27
MUSTANG A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe Project Number:227286 Work-Package: WP02 WP title Site characterization Deliverable D021 Templates for the characterization of the test sites March 2010

MUSTANG_D021_Templates Test Sites Data

Embed Size (px)

Citation preview

Page 1: MUSTANG_D021_Templates Test Sites Data

MUSTANG

A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe

Project Number:227286

Work-Package: WP02

WP title Site characterization

Deliverable D021

Templates for the characterization of the test sites

March 2010

Page 2: MUSTANG_D021_Templates Test Sites Data

MUSTANG

A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe

Project Number:227286

Work-Package: WP02

WP Title Site characterization

Deliverable D021

Templates for the characterization of the test sites

Status FINAL Version 1.4 Review level WP Date of delivery March 26th2010 Leading participant SGU Contributing participants SGU

UU GII UB

CSIC LIAG UGOE EWRE

Dissemination Level

PU Public X RE Restricted to the consortium members, the SIRAB, the end-users and the

EU officers

CO Confidential (only the consortium and the EU officers)

Page 3: MUSTANG_D021_Templates Test Sites Data

Deliverable number D021 Deliverable name Template for the site characterization Work-package WP02 Lead participant SGU Version Submitted by Review

level Submitted Reviewed

1.1 SGU WP 4 February 2010 12 February 2010 1.2 SGU UU 12 February 2010 18 February 2010 1.3 UU/SGU WP 1 March 2010 15 March 2010

Authors Name Participant email

Mikael Erlström SGU [email protected] Auli Niemi UU [email protected] Fritjof Fagerlund UU [email protected]

Contributors Vladimir Shtivelman GII [email protected] Daniel Scradeanu UB [email protected] Orlando Silva, Viktor Vilarrasa CSIC [email protected] Manfred Wuttke LIAG manfred.wuttke@liag-

hannover.de Martin Sauter UGOE [email protected] Jacob Bensabat EWRE [email protected]

Executive summary This report presents a set of templates for a systematic organization and presentation of the site-specific data from the MUSTANG test sites. The objective is to provide a common framework for data compilation, thereby making the data from the different test sites, as well as the subsequent site models and their model outputs comparable.

The templates sum up the essential data required for the geological, geohydrological, geochemical and to some extent, the geomechanical models for the simulation of CO2 geological storage in deep saline aquifers. In addition to properties and parameters related to a general description of a site and its geological setting, the templates focus on parameters specific to the processes taking place during CO2 injection and storage.

The first template (Table 1) gives an overview of the site characteristics and investigations performed, as well as summarizing the information needed for the geometrical/ structural model. The data to be gathered to this template consists of short descriptive texts as well as geological maps, lithologies and cross-sections.

The second template (Table 2) summarizes the information concerning the investigation wells from which data is available, while the third and fourth templates (Tables 3 and 4) summarize the actual data from these investigation wells. Table 3 summarizes the physical properties, formation fluids and gases, as well as mineralogy and rock chemistry information for the reservoir units, while Table 4 presents this information for the caprock units. Finally, the last set of templates (Tables 5 and 6) are intended to present a summary of the available data per reservoir/caprock unit to be used as basis for model parameter estimation. These last sets of templates are intended to be further refined parallel to the model parameter estimation process. Used abbreviations and acronyms are explained in table 7. Keywords Template, site characterization, well data, reservoir parameters, caprock

parameters

Page 4: MUSTANG_D021_Templates Test Sites Data

Table of contents

1 Objective 1

2 Generic framework for data organization 1 2.1 Essential information for the geometrical and structural model 1 2.2 Essential information for the hydrogeological, geochemical and hydrogeomechanical models 2

3 Description of the templates 2

3.1 Use of the templates 3

4 Data format and compilation of common data base 6

Page 5: MUSTANG_D021_Templates Test Sites Data

List of Figures

Figure 1 Definitions of reservoir and caprock

units and effective thickness

Figure 2 Illustration of different petrographical components in a reservoir rock type

Page 6: MUSTANG_D021_Templates Test Sites Data

List of tables (templates)

Table 1

Site information Site data, investigations

and geological setting

Table 2 Well information Pertinent well data

Table 3.1

Reservoir properties Physical parameters

Table 3.2

Reservoir properties Formations fluids and gases

Table 3.3

Reservoir properties Mineralogy and rock chemistry

Table 4.1

Caprock properties Physical parameters

Table 4.2

Caprock properties Formations fluids and gases

Table 4.3

Caprock properties Mineralogy and rock chemistry

Table 5.1

Summary of properties for reservoir units

Table 6.1 Summary of properties for caprock units

Table 7

Explanations of acronyms and abbreviations

Page 7: MUSTANG_D021_Templates Test Sites Data

MUSTANG - 227286 P a g e | 1

1. Objective

The objective of the work package Test Sites (WP02) is to gather the available data from the different MUSTANG test sites, i.e. South Scania (Sweden), Horstberg (Germany), Valcele (Romania), Heletz (Israel) and Hontomín (Spain) and to prepare this data as input for the site-specific simulation models. The modeling will address the characteristics of these sites in terms of their suitability for CO2 geological storage. The overall objective is two-fold: Firstly, to get an understanding of the behaviour of these particular sites in terms of CO2 geological storage and secondly, to get an overview of what type of data characteristics can be encountered in potential CO2 storage sites in general. In order to achieve these goals, it is important that a common approach is used in organizing the data and in interpreting it into model parameters. Therefore, a generic framework of data compilation has been established, which comprehensively describes the essential information needed for the modelling to be carried out within the project. This report presents the set of templates (Tables) designed to summarize the information needed for the geological (geometric/structural), hydrogeological, geochemical, and to some extent hydrogeomechanical, models of the sites. The objective of the templates is to make the data from the different sites comparable. In the following Chapters an overview of the contents of the data needs is first given, followed by the instructions for the use of the templates. In practice, the tables will be filled either in tables enclosed to this report, or preferably, into similar excel tables available on the MUSTANG intranet (www.co2mustang.eu).

2. Generic framework for data organization

2.1 Essential information for the geometrical and structural model

The geometrical/structural model defines the main geological features of the sites and forms the basis for the subsequent hydro-mechanical-chemical simulation models. The essential input information for this model are

• A basemap of the site including existing boreholes and geophysical ground

measurements (mainly seismics) and geological surface information • Structure and depth data (seismic profiles, depth sections, faults, trapping

structures) • Pertinent data of existing boreholes (co-ordinates, depth, deviation, well

operations, geophysical logs, analyses, testing etc.) • Stratigraphical information (chrono- and lithostrigraphy) • Reservoir definition including lithological descriptions, geometry, dimensions

and anisotropy • Caprock definition including lithological descriptions, geometry, dimensions

and anisotropy

Page 8: MUSTANG_D021_Templates Test Sites Data

MUSTANG - 227286 P a g e | 2

A geologically-based understanding and description of the characteristics of the heterogeneity should also be incorporated, such as understanding of possible stochastic, as opposed to deterministic features in the heterogeneity.

2.2 Essential information for the hydrogeological, geochemical and hydrogeomechanical models

Modeling CO2 injection and storage involves a set of complex thermo-hydro-mechanical–chemical processes that interact in a coupled manner (see e.g. MUSTANG deliverable D051). The level of sophistication as of how the different processes, including their coupled interactions (such as hydro-mechanical coupling and hydro-mechanical-chemical coupling) are taken into account, vary between the different models. Subsequently, the detailed parameter needs will vary as well. Regardless of the model, essential information needed to model the multiphase flow and transport and its dependence and interactions with temperature and stress field, the relevant interphase mass transfer processes as well as the chemical interactions include

• Temperature and pressure profiles in existing boreholes. • Permeability measurements on cores (kh/kv). Relative permeability for gas

and water (CO2 and brine) of relevant rock types • Porosity measurements on cores • Formation fluids and gases (chemical composition and physical-chemical

characteristics) • Petrology and chemical composition of involved rock types • Physical properties of involved rock types (such as rock compressibility and

density) • Thermal properties such as the thermal conductivity, specific heat capacity,

and radiogenic heat generation rate • Chemical effects on involved rock types • Formation pressure • Formation threshold pressure (leak off test, formation integrity test) • Capillary threshold pressure for the seal rock types • Hydrotest data; transmissivity (T) and permeability (k), influence radius • Hydraulic boundaries and boundary conditions (confined/unconfined

conditions) • Conservative and reactive tracer tests (e.g., push-pull or SWIW tests to

characterize processes that may occur at different scales, porosity structure etc.

Page 9: MUSTANG_D021_Templates Test Sites Data

MUSTANG - 227286 P a g e | 3

3 Description of the templates There are six different sets of templates which will summarize the following information

General site characteristics (Table 1) Well information (Table 2) Reservoir and caprock properties presented by the individual wells where

data is obtained (Tables 3 and 4) Reservoir and caprock properties presented by formation units

comprising information from several wells and other sources (Tables 5 and 6)

The first Table focuses on general site information and gives a condensed descriptive part with background information concerning range of existing data, performed investigations and geological setting. The objective of this template is to generate information that is required for the compilation of the structural and geometrical model of a site. Essential information includes various maps, cross sections and a 3D model of each site. These are to be presented in a digital format which can be exported to the modelling tools used in WP7 and 8.

Well data is essential for the properties needed for the physico-chemical modeling of CO2 geological injection and storage. Therefore the subsequent templates (Tables 2 to 4) present the data per individual investigation wells. This information is split into three different templates. One (Table 2) compiles the pertinent information concerning the investigation wells, including information on location, elevation, depth, completion, logging and coring. The second one (Table 3) focuses on the essential CO2 related properties of the target reservoir/-s and the third template (Table 4) on the essential properties of the caprock/-s.

The last two templates (Tables 5 and 6) present a summary of the available data per reservoir/caprock unit, to be used as basis for model parameter estimation.

3.1 Use of the templates

The subsequent work within the WP02 will include compilation of existing site data with the help of the enclosed templates. The templates will serve as guidance to what type of information needs to be gathered. For some of the sites the compilation process may leave significant data gaps into the templates, which then need to be considered and addressed in the subsequent modelling work. A description of the use of the templates is given below.

Table 1 Site information The first template summarizes information essential for the construction of the geometric/structural model. It will also act as guidance to the understanding of the scope and range of parameters given in the subsequent Tables.

The data to be given here is a combination of short descriptive texts together with various geological maps, lithologs and cross-sections. A set of necessary deliverables is listed which are the minimum requirement for characterizing the site and need to be enclosed to Table 1.

Page 10: MUSTANG_D021_Templates Test Sites Data

MUSTANG - 227286 P a g e | 4

It is not obvious how some of the parameters should be determined. For the results between different sites to become comparable, these are therefore explained below.

Figure 1 gives a schematic illustration and explains the unit definitions of caprocks and reservoirs, as well as the meaning of the effective thickness concept. The second Table summarizes the relevant information concerning the investigation wells. The aim is to gather data concerning elevation, location and status of the wells in each site, as well as the amount of performed investigations and the range of available data, especially from logs and cores.

Table 3.1 Reservoir parameters – physical properties This table summarizes the most important physical properties related to the reservoir that are to be used as input data in the physical/hydrogeological modeling work in conjunction with evaluating the reservoir concerning CO2 storage.

The template is merely based on well information. If there is more than one well with information, each well has to be filled in separately.

Table 3.2 Reservoir parameters – formation fluids and gases The template is used to gather information of the chemical composition of the formation fluids and gases. The composition of the list may vary between sites depending on the scope of parameters and components analyzed. Table 3.2 can, thus be altered according to the site specific available data.

Table 3.3 Reservoir parameters – mineralogy and rock chemistry Table 3.3 is intended to be used as assistance in gathering important data that is to be used in modeling the chemical processes in the formation with models with reactive hydrogeochemical models such as the LBNL model TOUGHREACT.

The first part of the table summarizes the petrographical data on the reservoir rock type (for example see figure 2). These data are most commonly retrieved from microscopy on thin sections of rock samples (cuttings and/or cores). The basic information given is the mineralogy of the detrital components such as quartz, feldspars, mica etc. The relative amounts are obtained from traditional point counting techniques.

There are also important petrographical information given that include type of cement, matrix, roundness, sorting, fabric and grain-size. These parameters are important in definition of the texture of the reservoir rock.

In the table there is also a part which deals with the chemical composition of the rock. Again this list of included elements can differ significantly between sites depending on which analytical method that has been used.

In combination these two data sets yields the best basis for modeling the reactivity in the formation with respect to CO2 storage.

Tables 4.1 – 4.3 Caprock parameters These tables are constructed similar to the corresponding tables for the reservoir (tables 3.1-3.3). There are only some minor changes regarding the physical parameters given, i.e. capillary threshold pressure.

Page 11: MUSTANG_D021_Templates Test Sites Data

MUSTANG - 227286 P a g e | 5

Tables 5.1 – 5.3 Summary of properties for reservoir units These tables present a summary of the available data per reservoir unit, to be used as basis for subsequent model parameter estimation. The values given here could be either single values (if only one value exist) or ranges of values (if a number of values exist). An estimate should also be given what type of model best describes the data if a number of data points exists (for example; deterministic assignment of parameters values to points of observations with interpolation in between, model with spatial trend, stochastic model described by or mean of a probability density function, mean value of the observed values). This step should involve communication between the person organizing the field data and the person doing the subsequent modeling. Here comes also a written description of issues that cannot be readily incorporated into the table.

In particular a description of geological heterogeneity (i) within the layer and (ii) possible uncertainty concerning the extent of the layer at different levels is present. An example of table 5.1 dealing with the basic physical and chemical properties is given. Similar tables are to be set up for the formation fluids, gases and mineralogy in the reservoir.

Table 6.1 – 6.3 Summary of properties for caprock units Tables 6.1-6.3 have the same outline as tables 5.1- 5.3, but are related to caprock units. Here the written description should address estimates of caprock fracturing, in particular if no measurements related to this exist.

Page 12: MUSTANG_D021_Templates Test Sites Data

MUSTANG - 227286 P a g e | 6

4 Data format and compilation of common data base

The amount and type of data available from the different test sites will vary and subsequently, the Tables can be expected to be filled in variable degrees. The common platform should, however, provide comparability and transparency into the process. Each Partner responsible to the data collection for a specific site will gather the appropriate data into the Tables. The templates will be available as Microsoft Excel tables on MUSTANG intranet. This filled in Excel tables from each site will thereafter be compiled into a common project data base where, especially the numerical data, could be retrievable for different modeling purposes. The common data base will be set up by the coordinator, with input from the WP2 partners. The compiled cross sections and 3D models should be performed in software that can generate exportable grid formats, compatible with the subsequent modeling software. The type of software to be used can be decided separately for each specific site.

Page 13: MUSTANG_D021_Templates Test Sites Data

MUSTANG - 227286 P a g e | 7

Figure 1. Definitions of reservoir and caprock units and effective thickness

Page 14: MUSTANG_D021_Templates Test Sites Data

MUSTANG - 227286 P a g e | 8

Figure 2. Illustration of different petrographical components in a reservoir rock type.

Page 15: MUSTANG_D021_Templates Test Sites Data

MUSTANG - 227286 P a g e | 9

Table 7. Acronyms and abbreviations used in tables 1-6.

Abbrevation  Explanation n.d.  No data m sl.  Mean sea levelGL  Ground level RT  Rotary table on drill rigMD  Measured depthTVD  True vertical depthTDS  Total dissolved solidsSDWC  Side wall coringGR  Gamma ray SP  Self potential LLD‐LLS  Lateral resistivity log deep (LLD) and shallow (LLS)BHC  Borehole compensated sonic logNPHI  Neutron porosity logRHOB  Bulk density (corrected)

 

LWD  Logging while drillingATR‐PSR  ATR.  Attenuation  Resistivity  (deep;  ohmm).  PSR.  Phase  Shift 

Resistivity (shallow; ohmm). CCL  Casing collar locatorRange  Give the range of values (min, max)nm  Number of measurementsnw  Number of wells (from which the measurements are taken) Model The most suitable model for approximating the data for

parameter estimation purposes (1) Scale Scale of measurement, e.g. length of test interval or size of a

core sample

(1) Use the following abbreviations

Single= single value

DetInt= deterministic assignment of values to points of observations with interpolation in between Mean= mean of the observed values Trend= model with spatial trend Pdf= stochastic model described by a probability density function PdfCond= stochastic model described by a probability density function + conditioning to observation point data Other = other than any above

Page 16: MUSTANG_D021_Templates Test Sites Data

  Table 1   Site information   

  Site data, investigations and geological setting 

Mustang/WP2/23March 2010 

 

Site   Location   Longitude/Latitude   Geological domain   No. of wells    Dominant reservoir lithology   Reservoir stratigraphy   Reservoir depth range, m   No. of target reservoir intervals (R1–Rx)   Average target reservoir thickness (R1–Rx)   Average total reservoir thickness   Average total effective reservoir thickness   Effective porosity range, %, (R1–Rx)   Gas permeability range, mD, (R1–Rx)   Main caprock lithology (C1)   Caprock integrity and anisotropy (C1)   Caprock stratigraphy   Main caprock thickness (C1), m   No. of intermediate caprock intervals (C2–Cx)   Intermediate caprock lithologies (C2–Cx)   Intermediate caprock thicknesses (C2–Cx), m    

Performed investigations and data base  Here comes text describing the scope of work and performed investigations regarding the structural, physical, hydraulic and chemical properties from wells, seismics, wire line logging, coring, sampling, analyses, flow tests, injections tests etc.  

Necessary deliverables as appendices are: site map with locations of wells , seismic lines and cross sections well data (cf. template in table 2) parameter data of reservoir/‐s and caprock/‐s (cf. templates in tables 3.1‐3.3  and 4.1‐4.3) 

 

Geological setting  

Here comes text describing the structural configuration (faults, traps, bedding etc), main lithology of reservoir/‐s  and caprock/‐s, boundary conditions of the reservoir/‐s,degree of anisotropy (bedding, layering) and extension of the reservoir/‐s and caprock/‐s. 

Necessary deliverables as appendices are: type section from reference well/‐s minimum two cross‐sections isometric maps of reservoir and caprock units  isometric thickness map of the caprock and reservoir units 3D model in metres including caprock and reservoir units  

 

Page 17: MUSTANG_D021_Templates Test Sites Data

  Table 2   Well information    

  Pertinent well data 

Mustang/WP2/22 March 2010 

Site   

Well         

Longitude         

Latitude         

Elevation, GL, m sl         

Elevation RT, m sl         

Total depth, TVD m sl         

Total depth MD, m sl         

Status         

Bit size   Depth, MD m sl  Depth, MD m sl  Depth, MD m sl  Depth, MD m sl 

from  to  from  to  from  to  from  to 

                                                                                     

Casing   from  to  from  to  from  to  from  to 

                                                                                                                                        

Coring, size, type  from  to  from  to  from  to  from  to 

                                                                                                                                                       

Wire line logging  from  to  from  to  from  to  from  to 

                                                                                                                                                                                           *Explanations to used acronyms and abbreviations are given in Table 7. 

Page 18: MUSTANG_D021_Templates Test Sites Data

  Table 3.1   Reservoir properties  Physical parameters 

Mustang/WP2/22 March 2010 

Site   

Well Reservoir unit (R1‐Rx) Top, reservoir m sl. 

    

Base, reservoir m sl.     

Thickness, m     

Effective thickness, m     

Effective porosity, %  (no. of meas.)         

   

Total porosity, %     

Permeability, (kv), mD,  (no. of meas.)         

   

Permeability, (kh), mD,  (no. of meas.)         

   

Estimated permeability, mD     

Anisotropy kh/kv     

Permeability, mD, flow test           

Residual water saturation, %     

Residual gas/oil saturation, %     

Rock grain density, g/dm3  (no. of meas.)         

   

Temperature, °C     

Thermal conductivity, W/m/K     

Compressive strength, MPa     

Stress field orientation, SH           

Formation pressure, Bar             

Capillary pressure, MPa     

Pore compressibility, MPa  

   

             

             

             

             

 

Page 19: MUSTANG_D021_Templates Test Sites Data

  Table 3.2   Reservoir properties  Formation fluids and gases 

Mustang/WP2/22 March 2010 

Site     Comments Well   

Reservoir unit (R1‐Rx)         Formation fluids   

Sample depth, MD m sl             

pH             

Electrical conductivity, �S/cm             

Resistivity, Ωm             

Density, g/cm3             

TDS, g/l             

Alkalinity, mmol/l             

Chloride, Cl, mg/l             

Calcium, Ca, mg/l             

Potassium, K, mg/l             

Sodium, Na, mg/l             

Iron tot, Fe, mg/l             

Strontium, Sr, mg/l             

Lithium, Li, mg/l             

Magnesium, Mg, mg/l             

Manganese, Mn, mg/l             

Ammonia, NH4, mg/l             

Barium, Ba, mg/l             

Bromide, Br, mg/l             

Iodide, I, mg/l             

Sulphate, SO4, mg/l             

Hydrogen carbonate, HCO3,mg/l             

Bor, B, mg/l             

Silicium, Si, mg/l             

Organic acids, mg/l             

             Formation gases     

Sample depth, MD m sl             

Nm3(gas)/Nm3 (fluid)             

O2             

N2, vol.‐%             

CO2 , vol.‐%             

H2, vol.‐%             

He, vpm             

CH4, vpm             

C2H6, vpm             

C3H8, vpm             

C4H10, vpm             

             

 

Page 20: MUSTANG_D021_Templates Test Sites Data

  Table 3.3   Reservoir properties  Mineralogy and rock chemistry 

Mustang/WP2/22 March 2010 

Site    Comments Well  

Reservoir unit (R1-Rx)          

Mineralogy   

Quartz, %             

Feldspars, %             

Iron minerals, %             

Mica, %             

Heavy minerals, %             

Carbonates, %             

Glaucony, %             

Rockfragments, %             

Others (specify, %)             

Matrix, %             

Pores, %             

Cement, %             

Matrix components             

Cement components             

Roundness             

Sorting             

Fabric             

Average grain size             

Whole rock chemical analysis     

SiO2, %            

Al2O3, %            

Fe2O3, %            

CaO, %            

MgO, %            

Na2O, %            

K2O, %            

TiO2, %            

MnO, %            

P2O5, %            

SrO, %            

BaO, %            

LOI, %            

Total, %            

Aluminium, Al, ppm            

Arsenic, As, ppm            

Barium, Ba, ppm            

Beryllium, Be, ppm            

Calcium, Ca, ppm            

Page 21: MUSTANG_D021_Templates Test Sites Data

  Table 3.3   Reservoir properties  Mineralogy and rock chemistry 

Mustang/WP2/22 March 2010 

Cadmium, Cd, ppm            

Cobalt, Co, ppm            

Chromium, Cr, ppm            

Caesium, Cs, ppm            

Copper, Cu, ppm            

Iron, Fe, %            

Manganese, Mn, ppm            

Molybdenum, Mo, ppm            

Sodium, Na, %            

Nickel, Ni, ppm            

Phosphorus, P, ppm            

Sulfur, S, ppm            

Tin, Sn, ppm            

Strontium, Sr, ppm            

Thorium, Th, ppm            

Titanium, Ti, ppm            

Uranium, U, ppm            

Vanadine, V, ppm            

Zinc, Zn, ppm            

           

           

           

           

           

 

Page 22: MUSTANG_D021_Templates Test Sites Data

  Table 4.1   Caprock properties  Physical parameters 

Mustang/WP2/2 March 2010 

Site   Well Latitude/Longitude 

Caprock (C1‐Cx)   

Top, caprock m sl.     

Base, reservoir m sl.     

Thickness, m     

Effective porosity, %  (no. of meas.)         

   

Total porosity, %     

Permeability, (kv), mD,  (no. of meas.)         

   

Permeability, (kh), mD,  (no. of meas.)         

   

Estimated permeability, mD     

Anisotropy kh/kv     

Residual water saturation, %     

Residual gas/oil saturation, %     

Rock grain density, g/dm3

(no. of meas.)            

Temperature, °C     

Thermal conductivity, W/m/K     

Compressive strength, MPa     

Stress field orientation, SH     

Formation pressure, Bar             

Capillary pressure, MPa     

Pore compressibility, MPa     

Capillary threshold  pressure, MPa 

           

Entry pressure             Retention curves for water, brine and CO2 

           

Relative permeability curves             

             

 

Page 23: MUSTANG_D021_Templates Test Sites Data

  Table 4.2   Caprock properties  Formation fluids and gases 

Mustang/WP2/22 March 2010 

Site     

Comments Well   

Caprock unit (C1‐Cx)           Formation fluids   

Sample depth, MD m sl             

pH             

Electrical conductivity, μS/cm             

Resistivity, Ωm             

Density, g/cm3             

TDS, g/l             

Alkalinity mmol/l             

Chloride, Cl, mg/l             

Calcium, Ca, mg/l             

Potassium, K, mg/l             

Sodium, Na, mg/l             

Iron tot, Fe, mg/l             

Strontium, Sr, mg/l             

Lithium, Li, mg/l             

Magnesium, Mg, mg/l             

Manganese, Mn, mg/l             

Ammonia, NH4, mg/l             

Barium, Ba, mg/l             

Bromide, Br, mg/l             

Iodide, I, mg/l             

Sulphate, SO4, mg/l             

Hydrogen carbonate, HCO3, mg/l             

Bor, B, mg/l             

Silicium, Si, mg/l             

Organic acids, mg/l             

             

Formation gases     

Sample depth, MD m sl             

Nm3(gas)/Nm3 (fluid)             

O2             

N2, vol.‐%             

CO2 , vol.‐%             

H2, vol.‐%             

He, vpm             

CH4, vpm             

C2H6, vpm             

C3H8, vpm             

C4H10, vpm             

             

 

Page 24: MUSTANG_D021_Templates Test Sites Data

  Table 4.3   Caprock properties  Mineralogy and rock chemistry 

Mustang/WP2/22 March 2010 

Site     

Comments Well   

Caprock unit (C1‐Cx)           Mineralogy   

Quartz, %             

Feldspars, %             

Iron minerals, %             

Mica, %             

Carbonates, %             

Heavy minerals, %             

Clay and mud, %             

Pores, %             

Others, specify, %             

             

Whole rock chemical analysis     

SiO2, %            

Al2O3, %            

Fe2O3, %            

CaO, %            

MgO, %            

Na2O, %            

K2O, %            

TiO2, %            

MnO, %            

P2O5, %            

SrO, %            

BaO, %            

LOI, %            

Total, %            

Aluminium, Al, ppm            

Arsenic, As, ppm            

Barium, ba, ppm            

Beryllium, Be, ppm            

Calcium, Ca, ppm            

Cadmium, Cd, ppm            

Cobalt, Co, ppm            

Chromium, Cr, ppm            

Caesium, Cs, ppm            

Copper, Cu, ppm            

Iron, Fe, %            

Manganese, Mn, ppm            

Page 25: MUSTANG_D021_Templates Test Sites Data

  Table 4.3   Caprock properties  Mineralogy and rock chemistry 

Mustang/WP2/22 March 2010 

Molybdenum, Mo, ppm            

Sodium, Na, %            

Nickel, Ni, ppm            

Phosphorus, P, ppm            

Sulfur, S, ppm            

Tin, Sn, ppm            

Strontium, Sr, ppm            

Thorium, Th, ppm            

Titanium, Ti, ppm            

Uranium, U, ppm            

Vanadine, V, ppm            

Zinc, Zn, ppm            

           

           

           

           

           

 

Page 26: MUSTANG_D021_Templates Test Sites Data

  Table 5.1   Summary of properties for reservoir units 

Reservoir physical properties and initial conditions.    Basic chemical properties       

 

Mustang/WP2/22 March 2010 

Site   Site Name, Country   Method of measurement Reservoir unit R1 (*  Range  nm  nw  Model  Scale (m) 

Reservoir dimensions  

   

Top of reservoir,  m sl.     

Base of reservoir,  m sl.     

Thickness, m     

Effective thickness, m     

Reservoir properties     

Effective porosity, %      

Total porosity, %     

Permeability, method  1, mD,      

Permeability, method  2, mD,      

Anisotropy kh/kv     

Parameters for relative permeability and capillary pressure functions (e.g.  α, m, n) 

          

Residual water saturation, %     

Residual gas/oil saturation, %     

Rock grain density, g/dm3      

Thermal conductivity, W/m/K     

Compressive strength, MPa     

Stress field orientation, SH           

Pore compressibility with respect to pressure, 1/MPa         

   

Pore compressibility with respect to temperature, 1/°C 

           

Initial conditions             

Temperature, °C             

Formation pressure, Bar              

Aqueous salt concentration             

Aqueous CO2 concentration              

Gas saturation, if present             

Oil saturation, if present             

Capillary pressure, MPa             

 Comments on heterogeneity etc. ‐  Reservoir Unit R1 (*  Here comes an written description of issues that cannot be readily incorporated into the table.  In particular a description of geological heterogeneity (i) within the layer and (ii) possible uncertainty concerning the extent of the layer at different levels is present 

(* Similar Tables should be filled for all reservoir units of interest in the formation  

Page 27: MUSTANG_D021_Templates Test Sites Data

  Table 6.1   Summary of properties for caprock units

Caprock physical properties and initial conditions.    Basic chemical properties   

Mustang/WP2/22 March 2010 

Site   Site Name, Country   Method of measurement Caprock unit C1 (*  Range  nm  nw  Model  Scale (m) 

Caprock  dimensions  

   

Top of caprock,  m sl.     

Base of caprock,  m sl.     

Thickness, m     

Caprock  properties     

Effective porosity, %      

Total porosity, %     

Permeability, method  1, mD,      

Permeability, method  2, mD,      

Anisotropy kh/kv     

Parameters for relative permeability and capillary pressure functions (e.g.  α, m, n) 

          

Residual water saturation, %     

Residual gas/oil saturation, %     

Rock grain density, g/dm3      

Thermal conductivity, W/m/K     

Compressive strength, MPa     

Stress field orientation, SH           

Pore compressibility with respect to pressure, 1/MPa         

   

Pore compressibility with respect to temperature, 1/°C 

           

Initial conditions             

Temperature, °C             

Formation pressure, Bar              

Aqueous salt concentration             

Aqueous CO2 concentration              

Gas saturation, if present             

Oil saturation, if present             

Capillary pressure, MPa             

 Comments on heterogeneity etc. ‐  Caprock unit C1 (*  Here comes an oral description of issues that cannot be readily incorporated into the table.  In particular a description of geological heterogeneity and fracturing. Heterogeneity (i) within the caprock and (ii) in the thickness of it. Estimates of fracturing and fracture intensity.  

(* Similar Tables are to be filled for all caprock units