21
New Results from GRACE/SUSY at 1-loop J.Fujimoto, T.Ishikawa, M.Jimbo, T.Kaneko T.Kon, Y.Kurihara, M.Kuroda Y.Shimizu (Susy group @ Minami-Tateya Collaboration) RADCOR05 Shonan Village , Japan October 6, 2005

N e w R e su lts fro m G R A C E /S U S Y a t 1 -lo o p · 2012. 10. 19. · FeynArts & FormCalc Küblbeck, Böhm, Denner / Hahn, Perez-Victoria / Hahn / Hahn, Schappacher CompHEP

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • New Results from GRACE/SUSY at 1-loop

    J.Fujimoto, T.Ishikawa, M.Jimbo, T.KanekoT.Kon, Y.Kurihara, M.Kuroda

    Y.Shimizu(Susy group @ Minami-Tateya Collaboration)

    RADCOR05Shonan Village, Japan October 6, 2005

  • Outline

    Introduction

    Renormalization scheme

    Physical results

    Summary

  • Introduction

    Precise O(1%) measurement at LCSame accuracy of Theoretical predictions

    Why RC is important?

    RC in MSSM renormalization, mass spectrum, decays, production (Higgs, chargino / neutralino, sfermion)

    Fritzsche, Hollik / Eberl, Majerotto, Yamada et al. /Denner / Öller, Eberl, Majerotto /Hollik, Rzehak / Arhrib, Hollik /Kovarik, Weber, Eberl, Majerotto /Freitas, Miller, von Manteuffel, Zerwas /Guasch, Hollik, Solà etc.

  • Many possible processes for SUSY particle production

    a large number of Feynman diagrams

    Why automatic calculation is needed?

    SUSY Models

    FeynArts & FormCalc Küblbeck, Böhm, Denner / Hahn, Perez-Victoria / Hahn / Hahn, SchappacherCompHEP & LanHEP Moscow group / Boudjema, Bèlanger, Semenov ... see Boudjema’s talk

  • Tree level GRACE/SUSY

    GRACE/SUSY at 1-loop

    "GRACE/SUSY AUTOMATIC GENERATION OF TREE AMPLITUDES IN THE MINIMAL SUPERSYMMETRIC STANDARD MODEL"

    KEK-CP-129, Aug 2002, hep-ph/0208036 Comput.Phys.Commun. 153 (2003) 106

    http://minami-home.kek.jp/

  • Renormalization scheme

    Gauge symmetric & On-shell scheme

    Renormalization of tanβ

    δ tanβ = −12tanβ δZH1 −δZH2 − 2

    δv1v1

    + 2δv2v2

    δv1v1

    ≠δv2v2

    On-shell conditions

    (A0,H 0)Gauge bosons, Fermions, Scalar fermions

    ( ˜ χ 10, ˜ χ 1

    +, ˜ χ 2+)

  • Renormalization of sfermions

    δm ˜ ν l2 = 2cosθl sinθlδθl m˜ l 2

    2 −m˜ l 12( ) + cos2θlδm˜ l 12 + sin2θlδm˜ l 22

    +δ MW2 cos2β −ml

    2( )€

    δm ˜ f 2 = −ReΣ ˜ f ̃ f (m ˜ f

    2 )

    sin2θuδm ˜ u 22 = 2cosθd sinθdδθd m ˜ d 2

    2 −m ˜ d 12( ) + cos2θdδm ˜ d 12 + sin2θdδm ˜ d 22

    −2cosθu sinθuδθu m ˜ u 22 −m ˜ u 1

    2( )− cos2θuδm ˜ u 12

    +δ MW2 cos2β +mu

    2 −md2( )

    δθu =12Σ ˜ u 1 ˜ u 2 (m ˜ u 2

    2 )+Σ ˜ u 2 ˜ u 1 (m ˜ u 12 )

    m ˜ u 22 −m ˜ u 1

    2

    δθl

    δθd

  • Mass shifts

    mh : 89.30�→�118.53 GeV

    example : SPA1a’

    mH+ : 438.43�→�438.76 GeV

    mχ20 : 184.55�→�184.43 GeV

    mχ30 : 404.99�→�405.15 GeV

    mχ40 : 420.35�→�422.15 GeV

    msphys( )2 = ms2 + ˆ Σ s (ms2 )for h0, H+

    / q −m ˜ χ i0− ˆ Σ ii ( / q ) = 0

    for neutralinos (i=2,3,4)

  • Nonlinear gauge (NLG) fixing terms in MSSM

    FW ±

    = (∂µ ±ie ˜ α Aµ ±igcW ˜ β Zµ )W±µ

    ±iξWg2

    (v+ ˜ δ HH0 + ˜ δ hh

    0 ±i ˜ κ G 0 )G ±

    FZ = ∂µZµ +ξZ

    gZ2

    (v+ ˜ ε HH0 + ˜ ε hh

    0 )G 0

    Fγ = ∂µAµ

    ( ˜ α , ˜ β , ˜ δ h , ˜ δ H , ˜ κ , ˜ ε h , ˜ ε H ) : NLG parameters

  • Physical results

    2-body decay widths (Higgs & sparticles)

    Chargino pair production at LC

  • 2-body decay widths

    H 0 → bb

    Γ0(GeV )parameter set : SPA1a’

    δΓ /Γ0

    1.80

    H+ →νττ+

    8.75×10-2

    +16%

    +9.7%

    H+ → ˜ χ 10 ˜ χ 1

    +

    1.21×10-1

    +4.0%

    ˜ e 1− → e− ˜ χ 1

    0

    7.80×10-2

    +7.8%

    ˜ χ 1+ →ντ ˜ τ 1

    +

    2.93×10-2

    +9.0%

    ˜ χ 2+ → Z 0 ˜ χ 1

    +

    7.53×10-1

    −2.8%

    ˜ χ 30 →W − ˜ χ 1

    +

    1.47

    −4.2%

    ˜ χ 30 → Z 0 ˜ χ 1

    0

    4.42×10-1

    +2.5%

  • H 0 → bb How to CalculateTree

    %%%%%%%%%%%%Model=”mssm.mdl”;%%%%%%%%%%%%Process; ELWK={1}; Initial={higgs2}; Final={b b-bar}; Kinem=”1201”;Pend;

    Tree+photon%%%%%%%%%%%%Model=”mssm.mdl”;%%%%%%%%%%%%Process; ELWK={2}; Initial={higgs2}; Final={photon b b-bar}; Kinem=”1301”;Pend;

    1-loop%%%%%%%%%%%%Model=”mssm.mdl”;%%%%%%%%%%%%Process; ELWK={3, 1}; Initial={higgs2}; Final={b b-bar}; Kinem=”1201”;Pend;

    Feynman diagram generation numerical calculation event generation

  • H 0 → bb Graph 1

    0H0

    1b

    2ab

    H0b

    bH+

    W+t

    Graph 2

    0H0

    1b

    2ab

    H0b

    bX+

    W+t

    Graph 3

    0H0

    1b

    2ab

    H0b

    b

    W+W+

    t

    Graph 4

    0H0

    1b

    2ab

    H0b

    b

    H+W+

    t

    Graph 5

    0H0

    1b

    2ab

    H0b

    b

    H+H+

    t

    Graph 6

    0H0

    1b

    2ab

    H0b

    bX+

    H+t

    Graph 7

    0H0

    1b

    2ab

    H0b

    b

    X+W+

    t

    Graph 8

    0H0

    1b

    2ab

    H0b

    b

    X+H+

    t

    Graph 9

    0H0

    1b

    2ab

    H0b

    bX+

    X+t

    Graph 10

    0H0

    1b

    2ab

    H0b

    bA0

    Z0b

    Graph 11

    0H0

    1b

    2ab

    H0b

    bX3

    Z0b

    Graph 12

    0H0

    1b

    2ab

    H0b

    b

    Z0Z0

    b

    Graph 13

    0H0

    1b

    2ab

    H0b

    b

    A0Z0

    b

    Graph 14

    0H0

    1b

    2ab

    H0b

    b

    A0A0

    b

    Graph 15

    0H0

    1b

    2ab

    H0b

    b

    A0X3

    b

    Graph 16

    0H0

    1b

    2ab

    H0b

    b

    X3Z0

    b

    Graph 17

    0H0

    1b

    2ab

    H0b

    bA0

    X3b

    Graph 18

    0H0

    1b

    2ab

    H0b

    b

    X3X3

    b

    Graph 19

    0H0

    1b

    2ab

    H0b

    b

    tt

    W+

    Graph 20

    0H0

    1b

    2ab

    H0b

    b

    tt

    H+

    Graph 21

    0H0

    1b

    2ab

    H0b

    b

    tt

    X+

    Graph 22

    0H0

    1b

    2ab

    H0b

    b

    bb

    Z0

    Graph 23

    0H0

    1b

    2ab

    H0b

    b

    bb

    A

    Graph 24

    0H0

    1b

    2ab

    H0b

    b

    bb

    h0

    Graph 25

    0H0

    1b

    2ab

    H0b

    b

    bb

    H0

    Graph 26

    0H0

    1b

    2ab

    H0b

    b

    bb

    A0

    Graph 27

    0H0

    1b

    2ab

    H0b

    b

    bb

    X3

    Graph 28

    0H0

    1b

    2ab

    H0b

    b

    ~t1~t1

    ~w1+

    Graph 29

    0H0

    1b

    2ab

    H0b

    b

    ~t1~t1

    ~w2+

    Graph 30

    0H0

    1b

    2ab

    H0b

    b

    ~t1~t2

    ~w1+

    Graph 31

    0H0

    1b

    2ab

    H0b

    b

    ~t1~t2

    ~w2+

    Graph 32

    0H0

    1b

    2ab

    H0b

    b

    ~t2~t2

    ~w1+

    Graph 33

    0H0

    1b

    2ab

    H0b

    b

    ~t2~t2

    ~w2+

    Graph 34

    0H0

    1b

    2ab

    H0b

    b

    ~t2~t1

    ~w1+

    Graph 35

    0H0

    1b

    2ab

    H0b

    b

    ~t2~t1

    ~w2+

    Graph 36

    0H0

    1b

    2ab

    H0b

    b

    ~b1~b1

    ~sz1

    Graph 37

    0H0

    1b

    2ab

    H0b

    b

    ~b1~b1

    ~sz2

    Graph 38

    0H0

    1b

    2ab

    H0b

    b

    ~b1~b1

    ~sz3

    Graph 39

    0H0

    1b

    2ab

    H0b

    b

    ~b1~b1

    ~sz4

    Graph 40

    0H0

    1b

    2ab

    H0b

    b

    ~b1~b2

    ~sz1

    Graph 41

    0H0

    1b

    2ab

    H0b

    b

    ~b1~b2

    ~sz2

    Graph 42

    0H0

    1b

    2ab

    H0b

    b

    ~b1~b2

    ~sz3

    Graph 43

    0H0

    1b

    2ab

    H0b

    b

    ~b1~b2

    ~sz4

    Graph 44

    0H0

    1b

    2ab

    H0b

    b

    ~b2~b2

    ~sz1

    Graph 45

    0H0

    1b

    2ab

    H0b

    b

    ~b2~b2

    ~sz2

    Graph 46

    0H0

    1b

    2ab

    H0b

    b

    ~b2~b2

    ~sz3

    Graph 47

    0H0

    1b

    2ab

    H0b

    b

    ~b2~b2

    ~sz4

    Graph 48

    0H0

    1b

    2ab

    H0b

    b

    ~b2~b1

    ~sz1

    Graph 49

    0H0

    1b

    2ab

    H0b

    b

    ~b2~b1

    ~sz2

    Graph 50

    0H0

    1b

    2ab

    H0b

    b

    ~b2~b1

    ~sz3

    Graph 51

    0H0

    1b

    2ab

    H0b

    b

    ~b2~b1

    ~sz4

    Graph 52

    0H0

    1b

    2ab

    H0b

    b

    ~w1+~w1+

    ~t1

    Graph 53

    0H0

    1b

    2ab

    H0b

    b

    ~w1+~w1+

    ~t2

    Graph 54

    0H0

    1b

    2ab

    H0b

    b

    ~w1+~w2+

    ~t1

    Graph 55

    0H0

    1b

    2ab

    H0b

    b

    ~w1+~w2+

    ~t2

    Graph 56

    0H0

    1b

    2ab

    H0b

    b

    ~w2+~w2+

    ~t1

    Graph 57

    0H0

    1b

    2ab

    H0b

    b

    ~w2+~w2+

    ~t2

    Graph 58

    0H0

    1b

    2ab

    H0b

    b

    ~w2+~w1+

    ~t1

    Graph 59

    0H0

    1b

    2ab

    H0b

    b

    ~w2+~w1+

    ~t2

    Graph 60

    0H0

    1b

    2ab

    H0b

    b

    ~sz1~sz1

    ~b1

    Graph 61

    0H0

    1b

    2ab

    H0b

    b

    ~sz1~sz1

    ~b2

    Graph 62

    0H0

    1b

    2ab

    H0b

    b

    ~sz1~sz2

    ~b1

    Graph 63

    0H0

    1b

    2ab

    H0b

    b

    ~sz1~sz2

    ~b2

    Graph 64

    0H0

    1b

    2ab

    H0b

    b

    ~sz1~sz3

    ~b1

  • Graph 65

    0H0

    1b

    2ab

    H0b

    b

    ~sz1~sz3

    ~b2

    Graph 66

    0H0

    1b

    2ab

    H0b

    b

    ~sz1~sz4

    ~b1

    Graph 67

    0H0

    1b

    2ab

    H0b

    b

    ~sz1~sz4

    ~b2

    Graph 68

    0H0

    1b

    2ab

    H0b

    b

    ~sz2~sz2

    ~b1

    Graph 69

    0H0

    1b

    2ab

    H0b

    b

    ~sz2~sz2

    ~b2

    Graph 70

    0H0

    1b

    2ab

    H0b

    b

    ~sz2~sz1

    ~b1

    Graph 71

    0H0

    1b

    2ab

    H0b

    b

    ~sz2~sz1

    ~b2

    Graph 72

    0H0

    1b

    2ab

    H0b

    b

    ~sz2~sz3

    ~b1

    Graph 73

    0H0

    1b

    2ab

    H0b

    b

    ~sz2~sz3

    ~b2

    Graph 74

    0H0

    1b

    2ab

    H0b

    b

    ~sz2~sz4

    ~b1

    Graph 75

    0H0

    1b

    2ab

    H0b

    b

    ~sz2~sz4

    ~b2

    Graph 76

    0H0

    1b

    2ab

    H0b

    b

    ~sz3~sz3

    ~b1

    Graph 77

    0H0

    1b

    2ab

    H0b

    b

    ~sz3~sz3

    ~b2

    Graph 78

    0H0

    1b

    2ab

    H0b

    b

    ~sz3~sz1

    ~b1

    Graph 79

    0H0

    1b

    2ab

    H0b

    b

    ~sz3~sz1

    ~b2

    Graph 80

    0H0

    1b

    2ab

    H0b

    b

    ~sz3~sz2

    ~b1

    Graph 81

    0H0

    1b

    2ab

    H0b

    b

    ~sz3~sz2

    ~b2

    Graph 82

    0H0

    1b

    2ab

    H0b

    b

    ~sz3~sz4

    ~b1

    Graph 83

    0H0

    1b

    2ab

    H0b

    b

    ~sz3~sz4

    ~b2

    Graph 84

    0H0

    1b

    2ab

    H0b

    b

    ~sz4~sz4

    ~b1

    Graph 85

    0H0

    1b

    2ab

    H0b

    b

    ~sz4~sz4

    ~b2

    Graph 86

    0H0

    1b

    2ab

    H0b

    b

    ~sz4~sz1

    ~b1

    Graph 87

    0H0

    1b

    2ab

    H0b

    b

    ~sz4~sz1

    ~b2

    Graph 88

    0H0

    1b

    2ab

    H0b

    b

    ~sz4~sz2

    ~b1

    Graph 89

    0H0

    1b

    2ab

    H0b

    b

    ~sz4~sz2

    ~b2

    Graph 90

    0H0

    1b

    2ab

    H0b

    b

    ~sz4~sz3

    ~b1

    Graph 91

    0H0

    1b

    2ab

    H0b

    b

    ~sz4~sz3

    ~b2

    Graph 92

    0H0

    1b

    2ab

    H0b

    b

    h0h0

    b

    Graph 93

    0H0

    1b

    2ab

    H0b

    b

    h0H0

    b

    Graph 94

    0H0

    1b

    2ab

    H0b

    bh0

    H0b

    Graph 95

    0H0

    1b

    2ab

    H0b

    b

    H0H0

    b

    Graph 96

    0H0

    1b

    2ab

    H0b

    b

    Graph 97

    0H0

    1b

    2ab

    H0 b

    bh0

    Graph 98

    0H0

    1b

    2ab

    H0 b

    bH0

  • How to check results?

    UV (Cuv) independence

    Soft photon mass (λ) independence

    cut off photon energy (kc) independence

    Nonlinear gauge parameter independence

    check for physical finite contribution

  • H 0 → bb

    Γ0 =1.8019(GeV )

    Γ1loop+soft = 0.122658203244395(GeV )

    CUV = 0,λ =10−24 ,kc = 0.1GeV

    CUV =103,λ =10−24 ,kc = 0.1GeV

    Γ1loop+soft = 0.122658203244395(GeV )

    CUV = 0,λ =10−27,kc = 0.1GeV

    Γ1loop+soft = 0.122658203244395(GeV )

    CUV = 0,λ =10−24 ,kc = 0.1GeV

    ( ˜ α , ˜ β , ˜ δ h , ˜ δ H , ˜ κ , ˜ ε h , ˜ ε H ) = (0,L,0)⇒ (2,3,4,5,6,7,8)

    Γ1loop+soft = 0.122658203244395(GeV )

  • H 0 → bb (γ )

    H 0 → bb

    CUV = 0,λ =10−24 ,kc = 0.001GeV

    Γ1loop+soft = 0.0880604496742621(GeV )

    Γhard (kc = 0.1GeV ) = 0.05140388(GeV )

    Γhard (kc = 0.001GeV ) = 0.08605922(GeV )

    Γ1loop+soft+hard (kc = 0.001GeV ) = 0.1741(GeV )

    Γ1loop+soft+hard (kc = 0.1GeV ) = 0.1741(GeV )

    = δΓ

    δΓΓ0

    = 9.66%

  • Chargino pair production at LC

    parameter set : SPA1a’

    0.00

    0.05

    0.10

    0.15

    0.20

    400 600 800 1000 1200 1400

    W [GeV]

    σ [pb]

    Born

    1-lp corr

    e+e− → ˜ χ 1+ ˜ χ 1

  • -25.0

    -20.0

    -15.0

    -10.0

    -5.0

    0.0

    5.0

    10.0

    400 600 800 1000 1200 1400

    W [GeV]

    Δσ/σ[%]€

    e+e− → ˜ χ 1+ ˜ χ 1

    Weak = 1-loop + soft - BORN*QED

    GRACEWien group

    (hep-ph/0504109)

  • SummaryGRACE/SUSY@1-loop : developed

    gauge symmetric & on-shell scheme

    full automatic calculation

    various check system

    useful tools for precise phenomenologies

  • SPA1a’mSUGRA values

    low energy inputs

    M1/2 = 250 GeV sign(μ) = +1M0 = 70 GeV tanβ = 10A0 = -300 GeV

    M2 = 197.5 GeV μ = 399.2 GeVM1 = 100.1 GeV tanβ = 10mse1 = 123.2 GeV mse2 = 187.4 GeV θe = 0.50 msτ1 = 110.1 GeV msτ2 = 190.4 GeV θτ = 0.41msu1 = 506.5 GeV msu2 = 534.1 GeV θu =-0.50msd1 = 506.5 GeV θd =-0.50mst1 = 347.4 GeV mst2 = 556.8 GeV θt =-0.31msb1 = 469.4 GeV θb = 0.12MA = 431.0 GeV