1
7/21/2019 mytut10 http://slidepdf.com/reader/full/mytut10 1/1 The University of Sydney School of Mathematics and Statistics Tutorial 10: The Euler Maclaurin Formula. MATH3068 Analysis Semester 2, 2009 Web Page: http://www.maths.usyd.edu.au:8000/u/UG/SM/MATH3068/ Lecturer: Donald Cartwright Here is the general form of the Euler-Maclaurin Formula:   n 1 (x) dx  = n j=1 (  j ) (1) + f (n) 2  r j=1 B 2j (2  j )! (2j1) (n) (2j1) (1) +  1 (2r)!   n 1 (2r) (x)  ˜ B 2r (x)  dx, which is valid if  f (x) has a continuous 2r-th derivative. If  f (x) has a continuous 2r +1-st derivative, the last term can be re-written 1 (2r)!   n 1 (2r) (x)  ˜ B 2r (x) dx  = 1 (2r + 1)!   n 1 (2r+1) (x)  ˜ B 2r+1 (x)  dx. 1.  Write down both forms of this formula for  r  = 1 and  r  = 2, evaluating the Bernoulli numbers involved. 2.  Apply the Euler-Maclaurin formula with  r  = 1 and the second form of its final term to  f (x) = 1/x 3 . Our aim is to find an approximate value for the sum  ζ (3) of the infinite series k=1 1 k 3 . 3.  Use Stirling’s Formula to find lim n→∞ √ n 2 2n 2n n  and lim n→∞ n (n!) 1 n . 4.  We obtained Stirling’s Formula by applying to f (x) = ln x the simplest form of the Euler-Maclaurin formula:   n 1 (x)  dx  = n j=1 (  j ) (1) + f (n) 2    n 1 (x)  ˜ B 1 (x) dx, (which is the case  r  = 0 of the general formula above). Apply the case  r  = 1 of the general Euler-Maclaurin Formula (with the second form of its final term) to  f (x) = ln x. What further information does this give us about  n!? Copyright c 2009 The University of Sydney

mytut10

Embed Size (px)

DESCRIPTION

mathematics

Citation preview

Page 1: mytut10

7/21/2019 mytut10

http://slidepdf.com/reader/full/mytut10 1/1

The University of Sydney

School of Mathematics and Statistics

Tutorial 10: The Euler Maclaurin Formula.

MATH3068 Analysis Semester 2, 2009

Web Page: http://www.maths.usyd.edu.au:8000/u/UG/SM/MATH3068/Lecturer: Donald Cartwright

Here is the general form of the Euler-Maclaurin Formula:

   n1

f (x) dx  =n

j=1

f ( j) −f (1) + f (n)

2  −

rj=1

B2j

(2 j)!

f (2j−1)(n) − f (2j−1)(1)

+  1

(2r)!

   n1

f (2r)(x) B̃2r(x) dx,

which is valid if  f (x) has a continuous 2r-th derivative. If  f (x) has a continuous 2r + 1-st derivative, thelast term can be re-written

1(2r)!

   n

1

f (2r)(x) B̃2r(x) dx  = − 1(2r + 1)!

   n

1

f (2r+1)(x) B̃2r+1(x) dx.

1.   Write down both forms of this formula for   r   = 1 and   r  = 2, evaluating the Bernoulli numbersinvolved.

2.   Apply the Euler-Maclaurin formula with r  = 1 and the second form of its final term to  f (x) = 1/x3.Our aim is to find an approximate value for the sum  ζ (3) of the infinite series

k=1

1

k3.

3.   Use Stirling’s Formula to find

limn→∞

√ n

22n

2n

n

  and lim

n→∞

n

(n!)1

n

.

4.   We obtained Stirling’s Formula by applying to f (x) = lnx the simplest form of the Euler-Maclaurinformula:    n

1

f (x) dx  =n

j=1

f ( j)−f (1) + f (n)

2  −

   n1

f ′(x) B̃1(x) dx,

(which is the case   r   = 0 of the general formula above). Apply the case   r   = 1 of the generalEuler-Maclaurin Formula (with the second form of its final term) to  f (x) = lnx. What furtherinformation does this give us about  n!?

Copyright   c 2009 The University of Sydney