24
Numerical Simulation of Multi-scale Transport Processes and Reactions in PEM Fuel Cells Using Two-Phase Models Munir Ahmed Khan Division of Heat Transfer Dept. of Energy Sciences LTH

Munir Ahmed Khan Division of Heat Transfer Dept. of Energy Sciences LTH

Embed Size (px)

DESCRIPTION

Numerical Simulation of Multi-scale Transport Processes and Reactions in PEM Fuel Cells Using Two-Phase Models. Munir Ahmed Khan Division of Heat Transfer Dept. of Energy Sciences LTH. Outline. Introduction Brief History of Development Modeling Approach Numerical Modeling Results - PowerPoint PPT Presentation

Citation preview

Numerical Simulation of Multi-scale Transport Processes and Reactions in PEM Fuel Cells

Using Two-Phase Models

Munir Ahmed Khan

Division of Heat TransferDept. of Energy Sciences

LTH

Heat Transfer / Energy Sciences / LTH

Outline

• Introduction

• Brief History of Development

• Modeling Approach

• Numerical Modeling

• Results

• Conclusion

Heat Transfer / Energy Sciences / LTH

PEMFC Schematic

(Jacobson, 2004)

Heat Transfer / Energy Sciences / LTH

History of PEMFC Development

• 1839 (Fuel Cell Principle)• 1965 (NASA)• 1968 (Nafion)• 1969 (Biosatellite Missions)• 1970 – 1989 (Abeyance)• 1990 – Present (Ballard Power and Los Alamos Labs)

Heat Transfer / Energy Sciences / LTH

Scientific Research Activities

Scientific Research

Experimental Approach Numerical Approach

Heat Transfer / Energy Sciences / LTH

Numerical Approach

PEMFCModels

Based on Thermal Analysis

Based on Flow domain

Single Phase

Multi Phase

Isothermal

Non-isothermal

Based on CatalystModels

Thin Interface

Discrete Volume

AgglomerateModel

Heat Transfer / Energy Sciences / LTH

Presented Modeling

• Interdigitated Flow Field

• Cathode Side Only

• 2-Phase– 2 Phase Flow

– 2 Phase Temperature

– 2 Phase Current

• Agglomerate Catalyst Modeling

Heat Transfer / Energy Sciences / LTH

Computational Domain

(Larminie J, 2003)

Component Dimension (mm)

Inlet 0.4

Outlet 0.4

Current Collector 0.8

PTL thickness 0.4

Catalyst layer thickness

0.1

Heat Transfer / Energy Sciences / LTH

Flow Fields

(www.me.udel.edu)

Heat Transfer / Energy Sciences / LTH

Bridging Numerical and Experimental Modeling

NumericalModeling

ActualMachine

ExperimentalModeling

Heat Transfer / Energy Sciences / LTH

Idealized Catalyst Layer

ElectrolyteBulk

Gas Pores

AgglomerateNafion

Pt Particle

Carbon Particle

Heat Transfer / Energy Sciences / LTH

Transport Phenomena

• Multicomponent Diffusion• Oxygen Dissolution• Dissolved Oxygen Diffusion• Electron Transport• Proton Migration

H2O

H+ H+

H2O

e- e-e-O2

O2 O2

O2 O2

O2

Heat Transfer / Energy Sciences / LTH

Oxygen Reduction Reactions

• Reaction Steps

• Rate of Reaction

22 OMOM

HOMeHOM 22

MOHeHHOM 22 233

localOcO CkR

22 locallocalc Tfk ,

CurrentRO 2

surfaceOcrnetO CkER

22 ,

Heat Transfer / Energy Sciences / LTH

Boundary Conditions

1. Inlet

Gas Concentration

Fluid Temperature

Pressure

Water Saturation

1

2. Catalyst/Membrane InterfaceNominal Cathode Overpotential (NCO)

3. Current CollectorSolid Phase PotentialSolid Phase Temperature

2

3

Heat Transfer / Energy Sciences / LTH

Velocity and Pressure Fields

Velocity Distribution (m/s)

Pressure Field (N/m2)

Heat Transfer / Energy Sciences / LTH

Oxygen Mass Fraction

222.0cmAI

257.0cmAI

289.0cmAI

Heat Transfer / Energy Sciences / LTH

Water Saturation

222.0cmAI

257.0cmAI

289.0cmAI

Heat Transfer / Energy Sciences / LTH

Fluid Temperature (K)

222.0cmAI

257.0cmAI

289.0cmAI

Heat Transfer / Energy Sciences / LTH

Solid Temperature (K)

222.0cmAI

257.0cmAI

289.0cmAI

Heat Transfer / Energy Sciences / LTH

Membrane Phase Conductivity

1.47

1.48

1.49

1.5

1.51

1.52

1.53

1.54

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

Lenght (m)

σm (

S/m

)

1.85

1.9

1.95

2

2.05

2.1

2.15

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

Length (m)

σm (

S/m

)

222.0cmAI 289.0

cmAI

Heat Transfer / Energy Sciences / LTH

Cathode Overpotential (V)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

Length (m)

NC

O -

Lo

cal O

ver

Po

ten

tial

(V

)

0.89 A/cm2 0.57 A/cm2 0.22 A/cm2

Heat Transfer / Energy Sciences / LTH

Model Verification & Comparison

Heat Transfer / Energy Sciences / LTH

Conclusion

• Effect of Liquid Water– More prominent at higher current density

• Membrane Phase Conductivity– Highly dependant on water activity

• Losses– Higher losses are observed at higher current density

• Mass Limitation Effects– Adequately captured by agglomerate model

• Power– Maximum power is observed at 0.55 V

Heat Transfer / Energy Sciences / LTH

THANKS TO ALL

Jinliang Yuan Bengt Sundén

HEC Pakistan Swedish Research Council

& Special Thanks to