective lifetime - 2.7 x OI 1D effective lifetime

Most x6300 emission comes from ~ 250 km with effectife lifetimes

of 100 sec, so we imply the NI 2D effective lifetime is 4-1/2 min-

utes. This agrees well with an independent determination from airglow

measurements (Weill, 1969).

Any further analysis (such as deriving excitation rates and

height of emission) involves a knowledge of excitation and quenching

processes, and we do not know enough about these to make this a pro-

fitable exercise. Dr. M.H. Rees is considering if he can use his

measurements of NI ( 2P - 4S) at X3466 to further this investigation.

-5-

Page 8: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

PUBLICATIONS

In accordance with the contract, the results were published and

the project scientists attended meetings where they read papers.

Dr. S. B. Mende and Dr. R. H. Eather were both at the AGU meet-

ing in Washington in April 1971 and both gave related papers.

Dr. R. H. Father presented a paper at the Advanced Study Institut,

Dalseter, Norway, April 1971.

Dr. S. B. Mende attended the IUGG meeting in Moscow in August

1971 where a paper was. given. Similarly, he attended the Cortina

Advanced Study Institut in September 1971 and presented another short

paper.

Complete list of publications of this year's work arising from this

contract is in Appendix 1 of this report.

CONCLUSIONS

The satellite data have been reduced into a suitable form for

coordinated investigation. There are a number of interesting possi-

bilities in coordinating with airborne experimenters. Quantitative

comparisons can be made so that the absolute efficiencies generating

the visible and infrared emissions could be evaluated.

The Lockheed photometric data should be analyzed further and

substorm times introduced into the data. All the data analysis so

far took large averages regardless of the status of the magneto-

sphere. The substorm occurrence times should be established for all

flights from world wide magnetograms. This then has to be intro-

duced into the statistical analysis.

The conclusions of the airborne photometer experiment are sum-

marized in the review paper entitled "High Latitude Particle Pre-

cipitation and Source Regions in the Magnetosphere." A preprint

of this paper is attached to this report as Appendix 3.

-6-

Page 9: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

REFERENCES

1. Eather,

2. Eather,

R. H., S. B. Mende, Airborne Observations of Auroral

Precipitation Patterns. J. Geophys. Res. 76, pp. 1746-

1755, 1971a.

R. H., S. B. Mende, High Latitude Precipitation and Source

Regions in the Magnetosphere. Magnetosphere Ionosphere

Interactions, Dalseter, Norway, April 1971b.

3. Eather, R. H., S. B. Mende, "Systematics in Auroral Energy Spectra."

J. Geophys. Res. Accepted for publication, 1971e.

4. Weill, G. M., NI( 4S - 2D). Radiation in the night airglow and

low latitude aurora. Atmospheric Emissions Ed.

B. M. McCormac, Van Norstad, pp. 449-470.

5. Reed, R. D., E. G. Shelley, J. C. Bakke, T. C. Sanders and

J. D. McDaniel, IEEE Trans. Nucl. Sci-NS-16, 359, 1969.

6. Sharp, R. D., E. G. Shelley, R. G. Johnson, G. Paschman,

J. Geophys. Res. 75, 6092, 1970.

7. Paschman, G., Untersuchungen des Elektroneneinfalls in die

polare atmosphare, Doctor's Thesis, Max Planck Institut

fur Physik und Astrophysik, Munich, Germany, March 1971.

8. Sharp,

9. Sharp,

R. D., R. G. Johnson, Low energy auroral particle measure-

ments from polar satellites, in "The Radiating Atmosphere"

Ed. by B. M. McCormac, Reidel Publ. Co., Dordrecht,

Holland, 1971.

R. D., D. L. Carr, R. G. Johnson, E. G. Shelley,

Coordinated Auroral Electron Observations from a

Synchronous and a Polar Satellite, J. Geophys. Res.,

Nov. 1971 (in press).

Page 10: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3-56.

Active aurora as observed in 5200A, 6300A and 5577A.

The curve labeled filtered 5577 includes an assumed

filter with a time constant of 100 sec.

Fractional change in 5200A and 6300A as a function

of fractional change in 4278A.

Satellite data of Appendix 2.

Page 11: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

1 hr

Figure 1.

.

I lI

Page 12: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

-2

&.

figure 2.

I I

;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

'I

Page 13: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

APPENDIX 1

LIST OF PUBLICATIONS THIS YEAR (1971)FROM CONTRACT NAS2-6299

Mende, S.B., R.H. Eather, Auroral Intensity Ratios Related to the

Energy of Precipitating Particles. Trans. A.G.U., pp. 305,

April 1971.

Eather, R.H., High Latitude Dayside Aurora. Trans. A.G.U., pp. 319,

April 1971.

Eather, R.H., S.B. Mende, High Latitude Particle Precipitation and

Source Regions in the Magnetosphere, Magnetosphere Ionosphere Inter-

action, Dalseter, Norway, April 1971. To be published in the

conference proceedings.

Mende, S.B., R.H. Eather, Auroral Intensity Ratios Related to the

Energy of Precipitating Particles. Presented at Moscow meeting

of IUGG August 1971.

Mende, S.B., R.H. Eather, "Systematics in Auroral Intensity Ratios,"

presented at Advanced Study Institut, Cortina, September 1971,

Italy. To be published in the proceedings of the Institut.

Eather, R.H., and S.B. Mende, "Systematics in Auroral Energy Spectra".

Accepted for publication. J. Geophys. Res.

Page 14: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

APPENDIX 2

SATELLITE DATA:

Coordinated observations with the ATS-5 synchronous satellite

were acquired on five nights and with the OV1-18 polar satellite

on one night as indicated in Table I. Both of these satellites

contained similar experiments designed to measure the fluxes of

auroral electrons and protons in the keV range. The experiments

and some typical results have been described in references 5

through 9. They utilize channel multiplier sensors and either

magnetic analyses or foil threshold techniques to define the energy

ranges. The ATS-5 experiment provides a measurement of the

trapped electron fluxes at 6.6 RE in four energy intervals and

the trapped proton fluxes (integral) above three thresholds as

indicated in Table II. The OV1-18 experiment provides a measure-

ment of precipitating particles. The energy ranges of the OVl-18

detectors utilized for this study are indicated in Table III. Data

will be presented at two pitch angles; one for the group 1

detectors, (CME-1A, CFP-1B, etc.) and one for the group 2 and 3

detectors (CME-2A, CME-3B, CMP-3A, CFP-2C, etc.).

The ATS-5 data for the times of interest are given in Figures

3 - 54 on two different time scales - twenty-four-hour plots of the

fluxes are shown in Figures 3 - 44 in order to present the data in

the context of the substorm activity of the entire day. Then an

expanded scale plot of the fluxes at the specific times of the

coordination are presented in Figures 45 - 54. The ATS-5 satellite

throughout this period was maintained with latitude •2.40, and a

geocentric distance of 6.61 RE. The longitude varied from 104.7°

east on November 24 to 103.9° east on December 6.

The OV1-18 ephemeris data for the coordinated overpass is

given in Table IV and the fluxes as measured by the various detec-

tors every one second are presented in Table V for a 200-second

I

Page 15: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

period approximately centered on the time of the overpass of the

aircraft. Figures 55 and 56 show the integral electron fluxes

and the average electron energy (for electrons in the energy range

0.8 - 16.3 keV) as well as the pitch angle at which the measure-

ments were acquired (1800 corresponds to the detector looking up

the field line) for the two sets of detectors, group 1 (Fig. 55)

and groups 2 and 3 (Fig. 56). The integral proton detectors

were at their background levels throughout the period of the

overpass. The CMP-3B and CMP-3C proton detectors were responding

at satellite times near 905,300 seconds and the measured flux

levels are tabulated in Table V. The CMP flux values should be

multiplied by the following scale factors: CMPA x 1.88;

CMPB x 1.92; CMPC x 1.30. The appropriate pitch angle is given

in Fig. 56 as a function of satellite time.

Page 16: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Table I

COORDINATIO N WITH ATS-5 AND OVi-18 SATELLITE

FliNo

£ght DateI. 1969

2 Nov. :

3 Nov. :

4 Nov. :Nov. ·

5 Nov. :

8 Dec. 5

9 Dec. 7

10 Dec. 8

TimeU.T.

12:15

01:05

00:4605:21

03:41 to06:39

10:51

08:3208:56

10:18

Aircraft AircraftLatitude (N) Longitude (W)

52052 ' 96°34'

55°25 ' 96038 '

55°45 ' 96°27 '

55045' 96°24'

(Grid PatternAbout ConjugatePoint)

55045 ' 96024 '

55045' 96°21'55037' 96°28 '

590291 103012 '

SatelliteCoordination

ATS-5

ATS-5

ATS-5

ATS-5

ATS-5

ATS-5

OVl-18

24

26

2727

29

Page 17: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Table II

ENERGY RANGE OF THE ATS-5 DETECTORS

Energy RangeDetector Particle (keV)

CME-A e o.65- 1.9

CME-B e 1.8 - 5.4

CME-C e 5-9 -17.8

CME-D e 1704 -53

CFP-A p > 5

CFP-B p > 15

CFP-C p > 38

__ · ·II··· I ·()· ·I· ·

Page 18: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Table III

ENERGY RANGES OF THE OV1-18 DETECTORS

Energy RangeDetector Particle (keV)

CME-1A e 0.8 - 1.5

CME-1B e 1.75- 3.3

CME-1i e 3.75- 7.0

CME-1D e 8.3 -16.3

CME-1E e 17.3 -37.0

CME-2A e 0.8 - 1.5

CME-3B e 1.8 - 3.25

CME-3C e 3.7 - 7.0

CME-2D e 8.4--16.3

CMP-3A p 0.40 - 1.2

CMP-3B p .88 - 2.6

CMP-3C P 2.9 - 8.7

CFP-1B p >9

CFP-1D p > 38

CFP-2A p >5

CFP-3B P >7.7

CFP-2C P >24

CFP-3D p > 38

I. : I: . ..I .. , I., . . : :I1 . i > . Tl : : - . ,. ;- - - - I - r - . .1

Page 19: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Table IV

OVl-18 EPHEMERIS DATA IEC. 8, 1969 (ACQ 4027)

UT(seconds)

36921

36971

37021

37071

37121

GeodeticLatitude

65.68

62.74

59.77

56.76

53.74

GeocentricLatitude

65.55

62.60

59.61

56.60

53.57

EastLongitude

262.36

259.59

257.29

255.34

25.36

SatelliteTime

(seconds)

905200

905250

905300

905350

905400

Altitude(km)

532

534

536

538

540

Page 20: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fr --

.1

TABLE V.sWRITE DIFFE ,E:.JT IAL --LUX

-- i-~ ~ ~ ~ ~ ~~~C..C D -- E-- - Cm E-2 4---29:".5 2 00 , , 29+06 ·205*06 9 91+D 05 1214'05 266-5+ 04 4 ++04 484+0

2:290520~~~~~2 , · ¢,90 6 · 2,;.5+036 .991+05 ,121+0.5 .2b66'+044 4+ 6

'229~23 -+.~Z+0 L+ 6 .991+05 , 12'j,+ 05 ·266+a4 8+064, CD 5 ~~~~~484+062920, ·A.00 · 2(.+9 0. 9 9+5, 210 262~~~~~~~~~~,, 484+06'2'29155-2'05~~~,2,"9*Flp 9U 96 I ' +0 5 ,~i.'2 C'~5 ...28-6-*04-

8-64 ~ 4-84'~ 6-

2.29`~20A · 29+06 ·23+051 .9 91+ 05 1105 06279~~~~~~~ ~ ~~,,~29 ,9+I)6 25o6 .945 12!+05 .286+04 ' 484+0622952· ·7 3629+36D t .2!]+0 . 991+05 .24n5 2640 rl ~ ~ ~ , 219 ·260 .,484+06

2 2 9'h- 5 2 .426 .... .99 105 ..... ''i~ '' ....'286--f ' 4- 44+C6229 5 21342 +

'6, .6I9+36 11"' ·205+06484+It , ~~ ~ ~~. _-:+) 991'0-5 , 1210 .-266+04.- .. ,'f4

·~~~~~~~~~~~~~~~ -,, ~ -L '-27-9r,32_15, A 2 0 +06 ·2r,;.'06 .991+05 ,121 i+n5 .286-',4 484+-2'29~'5'2.1."I -- ~'-~~~~ +6 9914.-05----+ l- 2 .6-+-C 4--; 2 4-6 .- -q.+ 0 5 + --~~~~~~~~~~~~~~~~~~~~~~.41 ,-8'6..

2290;"5212 5 2-0+0e6 2-05 + 6 991+05 ,1I£2!"~5 .286+04 .484+062 29nSi 2: 9 + 0,l6 21.50 9 9 1+405 05 I 21'8 ~05~b6-2297-5221'4' · :-2'0 6 ,2-[~+5 · 9+65- , 1-2.i'(5 . ..2'66-+04- · 484+0~6229.05215~ ~~~~~~~1 .-62+ .0+ 6 .991*05 ,!2!'0 .+041229-~~~5221, 6- 9+0 6 2!~~~~~. 484+0622951 b2+0 2~ 9+5 I I ~ +0 ·~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~ 2 · , -- _·1 ¢5 ,266+04 . 4 84+06'229 g 524.1, 2· 2 +0 6 ,2. 29+3-4;6 . 991 405 , 1;UO5· 860 4'I0

229~5219.~~~~~~~ ~~~~~~ .2+6 .250 991 +0 , 12 2 8 +05+ 5 Z:.28+-04 . 484+ 06-

22935`221 , .29+0-6 .20 5 +26 .991 +0 o, 12!4'05 , 286+04 ,4864+ 06229S5222 .~29~~+0 6 .2!~+.j6 .99!+05 ,!21"+05 .286+94-29,-15 22:1~~~~~~~~~~~. 44864 +0 6

,5 -1:2 6+0-:.[_-7+-:3'5-----2;'-q -4'-+0'--2 2 9.) 5~ ~ ~~ 2:..3-'7 d6 ,9 -9'~'05 0 ,2. 0.n5 ,286+04 ,4 84+06

'22 9'C-523 I2~06'--7~ L, .2-.-4: ....I4'2Q+'5 6,' -'8 4-- .. 4-+$'~6---2293523350+6 2r.n 991,0-5 .12V"05 .286+04 870234 !~~~~~~~~~~~~~~,7494+0

"""9F2522:'~ 4529+06 2 U+[:5+6 -991+0,5 , 12i~+05 ,286+04 4 84 +0 6

229.52370 .452+B.7+07 244'7 9,+06. ,121.+05 .286+04 , 314+08229.').323 · 62 9,+086 . j,ll4+O . 5+0 ,- IL121*05 , 286+04 ,297+062-297-5243 69~6 .2!:; ,r, '45~[--q 6--'---%9'91-~-[l' ,121'`,5--.-2$6.'04 ...484'+068-

Z29~523]; ,221~"4+08 5+7 .99!44+05 .12,t+05 , 286+04 .- 857+0722905x2)4 . 07°+ 5&'+u6 .99 1+115 12.0 2_6. .. 104 ,. _ 1 ~'~ 4,-,.,~ 266+0-4 , 4 4i+7

2299l52]5, .456+07 ,2L',5+06 .996+04 ,t101. .991+05 1~~281+045 , 484+06'"9n52437 624+07 25- ,,+.-! -i4+C ~-' · . 2 U +0~~~~~~~~~O6 -991+0.5 , k2.+5 26604 l4....~~_r '29-23

',,,759~-0+7---. !-'+-.gf: · 99-'"-----i2 -- &'05 ...76"04-- . 744'6..

22901523'.o . 629+06 .2_-: 5+06 . 991'0-5 , 121*05 .286,04 , 464+067,9",1152 690 . .2r,5+06 -991+05 , 121+05 .286+04 . 4 84+6·~~~~~~~~~~~~5~j .-129T.~- I -", -O.---, -9 g~3 -- Z2-9 z6-60-4- -' 4 4 + O!,...

2292.5242 ', I : 20+07 :2. 25+06 : 991-J05 ',121+0 ',3 286+04 : 450+07022 9OJ5 24.2 .4,51+n7 , 2C5 7+0 - 99!+05 ,12!+05 , 286+04 , 14+0 7

229Q5245. .629:12+06, · 2:35+06 . 991+05 , 121+05 :266+04 .4 82 022915254t; : '2+0 :6+04 744

', , , !

. .. I . I

Page 21: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

229S5255. .7.04+O .69 7+057 .159+ ,6 12 J + 5 ,28 6 +04 .555+08229!52-,· ,6;+ 0 , 5.9o+'3g8 .496+G7 ,372'n15 .226+ G4 ·775+082Z?- :52.57- . :,'!o2+0- 6 47 + 06 422+07 I,6- .75+0229n325.~~~~~~~~~~~~~2'A0 '.75+08-2 92 52', · 23n+.oa ,6 25 +97 539 , 12'6]5 .266+0 . 26 . 68+0o229e5259, . !]9+ 0 o9,z+] .991+05 , 2 + 05 2 . 6 04 , 105+08...229 - 3 26 n- ... ..-- 9 3'7--9"0' 7 ..... , 5~; 7 S 'a: ...99i"i-05 ........,"- 2, ;"103 '6 i 04 - , 254+07229i05264, , 29+06 ,2.'5+06 ·991+05 ,12 i+5 .286+04 ,484+06229 5262, ? .2+06 .2 5+nb .991+05 ,1 2i 5 6266+C4 ,484+06

2T2'9 '-5 2+0 .2 6 6'~04 ----- O-6-4229i3264. 9+-5 -2-5 - 9.1q-Q2 -421+; 2tX.4 q2291 :,4, . 29+06 .2, 5+rl6 .*91+[ 5 ,121+'5 · .26'04 -,484+06

229~'5265. ,652°+06 ,2 5 +!6 .9 91t 0 5 ,t 21+05 .286+04 ,484+06229]~5267. , 34+07 . I-+7 .991, J5 , 1i-d-: ..-- -6-- -l .5 , 5C4229.,.26 . -7°+07 ,216+27 9:91+05 ,"'.+05 286+04 ,592+07i29~ 526, ·?72P2+,7 .129+07 .9S1+05 ,121+05 ,286+04 ,952+07~:-9,;.26g, * t7¥:+07 -F--7¥ 0 244+06 , 24 ;'D 66- .-- -21-i] 8

229C5270, .299*+0 , 55+7 336 ' 06 ,121+Q5 .7a6+Q4 ,257+382290527%. .·57+t08 ,395+07 .244+06 ,12~ +05 .28k+04 .297+08-229q-5272.Z 9-) >_27· . !-, P d 4 ]{+7- . 2-44+05 -,12-f-+05.2E0- -7 2 f8+-6 5 286- -

229:5273, · -26+6 ,2-2+07 .336+06 ,3.21T05 .286+04 lo5+229;15274, .. 51 +07 , 85+ 7 15t906 ,121+Q5 .2R86+04 *952+07,2'9':275, · S +'-- ,%- + 7 · 4 + 06 , 2 7- · .- -- 9 7' ..9.+.d229n5276, o+3+ ,38+L7 .105+37 ,121*05 ,286+04 ,257+06

22905277, . 0 4+0 ,5 j3+97 .539+06 ,121+ J 5 .266+04 ,168+08~2g]5-527;2,· . ,]37+~5 i'+ -0 6 , Yfg+ 075--- .22b64,'-,-06+2T2~9~~52 7'', . -3 + C8, 2~: 05 . 404 -2l- C-' -

229E.5279, · 4F'+8 ,395+07 ,336+06 ,121 '05 ,266o04 342+06:29n5280D, .75 5 +,8 ·166+0i .167+07 ,121+05 · 286+04 ,952+0(

-2-9 _,5 - r?- =5 - 3 3-7+-17 f -- 8 a3-+<+(¢4- *-s9+0&

22905282, . 12+gt6 , 274+ 0.1 ,29+067 , 7 C21 +0)5 .286+04 -,515+C8229~52 283. ."°+08 .8 896+07 , 134+07 121+15 .286+04 ,257+082"29'^'8:' .. 7'+'3f4-8---. i-+-n-;--~]'~~ ·..1.....+O../ , _4 J."'- (,5 . .3+O- 66~~t55*of+t) 4 ' --~f6-4-Ci':O -- 2~~ 3~5 2 ~~i3~,~~--,:?,7T~~C7 ---- -- "0t2290528f5, 1Ch+OC ,129+[:7 4 }4+06 121+D5 .26+04 ,128+00229n5256. . 14r'+08 ,22+..7 .775-06 ,12i 5 .28+04D . 237+(]8

-2----29:582l B. ,-r---7-4-+-

-

-

- -.'

· 77 -D1]-6'----- 2 ai --- .286;G'-4" --, 57 + 0 ....2293528;. .964+07 ,483+07 .906+06 ,. 2!+05 ,286+04 .257+08.2295!_289 . *_06+08 ,43+07 ,.434+06 , 121+05 .286404 ,14i+0'2'29 -59, · - 1" T 7 , 47 375 --C-- I1 + 5 ....-; 86-+-0- 4 ... ..'229_5291 , 584+07 ,48h3+07 .336+06 ,12i+05 , 286+04 857+0722925292. . 39f+07 ,4.3+07 .539+06 ,121+05 26tO604 ,%15+0829 2 529-.-, , 4"-6-+'~- ,-b'Sc-' .---6 0--6-- 1-2 J.

- + 0 S , '--'86-0-4 -. 2 3+ -u229[i5294, .293+07 483+07 .336+06 ,121+Q5 .2 B6+04 ,!84+08229n15295. . 20 7 31+07 .3 7 33S6+06 ,12.%+05 ,286+04 200+06-2'-29.0 529 6 . . 245-.'1"-07 - -.- · 3--6--- 1-2'+ .28 6-+_0-- - -, 7 + h'.rl.22935297, -201+07 ,318+Uj7 .159+06 , 21+Q5 .286+04 , 257+8229 ,529R, . i5+07 .282+07 *336+06 ,12%+05 286+04 .23 +n8

-7--'229Cgi3'5, , p-'-'--- '+7--9 ,-+---, I8'6;FO0-:4 - -- 16a3+06--'

CHE/ E __C MEA-,T _C P1E/A c61 11 CtfF1D

.. . ..

Page 22: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

S`T cr]EIA CMEJ O CMDC flb ~ ELA\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

229n5355. .45+07 ,2i5+06 *991+05 ,121+05 ,286+04 484+06229n5356. . 40 o06 ,2! 5+0n 6 .991+05 ,12 . +05 ._ 286+4 4 84 %29m535~7~~ . . 62~o -06~- .~jl~i DX ,91 p5 , (~L~r _ _ ,.286+04 , ,_618+0622.9- 357' . 56 . 91j-5 t*4 ,5+72,29.,5357 , ~;20+07 ,27!+0jc6 .991+05 ,121'+5 .26+04 - ,6144+06229i535 , 29 +07 ,6L, 9+1 0 21+i05 121 ,. 04 ,50+07

229S~n361 ... 62.+6 . u2i:b+Ci . 991+05 ,12X1+['-5 266+04 , 484+0672Q!.2 9 7 f-5 3 +6 ,2 07 299!05 ,12i+.n5 , 26+04 ,484+06..2... r"9360] . 9.....;-!?(i'¥-7 n , +2! 6'-:; ' ...-........ ,.. ..... '+0 + ' -'""'22905361 . 629+06 .2L:5+06 . 9 91"05 ,121+05 .26 6+04 ,484+062 29 5362., 6 2 .29+06 , 2i5+06 .991+05 ,121_+E5 ,286+04 484+06

Z ZT 9',-5366~.--bi . 2-9G6-0 ,.'2 ~-;> .'~~99i J-0'5' .....1~2"i'+ 05 . 2-- 8'¥-.E 4 - -4-8-4'64,-0-6229,5367, ,629+06 . 215+06 . 991+05 ,121+05 , 2-6+04 ,.484+06

229n5'6 1 . F 25+D6 9 2 6 + r 6 .99t 1 05 1 .21+05 .. 86+04 4 l84+G G2 9 -------. , w-;--5- 2 +O 91 + , 3;2l f' . 290 -4 84+06229r5376. , 29+06 ,2(]5+06 .991+05 ,121+5 ,.286+04 ,484+06'22 9': 53'7"6-, . ~ 2,9'+C 6----2. ~]5+6 *i~~ .... ;9'9-1-;-'5 .... ;12 S +'O5 .... ;2 ' 6' ': 0'4 _ -- 4 8'4 + 0- ...

.2.5.37.. -2--^+ ,. m+C,6 . -91!+_0 5 · '~ + 2,6+04 ,484+062295 3J36, . . 2°+06 ,205+06 .99t 405 ,1.21S-05 .286+04 ,468+06

-..-29' 5 .. 4] -- 2i.. 05'---;C 26: 6:' ~-- E-;x48 i-06-- -

229n537,0. ,29+06 fn. +06 .991+05 121+05 .286+04 484+0622915371. ,.S9+06 .20,5+06 , 991405 ,121+05 ,286+04 ·484+06':2-29.53 7~. . '29 --0'6.-~5-~j---]-2] ... .;-99Si]~-¥0- ....;i-~12+5 --- ]-2 6¥~2 504'- ---48'4+-0-

229n5373, 2+ ,2+205+n6 .9951405 ,121+.'5 .26+04 ,484+06229)537, . 9+n6 ,2u4+06 ,991+05 ,121'. +Q 5 286+04 484+06-9 -5'3 7 - 9-*''-8. +2 0 . 9 - 05-- 1 i.+' 5--- ,- 6 6'-0-4-- --. 4- 4 + 6

229n5376 . 2Q , . !'5 2 , 6 2-604 , 44+06229S35376. ,6290+06 ,205+06 .99+0 21+5.5 .266+04 484+06

-- t-- -Li ;. 3 F;is;--i: .cs T6-- 2ii. ;1 () . -; 4; t U 9 - - --- w ; 2 i: 1+ j5 , 2 t h + 0 4~. -,- 8: -us I! G 6

22905377, ,629+06 ,2f5+06 ,.9914G5 ,121+05 .266+04 ,484+06

-- 229] 5-37T, ~. TQ-2 9 ~', 05',,7~¥--"--99''5 ..-S2~ E ...26+:-bA-4- .----48-4+-..

229,5379, 629+06 .25+06 991+05 , 121+05 ,286+04 ,484+046

_ -a - q ,> , Fi4 , * + ,2i 40 6 . ,10 - 05.2 4, , - +06

229r5381. .629' 06 ,2C5+n6 .9·9!+5 ,121+05 .266+O4 .484+06229,5381. .52'~i6 .2 ~:05-6 .-991405 ,121+ 5 .266+04 484+

·2 "9538#d 529+06 ,2[;+06 991'05 121+ 05 2 86+04 484+06229~538 5, ,3629+06 .2(!5 +c,6 .991+05 .,12105 ,26+04 , 484+06

22 9 .Bif> 3 ?,, .~2',-+-,27754:56- 5 ....- ;T 2'i-+5 .; 2'6 ''4 - 4+ o6 ~ .....

2295385.1 .. 29+06 .2-:5+06 . 991+05 .121+05 .286+04 .484+0642953869 , .429+06 ,20!5+06 .991+05 ,121+05 ,286+04 ,484+06'2 K9i.-5 3 Y'. . c 29s+-0-6--7,2 ! i +]0-6---- --. ~-----.-1-+'i -5 .2-$62-7 + 0-4 -- .. _.84+0-- ' ~

22925388, .5-29+06 *05+o6 .991+05 ,2i2+Q5 .286+04 .484+06

229`539. · , 29+06 .-2L,5,+0 .9°1+05 *121+-5 , 26+04 ,48-+06

E29:,3-55 9 o , .6-29t6 ,+o§-+0-6----- ~'i~6--*-_99-i1=d 5--0<.-- 2 J-+ 0'5 ,.286.-4'-- ,-' 48+-06-

22905397, . 629+06 .205+06 .91+05 ,121+05 ,26+04 ,484+06229S5392,, .629+06 .2, 5+06 .991+05 ,121+05 .26+04 ,484+06

5.. 2-9:'9 C 99';0 5 1 2 +-0- --- *9 l--7-2-5--4 0 6-Ei 4--

-A- 8 ;4 ,+-'-

6 -

2959 290-, . .

~~~~_ _ _ _-,-+6 910 ~2+5, 8~0 440

229,05391, .629+06 .2-5+0i6 .991+05 'le12+05 .286+04 04,48+0)6

2290.53927, .629+0 6 ?,205+06 .991+05 ,!21+.05 ,286+04 , 484*06

2-2915395, .829+06 .2':]5+C6 .991405 ,121.+r05 , 286+04 , 484+062~9~559~~~~6 2, 9 +-2'9;F-¢-6 , -+Z r~ ~ +~i ...-9gT-f ---- -2 -+-05- .- 86-+-0-4-- :?]-4 8,1 4 +'6 ...

.~~~~~~~~~~~~~~~~~~~~~~L .

- 2037 :690 250 910 11+5 2-60 t4F 0

Page 23: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

*__ _ 1 ~_

+t_

JC

ST C,1P3A CMP3B CMP3C --- ME3B CME3P CE2D.229'530]' C 55t+05_ '35+05 'Z35+.45 ,642+07 ,160+07 ,~77+0651+C~~~~~~~42'2z9~ 30f. 1; '5'5 { +' 65-- 0-6 ~+05 -1 07+'6'.., ,58 +9 0 ... 131.0.__ .4?0229'5302. ,55i+05 ,710+05 ,480+05 --- ,589+07 160+ 7 ,907+05

...... 2?29..' 530 ._.55i+05 .3.60+05_ _..346+ 05 ,589+07 ,212+07 .i31+062 9?.5 304 . 55.i1+05 .360+U5 ,138+05 .589+U7 ,231+07 .282+06

229r5305, .551+05 ,206+05 ,138+05 ---- 642' 07-- -1-600 o7 -- i77+06'

229n^306 .551+05 ,206+05 .13n+05" 332+07 117+07 i77+06--- 9 -2- 539'7'. --,551+0-5 ,-20--5+ 5--, i38 +0 5 -,492+07 ,131+07 ,110+06

229:.5303, . 551+05 ,206+05 ,138+O 0-- -,406-07-- ---,i45+07 -- 153+06229153,09, .551+05 ,206+05 ,138+05 ' ,332+07 , 31+07 ,226+06229 -531 .---- 55i+0-5 20%+U05 2'1+'05, ,332+07 ,117+07 282+06229,S. '1 .t 551+05 ,206+05 138+c5 -- ;-208107 145+-07' 226-229,5312. .551+05 ,206+05 ,138+05 ,236+07 ,683+06 ,153+06

2.9-]_f 95-0'- 20-E+05 , i-3 8 +-Ob .298+07 ,683+06 , 131+062295314 .551+05 ,20o6+05 ,138+05 . .-- ' 20' 8-+07 ... ;-397+-6 .--. 563+05229,5315. .551+05 ,206+05 ,138+05 ,298+07 ,793+06 ,728+05

-2'- '~. 3 '6 .... 5'5'-¥-551+ 36'?00 S'5- .......~'1- 8 l -05-: ,266+07 .10 4+07 .907+0522905317: 1551+05 ;535+-U5 1 3 8 + 05 ---- 29807 .--.-..- 0- 4 07 ....4 44--" 8+-0' 5229.0p31~._ ,551+05__,4ju_ l8G 3+7 *&+6 1+0 ZE9?5 S1>3 7. 51+05 ,206+05 ,138+05 '236+07 ,683+06 :158+0512'971 53'i'7--_- ~5 -~5~:j-!_05--T2a6-0-~-0'5:3R+1 , l'ag0" 20+07 ,581+06 , iDB*O5229.5320, .551+05 2106+U5 ,138+ 05 --...298+'-07 .--- . ..2 7+ ' ,'158+05 '22905321, .551+05 ,206+05 ,138+05 , 182+07 ,683+06 ,!58+05229n'532-.- , f+' 05 .. 2'0641 .1..- i 3- 05, ,29+07 ,683+06 .158+05229 ..5323. ,551+O5 ,20h+r'5 ,138+05 r 'r-029-7 2 3 ...T9+7 ....6 ...;72' +05-229n 3324 551+05 20h+05 138+05' 236+07 583+o6 i58+052'29.!5 3'25, .. '5 i--+ '

-...... :-~'06 2""3 0- C 3 .' 1f38 + '*'~ 182+07 '314+06 _ 265+ 5

'2290532' * , .551+05 , 535+05 . 138+05 .--,.236+'07- - , 237+'06 , i58U05229n5327, .55i+"05 ,71O+05 ,138+n5' 208+07 ,58!+06 , 158-05 .3.2'299-32: -- T55i+'5 ,. .r.6+05 .. .. 383+05 182+07 ,237+06 .265+05 .22905329. .55%+05 ,206+05 , 138+05 -5 ,-236+07 -..-- ,314-,'6 -, 563Q5'- .229.5330 55i+05 2G6+05 136+05 1266+07 237+06 t58+05

-- GZ90Yi?5.331.- - 55 1+ *C -- ,ZOih ·C5-- 1t3 +G 5- ,513t0 7 ,397+O6_ *1558+05229t.533-", 5i+-5 32 -505 C538+CD ,5 +G?-------,397-o-6 - 5229'5333 ..55i+05 .2OA+05 $'38+-05

-13 - +U7 .314+06 ,'5'·

29&nj38, -- t51'C- aO5--, 6 5-§;22 1+0 .-- ,113+07 ,398+06 ,1585+0522905335, 55'5 ,i5+U5 +133+05 8 85 -- '586+07-- .--,397+- 6-, i'"58+05229"533, 55i+05 ,20++05 ,138+05 ,158+07 : 165+06 , 158+--

Z29- '182+~~~~~~~~~~~,t807

229 "5337 237;---- 55:+rj ,0- ... 06'5o .., '2+05-' 112+07 ,98 0+0,5 , 58+ 05229..5335, ..55-i+.05 ,535+U5 ,138+05 ...1i3+07 ,165+. .58+2290533,. .55i+C5 ,20,5+ ,' 138+05 ,158+07 ,165+06 ,158+0 5

2 9 -i. 533P-3 355 1 + 0 5 + 05....]-0 ,1 ,3-8 5-- ,1t6+07 ,237+06 , 58+05

229 ~533~. , ·551+o5 ,ZD35+u5 , t3 S+o05 .-t1 ~ .....`~-b506.~--.~~ 5

9,-,~~~~~~ ~~~~~~~~~~~~ 3Q 39 o7 ....; + +0-~ .. .... 158-+05-

229.0.53423. .55'1+05 ,2036+05 ,138+05 , , 2+07 ,237+06 ,158+0

'29:i53343- 1515 -+C8 -- 2 0 6-Ui- t13 38 g5- 8.15 7 92374- 6 *158+05 ,' 229l53~%- -' .- 56¥5+5- ....- '',¥d5+ .... '3'8¥'05' ; !i58+07 ,732+05 ,158+05

229,7534! · ,551+G5_ ,206+05 ,138+05 .... ;1B+07U6 ,..t65- o .+06 5_+O 522905342' .55:+05 '206+0 5 , 138+05 i358+07 ,314+06 ,158+05k29-0-~3-4~j- -T-sfb5 ......20~-'r''is-~---T1 3 8'n- 'i - ' 'i~+7(140 5

2297534 7 t , 55i.+05 . 20o+05 ,138+05 ..~.~ f~-- ,1+07 ,237+06 -,1i58+05'

2290534 . , 55i + 05 ,2 0Z 6+5 ,13+C 5 .. .1 7...

- 4>229.r5335 , -- 5-57-l+C5- * 2Li+!5 * + ,, 1123+7 -, 980+;5 158+05

229r5353 . 55_+05 .206+05 ,138+ni ~, -3U7 -- ,9 05 -0 i3

55-+05~~~~~~~~~15~' . . . . . ]72 .. . . . ... 158'+0"

%29r:>351. - ,';51'05 w ;t:3^ ,138 + ;_ ' 92),k'5 '15

- .1~ 5 -- . t+t.5 - 13B+.5- , 31+06 , 6752+06 .158+052 2-9n-i53-1 ....55 ]_ 5 5 ....- J6'5C5 .. .. . 5 ,- 3 ,l :i O 5-.

-29n533q. 9~~~~~~~~135207 ,316+06 , :5B+05

22953a54. , 551-05 , 535+5 ,138+05r ,2+f7 , 732+05 2h+5

-- ~292'95339. ;5i'G5 ... .....13F'C5, 1.8+07 ,9+5 ,158+050c,22905350/j ' .55{+5 ,2605 ,!38+.C5 -

~~;5 +!j 0, *~~~~~~~158+05~.-290~ 351 ·, 5+5 ,26U 180 - 29+07 ,98,+0,5 .158+05

22 35 58. ,3~i+06 ,732+05 .. 58+05

22905353 5!052,6+5 1~ .... i+U67 ...... ,-"735 ....... '

.55i+05! 2+05 ,I I 05- ------i292, ,5+0 +0 5 ,138n ,5 182+06 ,732+05 ., 158+05

--91'53 ~, . .- - f .-...... "'i'...22~~~~5 Oi . 3 .,: ,13P, -I3+b7---'7305'-6+-5

- ,s15+07 314~+06 · i58+05229053.55 7 551+ +5. , C60+05 '238+05 __5a_6__+_56..

__8.0+_05 ,15_8+ 5...

Page 24: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

-~~~~~~~~~C_sT __ c¢ e _cene-I c C/3 ,Cf3d ,_CCsT~~~~~~~~~~~~~~~k-MS Cm62LD

229 5357. 55i+05 ,V60+05 , 138+05 ,562+06 ,980+05 . i5g1 05229i~535;_. 555{+05 205+05 ,138+05 , 40+0U6 ,732+05 ,158+05toZ9~'5355~-7 ,55-'f:¢-5 ... ;Z06+'0-5 .1...,i38+o05 ,381+Q6 ,732+o05 .,58+05.

29 ,-536. ,. 551+S5 ,206+05 ,138+05 - 4--, -4+6 ... +05 ,158+052'297!5361 .55i+G5 ,26+05 ,138+05 ,214+06 ,732+05 . ,158+05- .2 9 ..;536 ?,";---, 551 ¥- 5.-...' -, 5-30 ¥05 ...- 346+505- . , 214+0t ,732+05 .158+05,: 2 9 573 6 ]. ,, + rTb0 210 - ii j-,- ---0~ gu~~,:'29?!363 55i+05 206'Q5 ,221+05 - 5.2-4+0b .732+05 · {58-'--05--E2i05364, ,55i+ - ,206+5 ,34h6+05 214+06 ,980+05 * 58+05f29~ 53'6,-; 7---51:51 ..--.. ;-a~.--0- , f - 1T5--' , t 381+06 , 732+05 158+05229.9536. ,551+05 ,206+05 9138+05 -- 56¥2'00 ...732+-5 ...- 56+-052?2905367 ,551+C.5 2206+05 ,138+05 ,214+06 ,732+05 , 58+05

-~53T'--,55' 05 ..... -+0 .... '38+ -- ,214+06 ,732+05 , 58+05,29j5363., ,55{+05 ,535+05 ,138+05 .51 -+0 6--,'-65-0-6 -,158+05---

229g[5370 .55{+05 ,206+05 ,!38+05 ,214+06 ,732+05 1583+05"- 'a 9-{'5 3 7 f.J~5 i'-%+- 05 ..-. ,Z....-6:-055 --.. f38+05 ..1 ,24+06 ,732+05 ·t58+05'229o5372, .55i+05 .206+05 ,138+05 ---..-24+U6---, 732'O5---- .58+05- .-22935373, .551+05 ,2 06+05 ,480+05 ,214+06 ,732+05 .158+05

-29-37-4-;-.--55-:.........206---05 .. ---5.--- 214+06 ,732+05 ,158+05229-Si537 5 . 55t+0.52064+05 ,1383+05 -"9562+06-- 732+5 . ..5i58+ 5.. 05229n5376. ,55i+05 ,26+05 _,138+05 .214+06 ,732C05 .158+05

'9^537?,',5'i'54 .... 2'O-- +U-)5 ' 138':+0-- 562+06 ,732+05 . 58+05229.53713, ,55i+05 ,205+05 ,138+05 --T2i4+06 ...,732+05 ..... 5P,+oS--Z290537, .551+0-5 .-205+05 ,138+05 .214+06 ,732+05 i158+05

~Z9'-533st-';---5'5+5-....-~+-0 .... ,-38+5-5 : l. 14+06 ,732+05 . i58+059 ?Qr53m, - 551+, ) 2¢5+U5 ,138+ 5 .21O+06 ,732+O5 _ 06+05a29 S3a, , +55i+05 ,2n§+05 ,221+05 - 2i 4-+06--,-732+ '- ...5. .5.2Z-9.538-, 5_5105 206+05 138+c5 ; ,214+U 6 ,732+05 .158+05

P29' 5 3'--5 -

" :-........ " 18 :¢ -05 .3 52!+06__ .732+Q5 *158+05

.29.5384,. .551+05 ,360+05 ,138+05 4 ....;'24+06. ..-73205 . .. '58+5 ..229C5385. 25ai+5 2n6+05 _ 138+05 : 14+U6 ,732+05 : 58+05

-2 ~5 8 , ,>. 55+i35 ,3 .++,5 ,t+i 214+06 ,732+05 ,158+05-2z9.L5387, .5=+C-,5 *706+05 .1383+05 -ffi-.>1-4+-h ,3+C- *g+5

Z-r'9X.:538;:. , - ~5{+0b-

........;O'C-20'6+Q5 ,.138+r5 ,214+U6 ,732+05 i58+305ZZ439X ,10> t6'. j-- ,184"5 t2111+u6 .732+o5 .15r+05

293559p - ,551+W5 ,20h+05 *1 8+C5 42 14 + C, 6 , 732 + o 5 ,-- 5 i Of0 5 -295.39, .55i+05 ,206.+U5 , 221+05 7il4+0u ,732+05 i5. +o 5 :

-- R2-9-n t 3 -2, t * =:> -- 5~-----ac&-0 5----- -,--1 -+05---- .214+06 ,732'05 i5s , U52?9(- '593i , 5 5 + ,035 6 ~" 5 13;8+r,,5 IZ i 0 05--~ +!5-- i t ~~229539;, ,551+;05 X205-+(5 *138+o5 v214+06 732+05 158+05

{RZ9^53' -- 5 . .'i0 , 0+Cv w1 5+[15 *,21+S ?72 . 585

-2 9~~-'.~53-, .'7 55n ifJB1, a- -- ]5:,2 0 , 3 .3, 214+06 t732+05 ,*15F+05'Z2935390, · 551+05 ,206+05 ,138+05 ... '1'4+06 ..732+05 .. -50 °

k29,?~393, ,55i+'05 ,206~-05 , l3a+O5 ..2 ~-'¢:¢O 6--- ... 7 32 %O~~ ~~ 5 ... :1! + 0'5---

'

229n5397. .51+{05 ,206+05 ,138+05 ,214+U6 ,732+05 .158+05.`:29'-339'5--5-]-55f-~ 56... JF ~+J5 .. ~'3 '5.. 24+06 ,732+0)5,1+0

229 C539, ,55{+05 7206+05 ,138+05 - ' S2i--U6 3 272+0 . , "158+t'5g29053997 .551+C5 :206+U5 ,138+05 6',214+6 ',732+0 158+05'2:'53 Z9i4 yaT-- 5 55i*-,5i5 ........, Y06+~cU 5 ..... --~,-y~38 +'~,-0 .. ,562+t06 ,732+05 , i58+ 05

2;2.90353 99, , ~551+05 ,2n6+O15 ,;138+05 -- T2~'14:0' ..... 6;~-,7 32 +-,5~ ...... 'i5'8 0 5 .....

- , + i . ,~~~~~I

*W~ D')S`T APPLY IVL7-IAPLICArlfV Fu A Cro - 5fi TE n 7-

12.

Page 25: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

!

ST C,'1P3A CIMP3B CMP3C C"CT1E3B ..CME'3-C7-

-CMFE2D--2297.b2>Po , .55{+05 360+05 9221+05 _ 214+06 732+o5 ,158+05

2-9 5234. .551+05 9360+05 1383+05 i2.4+06 732*+05 158+052.7~9!'520%3 · .55{+05 ,360Il+0 ,23B+0 ? _24_+.~ 6__, 73 2+0 5__- ...i5. +0. __....52G2. .551+05 ,206+U5 138+05 .214+U6 ,732+C5 158+05~' 2 9 : 7t0-* ! .~ · _ _ t 3 - --- 14+C6 .7 2+C515 052qr q

.S 52 0 3~ . .,55{+005 ' 206+U5 ,138+r5 .214+C6 ,732+C5 ,158+05

~ 2'9:'~ 5.P. 4-~----;'5 5{` $5----~'6C~'05-U ,151+ l:35 ,_214+06 __72 C~_rA0e-2,.if2' 3 , 24655i+05 *35+Un .138+Ov0 ,732+n5 .58+0522 902D~ a ,55{+05 ,~5U 138+05 ]2 -t- -ZC-O .6--, 7 32, a'+05·'S*O22945205. ,551+05 .206+05 ,138+05 214+06 732+5 15+ 5

-- ti-2~-9I-nS2-7--. 55i·C+--0-i~5 -;-d-F0- *-3^+S5,l+j ,?2 )_ 15R+rD52e29nz~2G-~. ,55i+5 12O~6+U05 ,a+f5 :.,214+6 ,7320-+Q5 gi58+05S2."529 ?._-.-551-+0- .206+"05 5, 1 38+05_, 214+Q6 ,732+05 ,158+C52,29..5'l~. *551+,5 . 206+05 , 138+05 , 214+06 ,732+05 .i5a+05

,2-~n52: , .55if ': ,_13 -+5 .. ... 4....+-6 ,732- -:-..i5.. "'

~29..'-:!2 . .551+u5 '35+U5 i38+o5 2i4+u6 732+05 " 158+Q.5229052lt ,551+ 5 ,-206505 ,13o+0,5 ,214+06 732+n5 .i58+05

229:95 214 . .55i+05 ,206+05 ,138+05 '2f-+-2 -6--4T732+05 . 15 .. +052 29G-521... ,514+06532n

%29'S215 . 55iF0 ,2b56+[5 ,138+5 , 214+06 732+05 .156+05

<12 9;5213-.~~~~.55it+n5~ t206O5-+0Di---- -- 3 B e 5 i1 4+0 6 ,732+G5 ,15A+G5v'2$%1217 .551+05 * .26+05 .138+052R9-.952' 3'. .55i'+05 '206+o05 1.. +05 , Z14+G6 ,732+5 ,158+C5

2- -2-91 -2T~7~-12 .5i u 1;05--'-7;2 ;J9+tJ5 , L3 ni i38+n5__ 214+ 6 732+o5 1i56+05

22g~!52~~~~14 , 2554+06 732+05 ,158+05 ''6--]T6..

279 1n.2r17. .551+t .005 ~05 .i3r840: ."-2- ,13R36§0i08 58+0229 n221. .55i+05 ,206+u5 ,138+05 ,214+06 ,732+05 .158+0522gg_5.2 '--- .....-~; 5051-+O5---- 20b-+ .. . .... ,i80 , 214+D6 ,752+05 ,158+05229n.527. .551+05 ,360+0;5 ,l138+O5 -2-i-44+ 0 3,i7-2i+ ,58+052293 221· · 55{+05 ,2o6+05 ,_ 38+05 ,214+06 ,732+05 ,158+05-2"gi-52 1'T . ;.55 '5- - -2C- O+d-O , i~ 3 --$ ', 2 4+U26 , 732+05 , *158+05229;522., ,551+05 ,20 6+U5 ,138+05 21,732'%4'4 .- t+--5 --

122g5227. 551+05 ,235+05 138+05 _ 214+06 ,732+; 5 ,15+05Zv9 ; 2 2T- . 55~1+'-q% ,h+ ? 06+05 , 5 ,2,4+U6 ,732+n5 .1F58+05

2 25 1225, · 551'n+,S5 2,6+U5 2,.+Q~C.5 2 13-4 '~0-3-----1i-732+-5 ,5i'5 R+.U"9n23r5 551+g5 , 206+05 138+05 __ 24+6 732+ n5 . '58+ 05

29.5. 224 ,55sI5 , 5 , 07 ,2237+h +5

22,95232. .551+05 ,205+05 ,348+05 ; Zf4'+O 6----~7 5 2 + _ ,i5a+ C.

229'n523 i7. .551+05 20+ ,+05 .2142+067 ,.732+05 1 59+05229: C2-. -- '---. -- ]-?- .Z : 05-' 05 . I'-- 1 05 -C ..,92i4+U 6 .732+05 .158+05229:35229, 5 5 i+G5 ,206+05 2213+05 -13 +U7 .... 73 +r '0 ?---- + 5---- 229n523'6 :55i+05 205+05 :221+05 ,929+06 ,732+o5 t158+05

2 H-9- p 2 ;r-f- ; 55 a + : 5 : 25 C 6-- +2 O -3 5 .6s; b -15 -05

229':5'23~ t ,,55':'~'~ 5---]-20-5"~05 .. . -5 '~5 .,~3e+~rj r;-a ~25+07 2,37+06 . 5. +o52729 5232, .551+05 , 26+05 ,346+D5 --4+ ...-----.. 732 +!C 5---,1-5&+5

229n52339. .95i+5 ,2-06+05 _,13F+n05 ,2+76 ,732+05 .1S+052,97Pi52 347,--.' 55i + .. 2 6+u5 .1..Ti+05 ...3.,+06 ,739+05 -. 58+0522952 .55+C5 ,Z06+U5 ,346+05 -3+-0' . . .. ;732+i--...i5+ .. 8+

< jv97524Z, . 551o~ ,-t:~o5t 5 3221+o5 23 +Q6 57 2+g5 . 5.+9T229!52?3, 26U, 551 Q5 , 535+05 , rj-ln , 1+ . 732+O5

2290.52436 ,51J 205+UC ,221+C5 .4+ ,732C5 15+5~229>5+5245, 20317+x005 1+05 ,9t29+068 , 732+r05 .158t052-2-9.525-;3v% .... 551+i'+05)- . 2: 56i ;'i' 4..¢ 5O-r--' ] 740~- 2w 2+ 732+05 . 15jg+05229n52347, .55i+05 .9206+U5 ,134 +0n -'1 i4'+";16 .- 732+5. ' 55+ ...229!52439. .550+05 ,o60+05 ,138+05 ; 14+06 732+l5 158+.05

- 2-92-529,-; 5+, 55ttj--,~j-*~· IiC~l)-;6-- aro~ 40 -;Q+ , 5 62t~ cU 7 ,73+nD .j -t;41

22ig::52-:, .=5 C5 ,-i- 75 "67+i .732+.5 *.58.05

E<!91525 1 .5i.? . 11 . U 5 .lie ii ,2 5 +. 1? 7 4s1 +i o6 s 7 2+rl: j t¢8+QD

9-27-157;25 2 f40 "51u5 ': '20'-. 6+05- .-- .3..i +-5 3+ ,732+05 .,158+05-29:5241. 5 ,551+05 2.'36+ 3421+U5 ,34+05 -14C i'+'6 ..... .i5 5 .0-29r52542, 551+05 ,3 60105 . 221+05 :214+06 :7O2+,j5 . 58+05

2-2-9-?,'5'2W3 ,5'5'1~5 .....;'555'~-05 ......]'Y'5£, 05 381+06 .732+05 .1-58+05

2 2.9-n;-52445 , ,551+0 5 ,22 53+05 ,2201+2 05 122+CiP' ... 911+. 615 '5.. .2295245 , 31755+635 ,360+05 ,480+05 6297+618 ,752+c5 4215+.05

~2-290 5-- ,,5+5 .... 3-5 I....., +4 6+ 0!--- 2 -1+0 ,732+05 . i5B+0522905247, 9551+05 , 9g4+05 ,480+n5 :'240...

22905248,~~~~~ .5+05 ,360,+05 ,25+Q.5 ;:214+06 :7+0: 1+5'2-2 9'0 52?- g, ...55] ]5---" 0% U ..... ,6+0 .. :, ,20 732+05 . ~58+05

229:,525!, .55t+05 ,399+0:5 ,766+05 .,562+0~6 ....... '732+0!5 ... 1'3+05 ...2E ..g5251: '53~ '1+J6 f, 25 +'.'I 5 ,74 0+;J6 ,732+n5 . 3 + 05-

2'29{?552, -. 55~+:]5.......;-3 ~0+0 05".- i 3F+'1+5 3,351+06 ,732+G5 .15.q+05

X. 9 5 2 5' 551£5 ,'/+5 , 221+C~5 ,214+06 ,9 0+05 5-+0~2Z9-,~5-2 J- I- 2 0 6 +0 122+08,911+06 , i58+05

229.r_.5256, ,55.{-+0-35 ,206+05 , 4GO+G-5 .597+08 , B20+G7 .421+06

Page 26: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

__ST' c_ l Ce3A cP33 CfnP3C _CME31 CME3C CKE D

.229.525 7 . ,55i+05 ,156-06 ,143+06 .4 8 2.i'- , .445+o0 ...'-158+U0529"'55:I . ,5514'05 , 132+06 ,124+06 -,642+07 ,117+07 1i58+05_2 9 -5 25'. , ....;55'51+05 * 156+06-- , 915+05' ,208+07 ,314+06 .158+05,-9 .52.! .551+05 1710+05 480+05 -- ..92 5 -6 ...- 98+ 0"5 "158+t]5 ...

2"9 53 2, _ 55+rU5 535+U5 13++05 , 214 + 06 732+05 .158+05---2 9" :5 262 - .. 551+0S- . . 9+- 05 ,766+05 ,214-06 ,732+05 ,158+0522""'"9 "6' . 55i'+05 .710+05 ,221+05 -- 2- -6 , 7 2-+-o6 158-+O5--229-5264. .55l+05 535+05 ,625+05 , 214+06 ,732+05 .158+0542 2 . .. 6 51107+06 .929+06 732+05 ,15 05229',.56f:, .551+05 ,303+06 ,254+06 ,-9';,--0- 7 ,- 2-'7+C6 .,-158+0521 9-7 27 .551+05 ,504+06 ,310+06 ,236+07 .314+06 i5B+05229-n52Z"- ,--55-+-55 ,5504-Ob-- ,373-06 ,298+07 ,732+05 .,158+05229 520°. ,551+05 ,504+06 ,40B+06 ,4680-7 ,3- 4+G6 .56]3+05229r5271, ,551+05 41. +U6 ,254+06 ,642+07 ,683+o06 .265+052'9-~'27-I, ,-4-i--5 ,2'3'f-+¥'6 .1'3i-0'65 642+U7 ,683+06 1·5.8+U52.90527', ,55i+o5 , 238+U6 ,205+06 .6407 ,68306 ,t58+05229.52-7, .551+05 ,lal+U6 ,205+q6 ,.68+07 ,486+06 .563+0522'9 5?7-74'- , 55 +5---o5-,1-B-+06 ,162-+-0 .266+U7 ,237+06 , 58+ 05229o5275, 55st+05 t181+06 ,162+06 -5B-9'O-'7---,7 9 35-+- , !0+-o06229n52-76 .551i05 236+ru6 *183+06 , 25+U7 ,79.3+06 158+05-2 29' 7527 7 ,---T5 5 1 +' 5'TZ .28+0-6 ... _ 2 4 +06 ...... ,642+07 , 793+06 .158+05229'52 7;1i, 55i+05 , 15t+06 107+06 ..- 5--It~~~~~~~ ,4o0--58.--'0-6 - 56+-'-5 ..229n5279. ,551+05 ,.t99+05 ,107+06 ,894+07 ,104+07 .153+06229; _ 1.-- -. 35-5't ' ,06+ +.-1-406. ,337+o8 , 252+07 .131+06

92 ?.,_8 % ,551+05 , 710u'5 ,766+C5 ,4 '8 ,1+7 ;253+0----29~5282 . 55i+05 ,71n+05 766+o5 ,.252+06 ,231+07 .226+06

-- 2'29'52~-7 '-,-55r+'C5 ,....-53 05 -- ,-346+ '5--- . 94+07 ,793+C6 15p+05u229~5264. .551+05 .56+0U6 ,766+05 --T539-67 .,-6-83 +¥6 .72 +05... "54 85 55i+05 132+U6 107+,q6 40,6+07 ,793+0 .·408+UD-2 9~ ;5'2F ,i+'~-O; ....;' -D5- 3 ,D i.Z835+U5 -12- ,699+7 ,104+07 .563+05229,5267. 55i+05 , t!32+06 107+06 --% ' _+-07---7 .-1-.5+T----5 '+-- 05 -229n52~a, .55j+05 , 132+g6 ,124+06 ,968+07 145+07 ,i77+06_2.. I. .. ., - 5' + .. .--13+6 -. ..-7 +06'0- . 760+07 160 +07 C+Ee., - t- I U. I 0 I O. ~~~~~~4Q8+05229r590 52 55i+05 , 18%+i6 ,107+06 --.- 58.9+- 7.-- . ,-1 81+-0- 7 ---.-I0- +30 .A2295291.* ,98+06 ,*13.81+06 ,t24+06 ,642+07 ,104+07 , i58+0j

2- i952 * ·-- ,145+0- , 5-'5 -'6---- . ,539+07 ,117+07 ,265+052295293 . ,551+05 ,11g+06 ,766+05 -,5 89+0 ...- Q.4..+- .. +0. .-22905294. .55i+05 ,710+U5 ,7605 5 ,589+07 ,104+07 ,563+05

22sc ~9...,9 . ;~,~·- 5iC EZ6-+' ----- o 0+7 05 ,b699+07 ,117+07 4$a0A+05229?5296, , 55+05 ,206+015 ,625+05 2- 5+7-----~- -257 -7- 2i-729 ,'5297. 55 i+05 .206+05 ,766+c5 . 25+07 ,17 7 6+1 753+U6za..n2~--, ,55i'-5 .... ,20,6-+05-. -65 "+-C' ..,76g+07 . 145+n7 153+0622905299, 551+05 t710+05 ,?21+05 -6 CT -,i 7 6-- ,7+7.---' 2 5 3 .. 0 6

- i

- ~ Mv-57 A1$ 2PALY /VLlLfrSFFAC'roRl 5,ET 71%r'

,/

Page 27: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

I

.. o

.:·

K too - :,

UT( .r ( )

·: - ' .

sO a--- "~S. )-,~ .

U'g ¢SEC)

Page 28: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

goas . . . --. I .

t IGO--'----- ------. _.____' : ... .- ,. t o

I I · - 2 :

r4

0 - .~. y

.'1 oooo. 20000. 30000. 0000 50000.

wT¢( SEC)

Page 29: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

-n

LI

I D(D(.)co

' -

.,, · . .D

lD s 9 ; o~~~~~~~~~~~~~~~N

: e________________u

. S S~~~~~~~~~~~~~~~~~~~~~~~~~~-

·~~~~~~~ 0·~~~~r

· e'0~~~~~~~~~~~~'

. ,¥ ',' .' ....

:~~ '' : ·-:

" .'· '~' ' : :"· Ii

, .. , -. , -~~ # I e-; - -f~~~~~~~~~~~~~~~ . ,r v

e0000. ibooo. I ooo0 O.

r

I

TII

i

o00 -

41MU

I

a

(3

$2:-f

IZ.J

on

.. - .''*. *- .

- I i' &,

· -%° I -

' . · ·

0-" oo000. I0000. 3oooo. 4oo000

UT( SEC)

I

I

11

II

I� I0

0

, {,4.. .. .

. . .

I

sooo.

Page 30: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Cl)~~~~~~~~~~~~~~~~~~~~~~~~~c

; . '.~ '-

, . 3

IO 't ' ' . ' .· .

aI0

so- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I.'.......

X ~~~ ~ ~~~~..^ , .. '' ,, ' .' .

rp 50-:--I-

- ' ' ': ' .". ,, ,:

.,0 .O 4 0 'o00 80.: . '

o 1 I _ '& _( 1o.OO z.Ob 4.00 6.00 8.00 10.00 1Z.00 14.00 *1.00 16.00 to.ob \ t.Oo *4.00

UtT(HR)

Page 31: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

4 ' ici . I _ I I I I I i i I I I

\ .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-4[)

IAr

Co

co

Im

o~~~~~~~~~~~~~~~~~~~C

- ~ ~~~~~~~~~~~~~~~ . _,_

. ' '" ' , ' ,' .''.' ",'', ,.'.' ', ,'. l

* , .*

I ;:~~~~~~~~~°e

·

, . ._ _ _ ~~~. . _' -

'~ ~ ' '' . .9-,

:.' ' . % ' ,'. o

: ._- .

~~ 'I· '' ''. h-_

* . -.- .- ,

** I?.. ..e ~~~~~~.

' ' -' ' ' *~~~~~~ ~ ~ ': -...

. ~~~~~ ~~~~~ .~ ' .,. . ,3

-'.,-' ".'. ' i' I; .......~~ ~~~~ ~ ~ ~~~~~ * "]-'- *z' *,.- '. !:---- -L,; ,~, ^ ''I ' an:, 'a't ' '; ' HI l I' 0.00 ' Z.00 4.030 .00 6.00 10.00u BC~ )

150

IO-

IU

in

0-

-17-

II

(.

ji

12,00 14.00 16.00 i6.oo0 2J.00 I 2a.oO

Page 32: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

-.4(')

I

(D

:0)

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I.

(i~~~~~~~~~~~~~~~~~~~~~~~~~)

I~~~~~~~~~~~qj) ~~~~~~~ ~ ~ ~ ~ ~ ~ N

I . _ ... , __. _____________________ , n

B,~~~~ . ,

O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ " '

Co--~~~~~~~~~~~~~~-

siI

t MI

(~50"

-t1. . *'sr . .

\~~~~~~~~~~~~~~~~~~~~·- A .

o9 so- ~· -%:.M 00.. ... ......

;O A 0. -O1.. oo0000. 2000.. 3000.... .

~~0000. ZOODC). 30000, 400o00, ~0000 600rC)O ' ?C003; .... o

za~~~~~~~~~~~~~~~~~~~~~'J · E&)-

_·L�______I _�_______ I

Page 33: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

60-_ -

0)~~~~~~~~~~~~~~..l

1- " - - _olJ

(~~~~~0I, 0

O~~~~~~~~~~~~~~~~~~~~~d ~ ~ ~ ~ ~ ~ ~ ~ ;' I I\

., . ' .- (

Xo.--

ci)~~~~~~~~~~~~~~~~~~~~~~~~~~C

\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ o

~0 . .:.

c~~~~~~~~~j~ ~ ~XO,~~~~~ .- t~~~~~~~~~~~ . ... ,. .3'

·c -

e~

4. _ .. -o

. .,..~ . , ...

* V ~ ,~i.

, ...

o - ' .1)oa0. 0ooo0. '-ooo. 40000. Soo0. 60000. 10000. .oaoo.

uT(s C)

Page 34: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

I3000. A. .. I

--IIcn

- ~ ~~ ~ ~~~ : *

~''"--~~1------------ - ·---------I A- -- 7 - --- (· -

- -: - --- - - : --~ n

r I

t~~~~~~~~~

-:. · ._- --. --

.o~~~~~- .o o - - _ --- - -o

, ..a 5 3 .

.'.I

.

. I

_ .

I I..... L"- - I - I --- -

bo000o. 20000. 000. 40000, . o0oo0. 60000. aoo000. eoooo.

wI

I

VI

aoN-20

.A

I-

0

I

I

60-

40-

·.

.-

. -r

I

30

Page 35: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

I

3sI

Q(

qj

N

UT( SEeC)

Haw

l

Page 36: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

- . '- . .A

014

lu

OBI~~~~~~~~~~~~~~~~~~~~~~~~~~O

e A o - \0# S % A w

\sI . .o

I~ e1 ' ~

. . _ ' . - 3

~~~~~~~~~~

..,, ,,. l

lO- .. .. : ' ,, . X,

t)~~~~~~~~~~~~~~~~~~~~~~~~~~~t

o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

\ .. .. . .. ..~, . , ... :... __

\ a0L~~~~~~~~~~~~~ .. '- .. ,~. ·: .I ~ ,,

,~ .i , ~ .

d.od ' '.oo 4.00 6.00 .c o.O0 12,00 14.00 :.00 1... *^.;'

- · WTCHR)

Page 37: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Ir~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

4o- - -- _ O ~~~~~~~~~~~~~~~~~~~.. .4a ~~~~~~~~~~~w

BO - '- '-' ' .'', fi In (P45 I I: Ic~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r~'- -'

ed~~~~~~~~~~~~~~~~~~~~e

I3 . ',

.. . ...,~- _.; .' ;.

· '.* . ..

Cog ,s ': .. ., ,,

C i '1 ''· ' c-~~~~~~~~~~~~~~~~ .'..:. , .i. X 1'UT a e , ,·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.,ol~~~~~o __ z~~~~~~~.,, '~.oo s.oo eo oo zo so eo 6G

,FLI ;' J.'~

Page 38: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

--

VIe) o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

Vow t

d 4 24__0 - ------

..,

Of- 1.....

0 ~ . . ~: .... j_~ .. , ~,,~..,~~c.. t . ."~;~e, '-~-~-.~,,,,C,(4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

o0oo0. 30000. 40000. 50000. *' 0000. 0000. ... 7 - ST o 'T. -r sk O~~~~~~~~~~~~~~~~~~~~~~l r

Page 39: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

C;)

cD

CaCO

O

- ...

,: . :

_~~~~~~~~~~~~i

3ooco. 40000.

UT-r( S c)

.. .*

I 5000D. 60000.

5 .

10

'!6

I

tn

VI14

c)S.

qI

.

0-11000c. 20000. 7ooo0. oooo.

II

M

- I

-i

'~~~~~~~~~~~~~~~~~~~~~~~~~~~NWMY-lP*AY'~~~~~~WAM.W-,4C~ I

Page 40: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

ao >

14 U-

t4)tn ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ (

C:D

(i)

E0. . 0 5. . o.

I ( E.. **

to '

_ _ JiSO. Zooo. - Soo~o, ....

UT¢ Nc)

Page 41: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

aa~~~~~~~· ''0t, .....- CM

s I '. : ' '', '

X . ,.

' ' . ,- .

' I . ,

0~ · I I I

I -0. R0oom0. 300oo. oo400. i Soo. o0000n. rou0 . l 'OO.

UT¢ SE C)

I

Page 42: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

I

I.

tJ

CA

. o.n10o00

UT(R)

-.-

ao

!ao i MR.00

Page 43: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

_p--~~~~ I I I I I I I I -

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'tHCU)

In

m

CJl

.. ~ ~ ~ ~ ~ ~ ~~~b

U3

j~~~~ ~ ~ ~ ~~~~~~~~~~~ * :,

'"*'1 - ·.' ** *

;~ ~ ~ ~ ~~~~~~~~.~ ... 8

I X1 -.o

···~ ~~~~

.

Qw g l

.': . --

i.. .. *..~~~~~~~~~~~~~~~~~~~~~~~~~~~~~¢.* e.

0

o. o.

~, .'..

· -.. 2

- - - -- ** H~~~~·~ e .

.- .. ~~~~~~~~~~~~~~-._:

0~~~~~~~~~~~~~~~~~~~~~~ I-rl I I

0.00 _.0 '.00 .. 0. '.0010.00 1,.00 14,0 16.00 ~ 0. ' , ._

~~~~~~~~~~~~~~~~~~~~~~·.;.

e~~~~~~~~~~~~~~~~~H

l~~~~~~~~~~ -. *

_~~~~~~~~~~~~~~~~*, ": _ 1 .... ., .*- .3

*:~ ~ ~~~~~~~~~ ''*

- :~~~~~~~.

*': . .-,*

_ ~~~~~~~~~~~.

S~~~~~~~. .~. '/,:'.",-, ,, · ,-I, * .,,'f.-A.-T'.:.. ...

", !' ' -.- ' Iw:R , I · - ' .:0'", ~*" "~ "

-,, *: ..... l'__.

at

14

I

U

IlI .

AD

*2.00 14.00' 15.00 *od.Gi3 2J.i0 1 2a.is 24 via)0.00 I 2.00 4.00 5.00 8.00 0.00O

UT (HP%)

Page 44: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

| ~~~~~~~~- 3,.n l~~~~~~I

r~~~t~~~~~~~~~~~~~~5: ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ (-

. . . A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I.m

CD

:3·2 ~ ~ ~ ~ ~ ~ OfC~~~~~~~~~~~C

'IT

~~~~~~~~~~~~~~~~~~~~~~~.. .m o.

: : °a

.. ..o ...

.**.

t. · ° ' '° °' · · :~~. 4. .. ·

, ~_. . . . .. ... _,:- . _io. ._ _'6'"......_ '-' ....

_' , , , , wv' °9|= MDI, ;-a*;e 0.-3000. 200o. 30000.

1 . . .

40000. .003. oo.0 Vo" . O'O.

A-T C's' c) . .. -

IS5

kI

(3

Io10-

65

IJ.

0

r

7T

Page 45: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

g,~~~~~~~~~~~~f ~~~~~ ~ ~ ~ ~ ~Ll

' . 0

(D

tU 4-m 3

_ 0 . .....

'-t' *', ,*

..... _ IO. zoooo. o0O0. <00000 *o. 0. ooo o60000 0000 o

U-rCsEc)

Page 46: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

ES 6-E - -_

-R ,- -C : - : .

,,, .)

a,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

\al -- ..\'U ;

-: '- , : .

M~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I I

0,a' -'.

:.: ,-

*~~~~ . :' . , - ¢,' 4:;. . ,.

* : ,. .oot.10. 30000 . ,:'. 4000. .000. . c. .0000.

. ),,.,,'

f

Page 47: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

-- ' "I

'~~. ! .. ..... ............. .... _

-I

( . .II)

01~~u

8 (~

0~~~~. .............. _ .. - . ... :_, :;..---_ ; .

4X~~~~~~~~~~~~~,: ',-;:,,, . '.,.

ra 4-'.*.:. :

t ~~~~ ~~~~~~~~.' ...-. -:.-,. :.. .. 1..'; ~ ... .,: , *-, .:. ~:: . '. ':.·,: :'

'.vs~~~~~~~~~~~ . ~ ~ ~ ~ ~ ~I..

be *- . V : '- ..

·. ,: ' ' .' ;· j~ ..-l :. · . .ii. , i ,

lo- v s tI l | I-I

cJ~~~~~~~~~~~~..~ · .

43

·.~',~~ ';' -'1~

·· ~~~~~~~~~~~~~~~~.",:: .~i',? ~''~

z I : :'.

"~~~~ 0

0 .9 ~~~~~i. -,.·~

*· 'Y n* 1~

*1 ~ ~4 zi .j!::2:.

*1~ ~~~~~~~~~~St * I

.9 ~~~~~~~~~~~~~~~~~..

o ~ 6%ij3~1(H 1 I oo0oo. 20000. 300Cl0. 40000.

uTCc,)eoono. O. i 0o00.

I

-J.

Page 48: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

-t

W

~... .... .. I ,,e

CO(A)

CO

a)

o

cce

.~~~~~~~~~~~~~ ----- ----- . .,....e

8 "~

.Xr'

t4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o

u~~~~~~~~~~~0,0 2.t .0 0 .0 00 200 100 1.0 60 O ' .0 .

. .. 1i ' :

. ., , , .

h~~ ~ ~ ~~ ., ;.. _ . . . _ . _ ,.

.~. : "..(:' .".' · . '.

|~~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~ .Y ,si. ''. . ,~~o. A,,

1t. , , , .

m~~~~~~~~~~~~~~~~ . ,........'.,.. ,. ... _... ... .. ,'_.,;_..,. ,,:...'......-AFg

~~~~~~~~~~~~~~~~~~~~~~~~ .' ,~, :~. ~.. . , . -.. .:'s.~Uw~~~~~~~~~..... · . .. ~ : . . k..~ . ~ .m~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.1 4-

\ . . . . .. .. ..U' ,,,.R)

o;oo ' 2.0b 4.00 6.00, 6.00 *o.oo 12.00 *4.00 Is.oo se.o r t.w *2.00' t4.o

* ~~uT(FR

Page 49: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Vb .· - :' -

l : . . - - , ' - · _0 +_ ~~~~~~~~~~. . - .

0 9

x .- ,', . " , , . .

q~~~~~~~~~, . -, 0,

~~~~~~~~~~~~~BJ~~~~~~~~~~~~~~~~~~~~~- I J

I ·. .j

· )

'~~~~~~~~~~~~~ .. 3a~~.~.~

* *

.·'.~ .. >-~5r *

C).00 Z~r~ 4.00 6.00 6.00 10.00 12.00 14.00 16.00 %c6.00 2,) .00O ~.. 2 4.uO,

UTCHR)

Page 50: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

40000. 50000.- ooe c) ooooVT 'sk C}

CI

I..t .

ras

r

8

I

t)I(3!

MnIQ

(4

AA

1

N

U

0S

04

4

a

0

Page 51: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

UrT (SE C)

3o

ao0

go

Ba

(AI

4J

Q

!

9.a-

-.

0

Page 52: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

30

tC : .. .- -* . .

t 20-..

(Z '

-' ~_.lOO00. 20000. 30000. 40000. , 0000. 60000. :0. .

I-UT(I I I EC I. 0000. 0oooo. 0oooo. 40000. 50u0o. 60000, *00. * aoo.

LrTr sec)

Page 53: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

LU

cro~~~ .

At-0-

9% . .:.--.*.N...- .-. I,~ , ."r.: ' '. . __ ... - : *. '-:" ...

_ _ _lacko 20000. 3oooo. 46000.-oo .:... Tl

s~~,ocs~ 20. . 3000.. S C. ) . ..

A)O~~ , - __- . . s' ;

muo00. 20000. 1oo0oo0 dooo. 40hoooi ' ~)L10. tooOO~ &u.~

UTs se)

Page 54: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

--4()I

L1

ww

(A

CO

co

C)

I-

..

w

-l 1

I I I iIo.od ' 2.00 4.00 6.00

I IBo00 o t10.00 12.00

UT(H )

I I14.00 16.00 t.00 20.00

30'-

I4tJ

tli

U%

10-

· ...?_ .. -..--.. ~-.

···.f.~·--~-. .i ~~~~~~·r-..r.......... ;.. ...... _.

O-4

Itt.00

I*4.00

I

aO--

. . ...

. .. ... Z:. ... : . . _

. .o : .

o.- . -

- -

..

i I

Page 55: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

t0-

10I

iI

0Of

o0-

0-

T

_

C

I

(

: (

,J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-.-..~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~~~~

T! .lrw .. ' P. ' ;

. . ...

':.:;- ...... ....*

- * -:. . .- *2~* .* . *

*-: .- *e -g . -_~~~~~. .. ff .--. *-.?.-,.--...: -:_... _--*:. . _-.. .. .,:-S. .. _._ -.. _.__

*-' " "'.' :.'...- * ' ,4. ,- -

r . .- ·. ~~~~· i

I. - II !! .I I I I, ,I

r ., .~~~~~~~~~~

0.00 2.00 4.00 6.00 6.00 10.00 12.00 14.00 16.00 16.00 20.06 , ZZ.O

VT II )

i)

-Q

L).0

.0

.0

'1-c

24 . 0

q

H

- l l --A

:

IT T -- I

I " .- .- . -

I

.. --_ "

.... ._. .". ._ .. -.: _:- -

: . -.

Page 56: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

-"1

.I

,,l

:~~~~~~~~~~~~~~~~~~~~~~~i 'I jj i , ii

i,-.

C

C

A2:'a'C N

IN

-:~~~~~~~~~~~~~;

°oP . .

- ~ ~ ~ ~ ~ ~ ~ ~ A

*· .- '.. .-t.-.-.- . -.

-·C~"

_~~~~~~~.. ... I -!~ -....- .,......,..

l

50000. 60000.20000. 30000. 40000.

.lvCs 'cj1~~~~~~~~ .r (J ($ C

tooo.

30

" 20.

.I

I

"e, IO-

ri

D

3

33

0

wro

10000. .ooo . .. , _ *

__I__ __

I

I

Im~

rl

Page 57: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

JT (SESc)

l

I

ic

N-

-aP .

Page 58: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

UT(5EC)

QctIx

V)LU

I

lI"

C,N

1

9I.tbJ

O

IrPI.

Page 59: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

6~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0~~~~~~~~0)

(A.060-- .. .. -n

(A)Q4 40- . _., _ 0

U9 . 0.j . .UJIUTr',,.))1

.c ~~~~~~~~~~~~~,Q .' ' ' .. w

0 AO

.. '. '.. .'

* 21. ... , .i· .'

, . ' .'_ ' . . ; ; - --. -,. · . .

0A~ . · -. I 1-0- . o , - s OY. .

10000' . 0000. )ooo,. 40000. 2 sa· ', 0000, ooo. *oooo

UT(sEC)

Page 60: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

U , · . I so

rii,, 4£.

Z.7- f·~··L' ·A M

o " IIt7' I

O. O,.

0.00 2.00 4.00 6.00 °.00 10.00 12.00 14.00 16.00 18.00 20,00 te.00 V4.00

UT(HR)

Page 61: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

40~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,

~~~~~~~~~~~~~~~~~C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'.

o~~~~~~~~~~~~~ ' . ' . ' ' -41 .' . : 1 .

-ni

oxe

s,!,0 ' - -I

6~~~~~~~~~~~0 ~ ~ ~ ~ ~

~-'. ' ...

i;~~~~~~. ' S . '~'' ,-· ' ..'FF:Ht I ;L c- . ..... . .- ... - .. n.. e

, ~ ~ .,=;:--~~~~~~~~~~___- -..\~~~~~~~~~~~~~~·-? .

r C ¢r.'s!.-'F~I''-,' '""' : ;

'

0.00 2.00 4.00 0.00 8.00 10.00 12.00 14.00 -b.00 1?.L0 20.00 22.X 24.0,.

JtIA) I 1 I- , -I --F -

Page 62: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

w 40' ~ -a w

J o

I'

t ~40-~~: .....

w ~ uC~l . . M~

t" ·' · o . ' -'.d -·. .-

·~ ~ ~ ~ ~ ~~~

1 .... .. . F

s ....

o . ' .~~~~~~~000 'obo 0' ' :E

-a - r a,_^f*IL' '_ __ ___ __ ____

Ok,_ 4i '1

(3~~~~~~~~~~*00 250. Noo 7. _-1

L* T SEC) ,.. -

Page 63: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

10-' --.

co

S- c

1an ~ ~ ~ ~ ~~n

8- . -

mC

..

t 000. .00. 3'o00. 40000. 30000. .600. .OOOO .) oO-

(3'e9 ~ -- . , .U ..Jtwr. . ..

' 1 *

1ovoe. 2ocoo. 3oooo. 0oooo. 5o000. 60000. 0000. ! boos.

UT(SC )

Page 64: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

0 41 o13~~~~~~~~\... ., ".....1

,i, .-' ... Iz

4 . ,_ ,_ __ __ I·

0000. 20000. 3o ooo 40000. 50010, 0 . O .' t:-

UT(S EC) u~~~~~rs~~~~~~e )6OOJ

Page 65: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

ant~: X --: - tra- ] i·- X-r- -- I11., ... :.,...... : . .. ,. ,:' . 1 , , , . , I

.I ' -- . ' '';''T ' , ' * ~~~~~~-.e

O,)

16~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1

o

N)

o~~~~~~~~~~~~~~~~~~. ... l

. .; ai)

8~~~~~~~~~~- .: (D

-U

~~~~B "~~~~~~~~~ :: · ,. I0 o~*. . ' .

9~~~~~~~~~~ a:.o , .· : ·, · '

0~~~~ ~ ~~ ~ ~~~~~~~~~~~~~~~~~~~~~ 4- -- _.

- . . ' "-'-" -' - · · ' ' .' ...... ~ .11 , , :

s :I :- ., .. ~ , :\

, ~.o. .- 000. : :. '

\~~~~~~~~~~~~~~~~~~~~~~ .. ' _ . . . -, , 'i

W 4_ _ . - .: .. -. . .:Q..'.. _0,-~~ , , ,* '1 I t . ,; I ' i

00Ct0.I (,cO . 30000. 40000. I 650000. ?booO. I ·00oo.

Page 66: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

-- ,~~~~~~~~~~·· i

"-'~'' I i ... I IJ I i I

ry I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Ian~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

QI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

: C;

(L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" .o ···-

" C:

(4J~ ~ ~ ~ ~ ~~~~~~~~~~~~:

·-~~~~~~~~~~-r

~ *.

2. ...

4--0 t~do r.00 6' 0.00 10.00 12.0 14.00 :6.00 16.0 10.0 33.00 34.0

wr(HRP~t.)

Page 67: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

It ' -.- (,jI' -. ,

~l .l l_ ' |.:

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ·

' ... I ' _. ^ SW ...

- _ .. :;. ,--I --.o -~~~~~~~~~~~~

. ,. * - , .t. .. .1*

.. ' " .

*· £

O- . , .I I I I I I I i i I I I0.00 .O 4.00 6.00 .00 10.00oo 12.00 14.00 t6.oo00 t.OO 20.00 22.00 24.oo00

UT(fR)

Page 68: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

LODo CAo

I 0

!

4.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

I( i . . e

.. .... . .e

44p

C-t '1

8 . - '

: .. ,. .. <.. . .-. ~ ,,··., ,~ ~ ~- , ..

0 . .oo. .o .

14~~~~~~~~~~~~~~~~~~~~i: .:-: · -- . · N

O .

10000. 2oo0. 30000. oooo. 0. oo. 7oo o ' _oooO_.

''-'."'c)

Page 69: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fig. 45

ATS-5 328-$969

IO,107

' I . -- ' 107

_106

! -.. ,._ ., _, _ .10'

!: . - -. :u... . , ' l..

]rOGo

42500. 43000. 43 500,

VTs (sec)! 1 - I

CMEA

CMEB

CMEC

CMED

CFPA

CFPC

CFPB

I

acIuI

!

of

U

it

Q3

14

Ii'

U

ujriIZ

4

i

t

g4 UUe C DUOe A3S00.! 4UUU0

Page 70: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fig. 46

ATS-5 330-1?(oqI

· I I I· I . I I I

In0

,10c

4lOg

.' * . . . aO

10c

W * ~~~~~~~~~~~~~~~-I¢~~~~~" ~. ] .'' l

g

10

to'I0'

.', ' . 10y

.. " ' .. . ,. i0

.... !. --.. , . .. . .- __ ....,~,~/ro ~

105

1 -I0. lOs

it +

r . . - A- - I - -' - - -- - ---- -%

4 tIit),I 4 5u.

*1,o10

,I0'

,iO~

416

X

QA

Iin

VI

N

r I

j,

(4

9o.

I I u,7 O I .I- .

1 P 5

UT(SEC)

I · I

CMEA

CMEB

CMEC

CMED

CFPA

CFPC

CFPB

- I:! til.

13 tloU.

5 3 5rio

, I

-ji

I II II I

I

I

IL

Page 71: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

I I. ·I'

i~~~~~~~~~O

. ~ ~~~~~ . ' *; . · . Io~:. . ... o·.

10 6

. *- ,. t . loG

/Os

t10"

i0';

,. * . 10iOT

~~~~~~~~~~~~. .

IOL

10c

,10c

-. . .. 6. | g . X | . X . ,_~~~~~~~~~~~~~~~~10

'000. *S00. 3000. 35O00, 4000.

UT(SEC)

Fig. 47

ATS-5 331-1969

CMEA

CMEB

,CMEC

CMED

CFPA

CFPC

CFPB

:tu

UI

\I

d

W.

4'

I0

'4

Uj(A

14

inI

f4

W

IN

,00. 1 00.

I

Page 72: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fig. 48

ATS-5' 331-1q69

-_'UI I I I I

.L.

!0

,..._ --. . _

B:~ ~~~~~ *

It

.!t

a ,

1·W~ ~ age WU

.u, U. p~uu. VU~u. ~ uu -- .'1

<~~ I o l u ' v u . -4 ~ u 4 zu,.... Fuu -- ....... uu,-Gxu

.UT sEc)

CMEA

CMEB

CMEC

CMED

CFPA

CFPC

CFPB

,lof

to" .10';

ic

-10" L I0

{J,s Li)

o 7 I

104

,IoS

,7

q)I

'7 U(j6 LU

I

IS ;Q'

I

ii

I I*P"2"s V~ToP-t

8I

t

.I

.II

I

I

! I

I I:. .. . I..

Page 73: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fig. 49

ATS-5

CMEA

CMEB

CMEC

CMED

CFPA

CFPC

CFPB

333-1949

-

,10c10

I0

,i0

t10

' . ' * /0O

10

10I0

.· ;,.' .-i- I 10

10'10

:.~~ , ' . N~10

I0

10

J .Jo0 13. 4 0 '4.3u4

/02

,10 7l O9

4. I U

UT(HR)

*1

6U4qj

s IQC

7 ()

7 uj)I

it

77 14

)6as

of

or

s

)7

)a

5

to

UI

U

IV)

I'

U

N

-- . 016WmRb···1~L*r-ladd~i I-Y~·B--Sx---l·-·~ ·rYI~ ·Y~bbLI~LI-

_.

T-

l l I I

Page 74: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fig. 50

ATS -5 333- 1969

CMEA

CMEB

CMEC

CMED

CFPA

CFPC

CFPB

I-J L

!

I . .71-I, " - 43 I

II .1 4)

UT(HR.)'I 14I , 5

.~..,~I,..~`. *'t_'~~`~-~~`*`~~. ,

l09

iO7

to,I O

lor

IOg

10"

v - -~~~~~~~~~~~~~~~~~~~~~~~~ . .~ ;I0

. ~~~ ~~. ': - - ~ ~lo"

yS _- ____,_,'10''..';;irP·i~·"~·ii~

l08

IoY

!0 6' . ' ' . 10'. ', . Xo6~~~~~,

~~~_-_-:..__- _- _ - .... _:. :b,'Oo

. . - . ___ ~~~~~~~~~~~~~~~~107

,10-~

°OrI . . ~~~~~~~~~~~~~~~~~~~10s

3

I, I

2rU

I

I1

UI

i 5.t O)

··r =- -e --- I.i

1.bI

a

M.'

a I

a �

dr

a 04 p

LZt

I! r

4

Page 75: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fig. 51

ATS-5 333-1969

70

' AM i i .- -- l l!l

~~4~~~~~~~10

Bra'

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~._._. ... o g'

107

i · J-Fw~~~~~~/lo6

10

. . . .~ ~~~~~~~~~~~~~~~~ .lo~

.107

907

· - .. . ~ 06

,/05

10%

-_-, , , _ _.. - . .. ..... _-. 10"

~~~...... ... O G

I0 5

9.IU '

: . ~~~~~~~~~~~~~~~~~~~~~~~~~10$

~~~... _- -,-- ._ -~ . --. w-=- -- -.--_-_. ,--~--,, a _ · 107 I ~

' .--' . - . . of~~~~~~~~~~~~~~~~~~~~~'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,,, ,,lti~luI.1. 15.3t~ 1F .. ~r...

UT(HFR)I .' a

CMEA

CMEB

CMEC

CMED

CFPA

CFPC

CFPB

NJ

I

ui

14I

tII

ac

(3U,

8(3

%

I

1,

(-3

Q

I

14

%.

9.,

-l .

Page 76: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fig. 52

ATS-5 333-19G9

16 .10 I6. -za 6.3 Li

UT(HR)-. . . -.....d... A ._ - ... .......

lo"106

10 9

,fO~

CMEA

CMEB

CMEC

CMED

CFPA

CFPC

CFPB

I4:U)I

Iqj

N%101

105'

J09

JI7

F,

IiO'

i!0

I0

10

_0!

U)I

,lv,I-I

N9-

,I

If

G. 40 -,16.50

~~~/ ~~~

rs

-- ~~~~~~~~ --- - - T

I

r

ill

I,

Page 77: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

ATS-5 339-I9 9

-L-.q.

I

· ,v10

109

I0o_ ___-_ ballo

*. I.*~ * lQS~ 10

i10.:.,..'._~- ~.=.: . .",v~'~.~ °

10 * '

UT(RI)rIPPR11.00 1t.10

Fig. 53

i

,ot

106 X

CS0

,IO IL4

la" C

CMEA

CMEB

CMEC

CMED

CFPA

CFPC

CFPB

N

c)thI

IIul

g4

r.

9.

10 4 -- = - -too WON -- -

' '--- ~-- --- '.- -' -_.--- ' i1 o,,q.....

W.,

l t

0

Page 78: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fig. 54

ATS-5 341-67

CMEA o

CMEB ,o0 :

. . o'

Igj

CMEC .

CMEDlO5

CFPA , o'

I

CFPC :'0. i

I o

CFPB -. ..

"go.... I0 00....... I ~ , J00ooo.'

z'fooo 2~,l, , o,. (oSECo. ),oo

UT (SEC)

Page 79: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fig. 55

HIGLO CME OUTPUTS GRP 1 ORBIT

905250 905240 905250

ELPHT, SEC

905330 905340 905350 905360 905570 90530O 905390 90540C

ELPHT, SEC

A4027

'/o0

.0°

Page 80: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fig. 56

HIGLO CME OUTPUTS GRP 2,3 ORBIT A4027

*1 /0 9

/0 6

4 /OI s

r

-~~~F·-.I i [.F i

i i,.f. .t~~~'-~--~.-- ; . ! -;··

. t: " ,. LI ' I

f? i ii· i i :i·;'iT

I. . i i :

, ,:L!:. i-.

" ', }

[ . L-,-

I!I4

I .

. i I ii , t-

i i |.I'..

f ,. -

(.!

i :~.!I £ tL~ ,-*-. _- :-: LP.-t P - ·-t- -r -?--]--" -· ---j': I

' -1rt'T Fir rF~T'F

I-

? ~--rI'-i L-LL i Zat -!- -N,-Ti-r,| ! 1 !El

-. ~ -t- ' tj ·L LI

'1:II I ' I i ' I

9,05200 9052200 9052 905230 90524^ 905250

ELPHT, SEC

i.-

l .

905510 905330 905340 905

ELPHT. SEC

r'TT _! ', ,

!,-Ti it, *! _'- '.p--.- 2

. _ ' _ _ S e. -!r .. V ; . t,-:-x D

··, ~ ~ ,

9052?0 905;'e,0 905290 930r i-.~~~~~~~~~~~~~

gO: G'

,4, -L44- ~ .I - L.L-~*-I+----41-t·

n5.....I � . , , . , - , , L - - -I -9AII

I,,

i !

i;L!'r Ii

_ , I!

i

; .,. i,.li

9u0c5u0

I l; !

. -, T-tI IL! i I

I .,.4--i.,

I I -i-1

t , r:.t| .6 e

-,T,1 Tf

i.i,i-; .

:. .. _,.! r:

' ! I !

t . ii .

Page 81: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

APPEDIX 3

High Latitude Particle Precipitation, and Source

Regions in the Magnetosphere

by

R. H. Eather* and S. B. Mende*

HIGH LATITUDE PARTICLEPRECIPITATION,

AND SOURCE REGIONS INTHE MAGNETOSPHERE

Presented at Advanced StudyInstitute on Magnetosphere-Ionosphere Interactions, Dalseter,Norway, April, 1971.

R. H, EATHERDepartment of PhysicsBoston CollegeChestnut Hill, Massachusetts 02167

and

S. B. MENDELockheed Palo Alto Research Labs.3251 HanoverPalo Alto, California 94304

* Physics Department, Boston College, Chestnut Hill,Massachusetts 02167

+ Lockheed Research Labs, 3251 Hanover, Palo Alto,California 94304

Page 82: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Abstract

In this review we present averaged properties of precipitating

auroral protons and electrons (as deduced photometrically) and compare

these with direct satellite measurements of similar parameters.

The various distinct types of precipitating particles are defined

and related to their-source regions in the magnetosphere.

There are two distinct types of proton precipitation. On the

nightside, the proton aurora locates equatorward of electron aurora

before midnight, and overlaps electron aurora after midnight. The

most probable source region in the magnetosphere is the ring

current, and gradient drift may sometimes extend this region through

the dusk meridian and as far around as midday. There is a second,

higher latitude zone of soft-proton precipitation on the dayside,

which has its origin in magnetosheath plasma penetration through the

cusp regions.

There are three distinct types of electron precipitation.

On the nightside, there is a broad zone of soft (-1 keV) precipitation

that extends from the equatorward side of the nightside oval and up

to invariant latitudes of -800; the probable source region is the

plasma sheet via loss-cone drizzle. The auroral oval on the night-

side is generated by higher energy (-5 keV) electrons that super-

impose on the low-latitude side of the soft zone. The most probable

source region in the magnetosphere locates between the inner edge

of the plasma sheet and the center of the plasma sheet (near neutral

sheet) in the tail. Gradient drift of these electrons extends

this region through the dawn meridian and past noon, resulting in a

precipitation region locating just equatorward of the dayside oval.

The third region of electron precipitation coincides with the high-

latitude dayside protons and results from very soft magnetosheath

electrons (<300 eV) penetrating the cusp regions. It is these

soft dayside electrons that generate the dayside oval.

These multiple zones of particle precipitation, with their

distinct and somewhat independent sources in the magnetosphere,

comprise a much more complex picture than the simple concept of the

auroral oval would suggest, but at the same time they provide a

basis for a clearer understanding of high-latitude precipitation

phenomena.

Page 83: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

1. Introduction

This review describes how ground-based optical techniques

may be used to determine the type, flux, and energy of precipita-

ting auroral particles. Recent experiments along these lines

are described, and we arrive at a number of new conclusions on

precipitation patterns and source regions in the magnetosphere.

Comparisons with satellite data facilitate the identification of

these source regions.

This paper summarizes the essential features of a review

talk given at the Magnetosphere-Ionosphere Interactions Conference.

2. Spectral-Photometric Measurements

Within certain limitations, ground based or airborne

measurements of auroral emissions can be used to determine the type,

energy, and flux of precipitating particles. The technique uses

mainly 4861 HB, 4278 N2+ and 6300 OI measurements; the HB intensity

is used to estimate the proton flux and the proton contribution to

N2+ and OI excitation. The residual 4278 N2 + intensity then gives

the total energy influx of precipitating electrons; at times when

this residual is zero, airglow corrections can be made to the OI

intensity. Finally the ratio 6300/4278 (proton corrected and airglow

corrected) gives a measure of the average energy of the electrons.

There are certain precautions to observe in applying the

procedure, such as van Rhijn and extinction corrections, perspective

effects, lifetime effects, etc; but one can obtain confirming data

by measuring additional emissions such as 3914 N2+, 5577 OI and

5200 NI. Thus careful photometry can be a powerful technique to

study the details of energetic particle precipitation.

Relevant conversion data from emission intensities to energy

are shown in Figure 1. The conversion from 4278 N2+ intensity to

total energy input would be independent of electron energy in a

pure N2 atmosphere (for electron energies 2 100 eV), but because the

fractional abundance of N 2 varies with height, we must use the cor-

rection factor as a function of height (or electron energy) as

shown in Fig. la. Figure lb shows a theoretical curve (Rees,

private communication) relating the 6300/4278 ratio to monoenergetic

electron energy for an assumed model atmosphere. In practice, we

have a distribution of precipitating electron energies, and the

variation of 6300/4278 as a function of 4278 intensity (or total

energy input) is shown in Figure lc (theoretical curves, Rees,

private communication), for various energy spectra peaked between

0.3 and 10 keV. Thus if we assume a spectral form and measure the

6300/4278 ratio and 4278 intensity (for electron excitation), we

can uniquely define the parameter a giving the peak of the energy

spectrum i.e. a measure of average electron energy.

-1- -2-

Page 84: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

3. Dayside Precipitation Patterns

Results from airborne experiments aboard the NASA Convair 990

have been published (Eather, 1969; Eather and Akasofu, 1969;

Eather and Mende, 1971). Only four north-south passes were made

near the midday sector, so statistics are limited. Averaged

latitude distributions of 4278 N2 + and H8 have been published

(Eather and Mende, 1971), and are replotted as a function of oval

co-ordinates (invariant latitude minus latitude of theoretical

position of equatorward boundary of the auroral oval, see Eather

and Mende, 1971) in Figure 2. Note first that the peak average

4278 intensity is only 70 R (which corresponds to subvisual aurora).

4278 intensities of -300 R were observed in individual events, and

such auroras were weak but visible. This average 4278 intensity

is lower than nighttime averages by a factor of about 7. The peak

HO average intensity (-8 R) is also less than nighttime averages

but a factor of -3; note too that the proton precipitation (HB)

locates on the high-latitude half of a broader region of electron

precipitation.

Figure 3 shows the 6300/4278 ratios (electron excitation)

plotted in oval co-ordinates, and indicates a number of important

results. There are two distinct types of dayside precipitation: a

region equatgrward of the equatorial boundary of the auroral Qval

where high energy (t 5 keV) electrons precipitate, and a region

poleward of the equatorial boundary (i.e. in the position of the

oval) where soft electrons (s 200 eV) precipitate. (These energies

-3-

are derived from the ratios in Figure 3, the intensities in Figure 2,

and the theoretical curves of Fig. lc.) This same effect may be

seen by looking at the details of particular north-south flights

(Figure 4). It may be seen that for invariant latitudes less than

about 77° , the 6300 intensity shows no relationship to the 4278

intensity, whereas above 770 the two curves show similar behavior.

Both Figures 3 and 4 show that the division between the regions of

hard and soft electron precipitation is very sharp and that there

is little overlap of these regions.

The red auroras excited in the soft precipitation region

have been photographed in color, and there is a clear distinction

between these auroras and the more typical green aurora further

equatorward (Akasofu, private communication).

Comparison of Figures 2 and 3 shows that the protons preci-

pitate in the same region as the soft electrons. An examination of

the Doppler profile of the emitted Ha radiation shows that these

protons are less energetic than on the nightside, so probably have

energies s 3 keV (Eather and Mende, 1971).

These deductions from photometric measurements agree very

well with detailed particle measurements from the low-altitude

satellite ISIS-1. Figure 5 shows spectrograms for electrons and

protons plotted against invariant latitude (Heikkila and Winningham,

1971), The low-latitude, hard-electron precipitation, and high-

latitude, soft-electron and proton precipitation, with a sharp

transition at 730 (Kp = 5) are all clearly shown. For quiet times

-4-

Page 85: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

(Kp - 0-1) the sharp transition occurs at higher latitudes (- 77.50)

so that the soft precipitation of electrons and protons covers the

A range -78-81° (Winningham, 1970; Heikkila and Winningham, private

communication).

The coincident precipitation of low-energy electrons and

protons in a region adjacent to a lower-latitude region of hard

electron precipitation led Heikkila and Winningham (1971) and

Eather and Mende, (1971) to suggest that these particles may

penetrate directly from the magnetosheath. Such a penetration

through the dayside neutral points would imply that the lower-

latitude, hard-electron precipitation occurs on closed field lines.

There are a number of recent satellite results associating

high latitude precipitation of soft electrons and protons on the

dayside with direct penetration of magnetosheath plasma through

neutral points (or "polar cusp" or "cleft") (Heikkila and Winning-

ham, 1971; Frank, 1971a). A summary of satellite observations

of dayside precipitation, and a comparison with photometric results,

is presented in Figure 6. Consideration of the experimental data

(and remembering certain limitations on the energy coverage of some

satellite detectors) leads to probable average energy influx of

-0.1 erg cm -2sec -ster-

1 for soft electrons, and -0.05 erg cm 2sec 1

ster-

1 for soft protons. The spectral peak seems to be typically

100-200 eV for electrons and -300 eV for protons. A summary of the

average features of dayside precipitation as shown in Figure 6

is presented in Table 1.

Table 1

Dayside Aurora

Average Energy Input

(erg/cm2sec ster)

4278 N2+ (R)

5577 OI

6300 IO

4861 H8

Hard Zone I

Electrons Electrons Protons Total

0.1

85

-200

20

0.1 0.05 0.15

70

-250

1250

-30 100

-80 330

-30 1280

10 10

-5--Sa-

Soft Zone

Page 86: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

The lower-latitude zone of hard electron precipitation has

been discussed by Hoffman (1971) and indirectly by Frank (1971a).

This is a broad, diffuse and steady region of precipitation occurring

on closed field lines; the average energy flux being precipitated

is similar to that in the soft zone (-0.1 erg cm 2sec 1ster )

*and it seems clear that these electrons gradient drift from a

nighttime source region (see full discussion by Hoffman, 1971).

The width of the precipitation region is much broader before

midday than after (Hoffman, 1971; Eather, Heikkila and Akasofu,

private communications) and often extends only a few hours into the

afternoon sector (Hoffman, 1971). This extent into the afternoon

would probably be a function of the nightside source strength and

the loss rate along the drift path.

It is interesting to note that early satellite results

from the Lockheed group (Sharp and Johnson, 1969) showed a second

zone of proton precipitation coincident with the hard electrons

(Figure 7). This zone was not detected photometrically by Eather

and Mende (1971), nor has it been reported by other satellite

experiments. However it occurs in the same region as the trapped

ring current in the dayside (Frank, 1971a) so it seems a likely

explanation is that on some occassions, these trapped ring

current protons do enter the loss cone. Indeed the second proton

zone is probably entirely analogous to the hard electron zone in

that it has as its source a gradient drift from a nightside source

region. Such protons drift through the evening sector towards noon,

and their extent into the dayside would be a function of the night-

side source strength and the loss rate along the drift path.

Apparently the source strength and/or the loss rate near noon

are only occasionally strong enough to give measureable precipitation.

It appears then that we have a quite satisfactory picture

of dayside particle precipitation and the various source regions

in the magnetosphere.

The only significant discrepancies between the satellite

and photometric experiments listed in Figure 6 concerns the geometry

of the polar cusp as a function of altitude. The low-altitude

satellites and airborne photometric measurements show that the soft

zone typically covers some 30 of latitude (i.e. -300 km) and that

the protons and electrons precipitate right across this region.

Higher altitude measurements by Frank (1971a) indicate that the

width of the soft precipitation region of protons, when projected to

ionospheric heights, should be 10-200 km, with an average of -100 km

Frank (1971b), and that these protons precipitate in a sheet located

poleward of the soft electron precipitation. An explanation of the

narrower widths observed by Frank might involve the limited energy

range he considers (700-1100 eV), or uncertainties in field-line

projections. A more serious question is whether the protons precipi-

tate separately and poleward of the electrons; this certainly is not

the case at low altitudes and it is difficult to see how the situa-

tion could be different further up the field lines. Again Frank has

compared limited energy ranges of protons (700-1100 eV) and electrons

-7--6-

Page 87: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

(300-500 eV), so an energy variation with latitude could distort

the picture, and if total number flux or total energy flux were

considered, the situation may possibly be more in agreement with

low altitude measurements. We must await a more detailed presenta-

tion of Frank's data to see if a problem really exists.

4. The Daytime Auroral Oval

The question arises as to what is meant by the auroral oval

on the dayside. The oval has been determined from all-sky camera

photographs, so represents aurora which exceed the sensitivity of

the film used. Typically all-sky cameras will just detect about

2500 R of 5577 OI, so respond to energy inputs -0.1 erg/cm sec ster.

In Table 1 we listed the energy inputs into the hard and soft zones

and the expected optical emission intensities. Table 1 is based

on average energy inputs. The normal, high-speed black and white

films used in all-sky cameras (usually Tri-X, 2080, or equivalents)

are panchromatic films and hence quite red-sensitive. Thus these

films would respond preferentially to auroras in the soft zone

(see Table 1.), even though these may be as much or greater energy

input into the hard zone. Even so, the average soft zone energy

input is only just at the sensitivity limit of the film, so we must

ask what is the statistical spread about the average energy input

in both the hard and soft zones? The soft zone auroral forms show

a lot of spatial structure and are often short-lived (Eather, 1969;

Eather and Akasofu, 1969; Lassen, 1969) and this dynamic behavior

this also confirmed by satellite measurements (Hoffman and Evans, 1968

Burch, 1968; Heikkila and Winningham, 1971); in contrast, the hard

zone seems much more steady. Indeed specific events would have to

exceed the average by a factor of 4 to exceed all-sky camera sen-

sitiving in the green. In the soft zone, the 6300 intensity on the

average is near the all-sky camera sensitivity level.

We conclude that the presently accepted dayside auroral oval

represents the soft-electron and proton precipitation, and Hoffman

(this volume) has independently arrived at a similar conclusion.

Fig. (3) confirms this as it shows the soft zone locates in a 3-5°

band just above the equatorial boundary of the oval. However, hard

electrons locating equatorward of the oval deposit as much or

more energy into the atmosphere. As they probably result from a

gradient drift of nighttime electrons, the concept of a continuous

auroral oval might be more applicable to them. Thus we question the

usefulness of the concept of a continuous auroral oval. It is a

very artificial notion that only has meaning in terms of peak

response of black and white all-sky camera film; this peak response

evidently comes from "normal green" auroral on the nightside, and

from "soft red" aurora on the dayside. These are two types of aurora

have entirely different source regions in the magnetosphere, and

there is no obvious topological connection between these regions.

We strongly recommend that the use of the auroral oval as a

means of ordering high-latitude geophysical data on a 24 hour basis

be discontinued, and that instead one keeps in mind the various

different magnetosphere source regions of precipitating particles

that are summarized at the end of this paper.

-8- -9-

Page 88: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

5. Nightside Precipitation Patterns

Statistical results from all NASA Convair expeditions in

1967-68 and 1969 (some 40 flights, each of -6 hours duration) were

used in this analysis. Figure 8 shows average 4278 N2+ (electron

excited) and HB intensities in oval co-ordinates, and for night

hours. Figure 9 shows the corresponding 6300/4278 ratio plot.

(The difference between the two curves "average of ratios" and

"ratio of averages" is discussed by Eather and Mende, 1971, but is

not important in our present discussion.)

The previously reported nighttime soft zone (Eather, 1968,

Eather and Mende, 1971) is evident in the peaking of the average

6300/4278 ratio above the oval position. The peak ratio of -5.0

corresponds to about a 500 eV peak in the energy spectrum (Figure lc).

An alternate presentation (Figure 10) shows the percentage occurrence

of peak energies of <1 keV and >5 keV - the >5 keV precipitation

maximizes in the position of the auroral oval, whereas the <1 keV

precipitation locates at much higher latitude - in fact -90%

of the occurrences of precipitation in the high-latitude soft zone

are of <1 keV electrons. A plot of percentage occurrence of 4278 N2+

exceeding 0.5 and 50 R (Figure 11) shows, by comparison with

Figure 10, that the soft precipitation is typically low intensity

(<50 R). It is also interesting to note that there is a broad

region centered on the oval where there is measurable precipitation

virtually all of the time.

Various considerations led us to suspect that there may be a

systematic relationship between the 6300/4278 ratio and the 4278

intensity i.e. between average energy and total energy precipitated.

The ratio 6300/4278 are plotted versus mean 4278 intensity in

Figure 12. The plotted numbers (1+1) represent 40 latitude

intervals centered from 80 equatorward of the equatorial boundary of

the auroral oval to 120 poleward of that boundary (so for example the

numeral 6 represents the interval 0o-2° in oval co-ordinates).

There are no points plotted unless the number of data points in the

appropriate latitude-intensity box exceeded 5.

We have drawn a division line at an intensity level of 50 R,

and note that for 4278 > 50 R, there is a reasonably systematic

decrease of the 6300/4278 ratio with increasing 4278 intensity, for

all latitudes. For 4278 < 50 R, it seems this relation breaks down,

but a reasonably systematic increase in the ratio with increasing

latitude becomes evident. We interpret these results as follows:

(1) there is a low level (<50 R) of precipitation occurring in a

very broad region from below the auroral oval position to well

poleward of it. such that the average energy of precipitation

softens with latitude (from -1.SkeVto s 500 eV).

(2) Higher intensity precipitation superimposes on this low

level precipitation, and locates preferentially in the position of

the oval. This precipitation is characterized by an increasing

average energy as total energy input increases.

-11--10-

Page 89: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

6. Variation of Total Energy Precipitated with Mean Energy

We conclude that the so-called "soft zone" does not just

locate poleward of the auroral oval, but extends right across the

auroral oval itself. There is a gradual softening with latitude

throughout this broad region. Energetic electrons precipitation

superimposes on the lower-latitude half of the soft zone, and gives

rise to the visual auroral forms that make up the auroral oval.

As the 4278 N 2 + intensity in the oval increases from 50 R to

up to -10 kR, there is a systematic hardening of the electron

spectrum.

The division of Figure 12 into two intensity division

(<50 R), and our interpretation in terms of two distinct particle

observations, is not as arbitrary as it may seem. In Figure 13

we have plotted the occurrence frequency of a, where a is the

parameter in the spectrum used in Figure lc, and is a measure of

the average energy. It may be seen that there is a definite

indication of two separate particle populations, one between

s200 eV and -700 eV (our soft particle spectrum), and a wider

distribution locating between -1 and -10 keV. Note that a

exceeds S keV only 11% of all cases. However, if we exclude the

low-a distribution, then for those more energetic electron

spectra that excite visual aurora, a exceeds 5 keV some 25%

of the time.

For this analysis, the energy spectrum parameter a

(Figure lc), and the total energy being precipitated were calculated.

The resultant plot of total precipitated energy 0 (ergs/cm2sec)

versus peak energy of the spectrum a (keV) is given in Figure 14.

(Note that average energy of spectrum = 2a.) The data have been

average over all latitudes and times, for nightside data only.

If these particles had been accelerated by an adiabatic

compression process with negligible sources and losses, then

Lioville's theorem prodicts that if we plot 0 versus a on a

log-log plot (as in Figure 14), then we should get a straight

line with a slope of 3. On the other hand, if acceleration was

by static electric fields, we would expect a slope of 1.0.

The plot of total energy precipitated versus a gives a

reasonable straight line, though there seems to be a flattening

out at lower energies. In this respect it is interesting to note

that if we subtract a constant 0.15 ergs cm 2sec from 0, a

much better straight-line fit results (Figure 14). It is tempting

to relate this 0.15 ergs cm 2sec- 1 (corresponding to -40 R of

4278 N 2+) with the average contribution of the soft precipitation,

and then interpret the remainder as the harder, 'auroral' preci-

pitation that superimposes on the soft zone. We do not claim to

have proven this suggestion in Figure 14, but it is consistent with

the rest of our results, and is aesthetically pleasing.

Figure 14 shows that for this particle population above about

0.5 keV, there is a quite linear relationship with a slope of

-12- -13-

Page 90: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

1.3 + 0.15. We could argue that this is more consistent with an

electric field acceleration mechanism, but other ad hoc explanations

can explain with such a slope. For example, a combination of

electric field acceleration and adiabatic compression, or adiabatic

compression with strong losses of the higher energy particles,

could give a slope in agreement with the experimental results.

In Figure 14-we have also drawn in the o versus a relationship

8 -2 -Ifor an electron flux of 3 x 10 cm sec 1 It is interesting to

note that our results suggest that the number flux of precipitating

electrons increases by less than 50% for two orders of magnitude

increase in the total energy precipitated. The range plotted

extends up to about 8 kR. We realize that there are times (especially

at breakup) when very intense aurora are excited by much higher

fluxes of 1-10 keV electrons. At those times fluxes in excess of

1010cm lsec 1 have been reported. This must be a much more dynamic

and transitory process than the lower-level, steady-state picture

we invisage here, for IBC 1-2 auroras.

-14-

7. Comparison with Plasma Sheet Electrons

In Figure 15 we summarize plasma sheet data from 17 Re

according to Hones (1968). We have plotted his data (originally

published in tabular form) by performing averages as indicated

and assuming equal weighting for his latitude-longitude boxes.

In Figure 14A we see that the average energy of plasma sheet

electrons decreases from about 1.2 keV at the center of the plasma

sheet to some 0.4 keV near the edge. This has led us to associate

these electrons with our soft precipitation zone, as it shows a

similar softening with latitude. As the energies match fairly

well, we believe that the soft precipitation represents a loss-cone

drizzle of plasma sheet electrons, with no important acceleration

processes involved. If we assume isotropy, the -1 plasma sheet

loss-cone maps down to the ionosphere and carries enough energy to

excite some 10-50 R of x4278 N2 + emission, in good agreement with

energy inputs into the soft zone (Figures 4 and 12).

The data presented in Figure 15 were obtained for dipole

tilts between +200, so an effective broadening of the latitude

extent of the plasma sheet results. Typically the latitudinal

width of the plasma sheet near midnight is only -+3 RE, and the

sheet thickens to perhaps double this value near the dawn and dusk

meridians. According to Fairfield's (1968) model of the tail field,

we would not expect the edges of the plasma sheet to map down to an

invariant latitude that ever exceedsabout 74° . But we observe

soft precipitation up to about A = 79-80° , which we believe comes

-15-

Page 91: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

from the edge of the plasma sheet. Certainly there are not sufficient

fluxes of low-energy electrons in the high-latitude magnetotail to

explain the observed precipitation. We are forced to conclude that

the edges of the plasma sheet must map dowrn to higher invariant

latitudes in the ionosphere that would be expected from Fairfield's

(1968) model. Independent studies of the thickening of the plasma

sheet and poleward movement of the electrojet (Hones, et. al., 1970)

also indicate that a given latitudinal interval in the plasma sheet

near 17-18 RE subtends a larger invariant latitude interval at the

ionosphere then that indicated by Fairfield's model.

On the low-latitude side, our observations of aurora at

invariant latitudes of 600 indicate, by comparison with Fairfield's

model, that these aurora occur on closed field lines. Vasyliunas

(1970a) has convincingly associated this equatorial boundary of

aurora with the inner edge of the plasma sheet, which he also

regards as being in a closed field line region.

We now consider the more energetic auroral precipitation (the

,50 R side of Figure 12) that excite the visual auroral forms.

Average energies are in the 1-10 keV range, and so exceed typical

average energies in the plasma sheet. The average precipitated

energy at the peak in Figure 8 is -0.6 erg/cm2sec ster, and this

also exceeds typical plasma-sheet energy fluxes, though there are

some discrepancies in reported fluxes. Hones (1968) and Vasyliunas

(1968) agree on the electron mean energy (-0.2 - 2 keV, average

-1 keV) but the "most probable" energy density given by Vasyliunas

is a factor of -3 higher than Hones' "average" values. In fact

Hones' maximum energy flux (-0.3 erg/cm2sec ster) is about the same

as Vasyliunas' average. In either case, both the average energy

and energy flux of plasma sheet electrons are significantly less

than for the precipitated electrons in the auroral oval, and it is

only the cases of very high plasma sheet energy fluxes (-1 erg/cm2sec

ster) that compare with average precipitated fluxes. Certainly

the energy fluxes associated with commonly occurring IBC 2 aurora

(-2 erg/cm2sec ster) are almost never seen in the plasma sheet.

The variability of plasma-sheet energy spectra is illustrated

in Figure 16A where we show a selection of published spectra;

Figure 16B shows three schematic spectra derived from Figure 16A

that represent typical "soft," "average," and "hard" spectra.

The energy carried by each of these spectra is .06, 0.3, and 1.0

erg/cm2sec ster respectively. The "typical" spectrum published by

Vasyliunas (1970b) seems to be nearer to the hardest of published

spectra.

The photometric data presented in this paper, together with

arguments presented earlier by Vasyliunas (1970b) and Frank (1971),

seem quite convincing in associating the harder, auroral-oval

precipitation with a magnetospheric source region locating from

the inner edge of the plasma sheet and extending down the centre of

the plasma sheet. We maintain that some acceleriation is required

between the plasma sheet at -18 RE and the auroral zone, and note

-17-

-16-

Page 92: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

that a simple adiabatic compression would be entirely adequate to

provide the required energization (of about a factor of 5). We

note that harder plasma sheet spectra in Figure 16A were all measured

close to the earth (9-11 RE) than the Vela orbit (17-18 RE).

We are somewhat in disagreement with Vasyliunas (1970b),

who also views the auroral oval as an extension of the plasma

sheet to ionospheric heights, but he requires no energization in

the process. (We believe that loss-cone drizzle does occur, but

gives rise only to the soft zone.) Vasyliunas (1970a, b) cites the

contention of Chase (1969) that the electron energy spectrum in

post-breakup auroral closely resembles, in both shape and intensity,

the spectrum within the plasma sheet. We have examined Chase's

(1969) published comparison (his Fig. 2), and note: the total energy

-2in the plasma sheet spectrum is -0.3 erg cm sec, whereas that in

the auroral spectrum is -2.0 erg cm 2sec; the auroral spectrum has

a peak between 5 and 10 keV that carries 2/3 of the total energy,

and has no counterpart in the plasma sheet spectrum. Thus we

conclude there is little reason to contend these spectrums are

similar (even though they may appear so in a figure that plots 7 1/2

orders of magnitude of flux in a space of just one inch, Chase

(1969). A few more detailed comparison of plasma sheet and auroral

spectrum (Hones et. al., 1971) reveals that the plasma sheet

spectrumsare typically softer than auroral spectrums,especially in

that they do not show peaks in the 5-10 keV range as are often

observed by rockets; and plasma sheet fluxes are typically an order

of magnitude less than auroral fluxes as measured by rockets.

Vasyliunas also compares the averaged precipitated electron

flux in the auroral oval (Sharp et. al., 1969) with three OGO-1

passes in the plasma sheet. We again feel the "agreement" is not

convincing. First there is the problem of matching the plasma-

sheet data (at various estimated distances from the neutral sheet)

with satellite data at various invariant latitudes; we have discussed

above evidence that a given distance above the neutral sheet should

correspond to higher latitude than indicated by Fairfield's mode.

Second, Vasyliunas energy fluxes (-0.3 erg/cm2 sec ster) are about

three times Hones' average, and Sharp et. al. peak average flux

(-0.3 erg/cm2sec ster) are about half of Eather and Mende's average.

So if we compare data fron Hones and Eather and Mende, we would

conclude there was a discrepancy of a factor of six. This argument

reduces to the question of which data to believe, so is not

particularly profitable. But we feel the argument concerning the

differences in average energy of plasma-sheet and auroral particles

is quite convincing.

A few final comments should be made on the character of the

auroral precipitation. Figure 11 shows that there is always

measurable precipitation in the position of the oval, but that the

energy flux only exceeds .06 erg/cm2 sec ster about 50% of the time.

At higher latitudes where mainly soft precipitation locates,

emissions are detectable only -50% of the time and exceed 50 R

only 5-10% of the time. Thus in neither case is there a continuous

-18- -19-

Page 93: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

There are, however, short-lived (few minutes) structured

(spatially) bursts of precipitation across the polar cap. Eather

and Akasofu (1969) showed from photometric data that the emissions

were excited by soft (<1 keV) electrons. Heikkila and Winningham

(1970) and Hoffman and Evans (1968) see similar features from

satellites. From the geometry of the magnetosphere, it seems these

electrons must come'from the high-latitude magnetotail, though we

know of no reports of isolated plasma "clouds" in that region.

10. Precipitation Patterns and Source Regions

We have tried to summarize the basic precipitation patterns

in Figure 17, for both electrons and protons. Figure 17A shows

the electron patterns, displayed on an invariant latitude - magnetic

time grid, with the auroral oval for quiet times (Q = 1) added

for reference. As discussed in Section 4, the oval on the dayside

locates in the soft zone and results from direct penetration of

low-energy electrons from the magnetosheath. Immediately adjacent

to it and on the equatorward side are the higher energy electrons

that have gradient-drifted from the nightside. Hoffman (1971)

associates these with Sandford's mantle aurora. The dayside

precipitation of these electrons does not seem to extend much past

noon, where it is thinner (in latitude) and less intense. On the

nightside, the auroral oval precipitation is shown, and has it's

origin in the region bounded by the inner edge of that plasma sheet

and the region of the plasma sheet

-22-

close to the neutral sheet. The wide, soft zone is shown extending

right through the oval and up to latitudes of 79-80° , and we believe

this is a consequence of loss-cone drizzle of plasma sheet electrons.

We know of no published data that allows us to connect the

dayside and nightside soft zones, though Frank (1971b) has published

a model showing a topological connection between the associated

source regions. The question marks in the figure indicate the

uncertainties in that respect, and the uncertainties in how far the

dayside hard zone extends into the morning hours. This extension is

probably very dependent on source and loss functions, and hence on

magnetic activity.

Figure 17B shows the proton patterns. The nightside proton

aurora has been discussed in detail by Eather (1967))Montbriand

(1969) and Eather and Mende (1971). It locates equatorward of

electron aurora in the evening hours, with the separation decreasing

towards midnight. In the morning hours, electron and proton aurora

overlap, and as magnetic activity increases, the electron aurora

maximum may move equatorward of the proton aurora maximum

(Montbriand, 1969). We believe the proton aurora has its source in

the ring current, and the ring current is filled by adiabatic comp-

ression of plasma-sheet protons. The extent of the proton aurora

(with a ring-current source) in the morning hours is not clear.

Gradient drift carries the protons to the evening side and under

quiet conditions they extend at least to the dusk meridian. Occasional

observations of -10 keV proton precipitation near midday indicates

-23-

Page 94: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

that gradient drift may at times carry precipitation around to the

noon meridian, but this does not seem to be a regular occurrence.

We know of no experimental data that allows the connection of the

proton aurora at dusk to the hard proton precipitation at midday,

so we have dashed the connection in Figure 17B and indicated

uncertainty with a question mark.

The soft-proton precipitation from the magnetosheath gives

the main zone of proton aurora on the dayside. We classify this as

the main zone as it is a regular feature of the daytime precipitation

pattern, whereas the zone of harder precipitation seems transitory.

The azimuthal extent of this soft proton precipitation has not

been established though it clearly does not extend into the

evening sector at high latitudes. Gradient drift could take these

protons to the dawn sector and confuse the picture there, though

for these low energies we suspect the proton lifetime could be

considerably shorter than the drift time.

If Figures 17A and 17B were superimposed, then one can obtain

an idea of the complexity of auroral precipitation. With two

particle types, and a number of source regions and precipitation

processes, it is clear than any well designed experiment (either

photometric, rocket, or satellite) must measure a wide variety of

parameters to obtain the complete picture.

Our Figure 17A (for electrons) is considerably different

from the Hartz and Brice model, as modified recently by Hartz (1971).

Hartz implies continuous (24 hour) zones of "splash" and "drizzle"

-24-

type of precipitation, with the superposition of the magnetosheath

precipitation near midday (Figure 18). We would associate his low

intensity "drizzle" on the nightside with our soft zone (and point

out that it should extent up to higher latitudes -790), but on the

dayside we would associate his higher intensity drizzle with our

dayside hard zone. As we invisage different source mechanisms, we

would not connect these two regions. We would associate his high

intensity "splash" on the nightside with the auroral oval precipita-

tion, and his low intensity splash on the dayside with the high

latitude soft zone, and again we see no evidence to connect these

regions into a 24 hour pattern, as they have separate source

regions. We would prefer to connect the high intensity nightside

splash with the high intensity dayside drizzle as we believe the

latter results from the former, via gradient drift.

Finally, both photometric and satellite data show the dayside

soft and hard zones are adjacent to each other, and not separated

by a region of low or zero precipitation as indicated in the Hartz

model (Fig. 18).

In Figure 19, we have drawn a model of the magnetospheric

source regions, in the noon-midnight plane. This model is similar

to recent magnetospheric models (O'Brien, 1966; Vasyliunas, 1970bi

Frank, 1971a) though different from all of them in some respects.

The salient features of Figure 19 have all been discussed in the

preceeding text, so will not be further elaborated.

Acknowledgements: This review was written with the support from

grant NGR 22-003-018 from the National Aeronautics and Space Admin-

istration, Airborne Sciences Office.

-25-

Page 95: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Figure Captions

Fig. 1: a) Fraction of the total ionization cross-section presented

by N 2 in the Jacchia (1964) atmosphere, as a function of

height, and corresponding 4278 N 2 + emission per 1 erg/cm2

sec ster of electron energy deposited at that height.

b) Theoretical 6300/4278 ratios (column integrated) as a

function of 4278 intensity for monoenergetic electrons,

for a fixed flux of 109 elec/cm sec. (Rees, private

communication).

c) Theoretical 6300/4278 ratios (column integrated) for an

assumed form of the electron energy spectrum, with

different peak energies a, as a function of 4278

intensity.

Fig. 2: Average 4278 N2+ and H8 intensities as a function of

"oval co-ordinates"(see text), for dayside auroras.

Fig. 3: 6300/4278 ratios as a function of oval co-ordinates, for

dayside auroras.

Fig. 4: 4278 N 2 +, 6300 OI, and 4861 HB intensities throughout a

north-south meridian flight near noon.

Fig. 5: Satellite measurements of electron and proton energy

spectra for a crossing of the dayside auroral region.

The density of the trace qualitatively indicates the

spectral energy density as a function of particle energy

and time. (Heikkila and Winningham, 1971).

-26-

Fig. 6: Summary of measurements of proton and electron energy

fluxes, and mean energies, in the polar cusp.

Fig. 7: Lockheed measurements of the location of peak particle

precipitation; plotted are the number of auroral-zone

crossings with peak response in the 10 interval centered

on 0L (Johnson et. al. 1966).

Fig. 8: Average 4278 N2+ and HB intensities as a function of

"oval co-ordinates" (see text), for nightside aurora.

Fig. 9: 6300/4278 ratios as a function of oval co-ordinates, for

nightside auroras.

Fig. 10: Percentage occurrence of precipitation with mean electron

energy <1 keV and >5 keV, as a function of oval co-ordinates.

Fig. 11: Percentage occurrence of 4278 N 2+ exceeding 0.5 R (limit

of detection) and 50 R, as a function of oval co-ordinates.

Fig. 12: The mean ratio 6300/4278 plotted as a function of mean

4278 intensity, for 10 latitude intervals. The plotted

numbers (1-11) represent 40 intervals centered every 20

from 80 equatorward of the equatorial boundary of the oval

to 120 poleward of that boundary (eg. the numeral 6

represents 0-2° in oval co-ordinates).

Fig. 13: Number of cases of occurrence of a given a (defined in

Figure lc, and is a measure of peak energy for the

spectrum), per unit energy interval. Two separate particle

distributions are indicated.

-27-

Page 96: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

Fig. 14: Summary of Hones (1968) plasma-sheet electron properties

at 17 RE. The 1800 curve is for the midnight sector,

and 1200 and 2400 for the dusk and dawn sectors. A. Average

energy B. Energy density C. Energy flux and resultant

4278 N 2 + emission if this flux was isotropic over the

atmospheric loss-cone.

Fig. 15: Total energy precipitated O (ergs/cm2sec) as a function

of energy spectrum parameter a, for nightside data. The

relation for a constant number flux of 3 x 108 electrons/cm2

sec is also shown.

Fig. 16: A) A selection of published plasma-sheet electron energy

spectra. 1-4 at 18 R E (Hones et. al. 1971); 5-15.9 RE,

6-10.5 RE, 7-15.3 RE, 8-19.7 RE, 9-13.5 RE, 10-10.1 RE,

(Frank, 1967); 11-9.8 RE (Schield and Frank, 1970);

12- Vasyliunas (1970) "typical" spectrum.

B) Schematic representation of typical "soft" (1) "average"

(2), and "hard" (3) plasma-sheet electron energy spectra.

Fig. 17: A) Electron precipitation patterns.

B) Proton precipitation patterns.

Fig. 18: Auroral precipitation patterns after Hartz (1971). Triangles

indicate zones of discrete or splash precipitation, and

dots indicate diffuse or drizzle precipitation. Precipitation

of magnetosheath plasma is indicated by stars. Intensity

is indicated by symbol density.

Fig. 19: Source regions in the magnetosphere for the precipitation

regions depicted in Fig. 17. (noon-midnight plane).

-28-

References

Burch, J.L., Low-energy electron fluxes at latitudes above theauroral zone. J. Geophys. Res., 73, 3585, 1968.

Chase, L.M., Evidence that the plasma sheet is the source of auroralelectrons, J. Geophys. Res., 74, 346, 1969.

Cornwall, J.M., F.V. Coroniti, and R.M. Thorne, Turbulent loss ofring-current protons, J. Geophys. Res., 75, 4699, 1970.

Eather, R.H., Auroral proton precipitation and hydrogen emissions,Reviews of Geophysics, 5, 207, 1967.

Eather, R.H., Latitudinal distributions of auroral and airglowemissions: the "soft" auroral zone, J. Geophys. Res., 74, 153,1969.

Eather, R.H. and Syun-I Akasofu, Characteristics of polar capauroras, J. Geophys. Res., 74, 4794, 1969.

Eather, R.H. and S.B. Mende, Airborne observations of auroralprecipitation patterns, J. Geophys. Res., 76, 1746, 1971.

Eather, R.H. and R.L. Carovillano, The ring current as a sourceregion for proton auroras, Cosmic Electrodynamics, 2, 105, 1971.

Fairfield, D.H., Average magnetic field configuration of the outermagnetosphere, J. Geophys. Res., 73, 7329, 1968.

Frank, L.A., Initial observations of low-energy electrons in theearth's magnetosphere with OGO3, J. Geophys. Res., 72, 185, 1967.

Frank, L.A., Further comments concerning low-energy charged particledistributions within the earth's magnetosphere and its environsin "Particles and Fields in the Magnetosphere," edited by Billy M.McCormac, D. Reidel, Dordrecht, Holland, 319, 1970.

Frank, L.A., Plasma in the earth's polar magnetosphere, J. Geophys.Res., 76, 1971a.

Frank, L.A., Comments on a proposed magnetospheric model, J. Geophys.Res., 76, 2512, 1971b.

Hartz, T.R., Particle precipitation patterns, paper at NATOAdvanced Study Institute, Kingston, Ontario (August, 1970). To bepublished in proceedings, Billy M. McCormac, editor, 1971.

Heikkila, W.F., and J.D. Winningham, Penetration of magnetosheathplasma to low altitudes through the dayside magnetic cusps,J. Geophys. Res., 76, 883, 1971.

Hoffman, R.A., Auroral electron drift and precipitation: cause ofthe mantle aurora, J. Geophys. Res., 76, , 1971.

-29-

Page 97: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

0

Hoffman, R.A. and D.S. Evans, Field-aligned electron bursts at highlatitudes observed by OGO-4, J. Geophys. Res., 73, 6201, 1968.

Hones, E.W., Review and interpretation of particle measurementsmade by Vela satellites in the magnetotail, in "Physics of theMagnetosphere," edited by R.L. Carovillano, J.F. McClay,H.R. Radoski, Reidel, Dordrecht-Holland, 1968.

Hones, E.W., S.-I. Akasofu, P. Perreault, S.J. Bame and S. Singer, wPoleward expansion of the auroral oval and associated phenomena o Z min the magnetotail during auroral substorms, 1. J. Geophys. Res.,75, 7060, 1970. o

Hones, E.W., J.R. Askbridge, S.J. Bame and S. Singer, Energy spectra uand angular distributions of particles in the plasma sheet and w-jtheir comparison with rocket measurements over the auroral zone, wJ. Geophys. Res., 76, 63, 1971.

Lassen, K., Polar cap emissions, in "Aurora and Airglow," edited byBilly M. McCormac, Reinhold, New York, 1969.

Montbriand, L.E., Morphology of auroral hydrogen emission duringauroral substorms, Thesis, Univ. of Saskatchewan, 1969. O

Sandford, B.P., Aurora and airglow intensities variations with time 'N Lz Ztl 009 OliVand magnetic activity at southern high latitudes, J. Atmos.Terrest.Phys., 26, 749, 1964.

Sandford, B.P., Variations of auroral emissions with time andmagnetic activity and the solar cycle, J. Atmos. Terrest. Phys.,30, 1921, 1968. 3,?3s WD O / ) NOSSIn3 'N 3 LZO

Schield, M.A. and L.A. Frank, Electron observations between the o o o o o o o0 inner edge of the plasma sheet and the plasmasphere, J. Geophys. 0 C oRes., 75, 5401, 1970. o

Sharp, R.D., and R.G. Johnson, Distribution with invariant latitudeof electron and proton precipitation close to noon and midnight,in "Aurora and Airglow," edited by Billy M. McCormac, Reinhold,New York, 1969. w o-z o

Sharp, R.D., D.L. Carr and R.G. Johnson, Satellite observations of z 0 the average properties of auroral particle precipitations: °Latitidinal variations, J. Geophys. Res., 74, 4618, 1969.

Vasyliunas. V.M., A survey of low-energy electrons in the evening ' osector of the magnetosphere with OG01 and OG03, J. Geophys. Res., N

73, 2839, 1968.

Vasyliunas, V.M., Magnetospheric plasma, Review paper presented at _ST? Symposium, Lenningrad, U.S.S.R., 1970a. > 0

oVasyliunas, V.M., Lew energy particle fluxes in the geomagnetic tail, w 0

in "The Polar Ionosphere and Magnetospheric Processes," edited o 0 o 0by G. Skovli, Gorden and Breach, New York, 1970b.

-N Ad 03aN3S3O d-30- N01133S SSOH3 NOIIVZINOI 'V101 3O NOI.3V.*

Page 98: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

0.1 1.0

X 4278 N2 INTENSITY (KR)

4278Na

0

Fig. lc

INTENSITY

40

o

Hp INTENSITY (R)

Fig. 2

(R)

7

6

COI"-

a:

00t0(D

0

I-

5

4

3

2 -

0.01 10.0

0 0 0

z

-4

-I

c

m

I

o

r

Cocza

,.,

I

I

4

o0I

0

t

S

0 UL u(

Page 99: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

INTENSITY RATIO 6300/4278

ro o6 b b

72 74 76INVARIANT LATITUDE

Fig. 4

z

z

-4

-1

-4

C

I

0

0

0Cza

-C

P.

I

0

0

zo_

o

n 200

C-

z 160

+, 120, 80

oI

(n

z

o

cr

I-(nz

f-z

I

2.0

1.6zw

z1.2

o0o

- 0.8

0.440

oL

Page 100: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

iNVARIANT LATITUDE

81 8'

' '

," ' I

Re~r.OFig8 5OPY

Fig, s

_- - _

RET.

SOFT ELECTRONS SOFT PROIONS

TOTAL DNER;Y SPECTRAL TOTAL nDR;Y SPECTRAL(erg/o=2 sec Lter) PEAK (eV) (erg/mo 2 sec ster) PEAK (eV)

D .06Frnk (1970)

IFank (1970)

MID-ALTITUDEPOLAR CUSP

LOW-ALTITUDEPOLAR CUSP

IONOSPHERE

Sharp C Johnson (1968)

B.rLh (1968

Hoffman C Berko (1970)

Wexnik et. .1. (1970)

Heikkila $ Wimninham(1970)

Sandford (1964)

Eather C Mende (1970

PROBABLEAVLRX S:

, 0.1+

.06 * .3

.06 * .2+

.03 * .3

. 0.2

· .1

.03 (av.)

.2 (peak)

1000*

I lCo

. 700*

. 140

100-200

100-200

- .04

> .02+

- 300

. 700

< 4000*

.01 . .1 - 330

.05 S 1000

i- 13* Sigificant precipitation beloa this l1cr energy limit.

+ Probably contains significant oontribution fron higher eergies.

Fig. 6

wzLIU

>-(on,>

fr

I0'

10'

10

104i

6 s68 70 72 7q 77 79 3

//

///,

Page 101: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

NIGHT ZONES

ELECTRONS PROTONS

I I I I I I I I I I I I I I I I

u 3 u 5 0 5NUMBER OF CASES WITH CENTER IN 1-DEGREE

NOV.9-tO,1965

0 5INTERVAL OF 8 L

10

.7

4278N. INTENSITY

0 0 0 0 0

H/3 INTENSITY

25 r-DAY ZONES

-j

a

C)

z:

z

I

20

15

10

SOFTELEC-TRONS

50 3

(R)

I

0

C0

z

z-4

r

-1com

z0

. I I I I I I I I ,

(R)

Page 102: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

0 O

0

0 0

0 0

0 0

m

w

1- to

Ln

iN

_o C

33

N3

l88

no

03

9V

IN3

31

3d

I V

I to

O

J

8L

Z/0

£9

OIIV

! A

J ISN

31NI

w

-

U,

,x

r0

v .'

d\ F

0%

IIIII

I I

I

(D

-

0z0m-jZ0

.mw

0

I<

Z

Io>

I0

00

CIIE-

za z

-,bow

-

-7

Page 103: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

PERCENTAGE OCCURRENCE 4278 Na

-_ N (C -w D 0D 0 o 0 0 0 0 0 0 0 0 0

I I

.98 76

5

I8 5179

I \ 7

4 9 5 2I 90 86

I I I I I I II I I I I I17 6789 9 II I I I Ill[ I I ~ f~l f I a-1 9~l 5,~p9.. -jqq-t.8 .

4

3

100 1000

'MEAN X 4278 INTENSITY (R)

Fig. 12

2

2D

z-4

r

-I

cm

o

Ir-

w0c20

;I

"I

H.oq

I0

o-

o_

I

09

o

0

7

6

' 5

oo

04

3i

2

i10I0

2

10000

I

I

Page 104: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

oI I I I I I 0.1 1.0 10.0

MEAN ENERGY c( (KEV)

Fig. 13

AVERAGE ENERGY (KEV)

9 o o .- - -_o N A O oD 0 N

o

0 o

o CA 0 o C 00

ENERGY DENSITY

(eV CM-3 STER-

')

ENERGY FLUX

(ERGS CM" SEC" STER-')

0 0 0

N) P 4

I I I ZA 0

m0

>N U - w

0 ~ 0

m

z

APPROX. 4278) NINTENSITY CR) -

Fig. 14

-j

wI-

z

0

Z

a:W

Lii

z

a:w

a-

U

z

z

00

C)zm -

o e0"o

o O

r

-4c

i'n

w0

o400

Page 105: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

10.0

0 TOTAL PRECIP FLUXx O- 0.15

W /0

az jx~3X108 ELEC./CM'SEC x

1.0X

-j //L /

- (KEV) O i.15 0.26

w~ELECTRON FLUX M E STER KEV)

- _

n.-

CD _

z _

o.I I.O

o (KEV) Fig. 15

ELECTRON FLUX (CM -

j

SEC-' STER-' KEyV - )

o0

mU

moO

0

_ 0

0

10.0

0,

Page 106: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

10

ELECTRON ENERGY (KEV)

Fig. 16b

18

00

--- AURORAL OVAL, Q I

2/ "AURORAL" (I-10 KEV) AND 'HARD"DAYTIME PRECIPITATION

= DAYSIDE SOFT (0.1- 0.5 KEV ) ZONE

: NIGHTSIDE SOFT (0.5- 2 KEV) ZONE Fi-. !-,

- l0o

i>

y

I-

w

7uV)II

xo 1

-j

Z0

I-

iJ 10

0.1 I

Page 107: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

18 0 I A 0

AURORAL OVAL, Q I

"AURORAL" (I-ZOKEV) AND "HARD"DAYTIME PRECIPI I TAT ION

ig . So

'~\\~~~~~~~~~~~~~~~~adal~\ '. .- ~~~~~~~~~~~~~~~~aaa~ ~;~·naaa~~·~~ : " aa'·

00~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DAYSIDE SOFT {~,I KEV) ZONEFig. 17b

Page 108: N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA · N72-14363 (NASA-CR-11 4379) AIRBORNE AURORAL' DATA AND SATELLITE DATA ANALYSIS Final Report S.B. tt Nende, et al ... The airborne

SOLAR

WIND

-1

ID

tD

"'' BOUNDARIES OF AURORAL OVAL

"AURORAL" (I -10 KEV) AND': "HARD" DAYTIME PRECIPITATION

NIGHTSIDE SOFT (0.5-2 KEV)In Z ZONE

PLASMASHEET

PAUSE

PROTON RING CURRENT

DAYSIDE SOFT ZONEELECTRONS 0.1- 0.5 KEVPROTONS ,5 I KEV

7NZ (PATCHES) -POLAR CAP AURORA?