74
Multivariable Processes Prof. Cesar de Prada ISA-UVA [email protected]

Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

  • Upload
    others

  • View
    19

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Multivariable Processes

Prof. Cesar de Prada ISA-UVA

[email protected]

Page 2: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 2

Outline

Interaction Control of multivariable processes using SISO

controllers RGA Control loop pairing Decoupling Control Multivariable Control

Page 3: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 3

v1

Hot Oil

v2

v3

L1

v7

v5 v6

Hot Oil

F1 T1 T3

T2

F2

T4T5

F3 T6

T8

F4

L1

v8

T7

P1F5

F6T9

How to determine the maximum number of variables that can be controlled in a process?

Degrees of freedom

Page 4: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 4

A basic requirement : Number of valves (actuators) ≥ number of controlled variables

v1

Hot Oil

v2

v3

L1

v7

v5 v6

Hot Oil

F1 T1 T3

T2

F2

T4T5

F3 T6

T8

F4

L1

v8

T7

P1F5

F6T9

This is a necessary but not sufficient condition in order to satisfy the control aims!

Degrees of freedom

Page 5: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 5

These cars

• Are they controllable independently?

• Does it exist interaction?

An example!!!

Interaction

Page 6: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 6

Linked by a spring

Interaction

These cars

• Are they controllable independently?

• Does it exist interaction?

Page 7: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 7

Rigid link

Interaction

These cars

• Are they controllable independently?

• Does it exist interaction?

Page 8: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 8

Reactor

Reactor

TT

T

Coolant Product

Input output interaction in both variables

Open loop interaction / Not necessarily equal to closed loop interaction

u Reactant

AT

Page 9: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 9

MIMO (Multi Input Multi Output) Systems

Process u1

u2

y1

y2

y3

=

)s(U)s(U

)s(G)s(G)s(G)s(G)s(G)s(G

)s(Y)s(Y)s(Y

2

1

3231

2221

1211

3

2

1Interaction

Directions

Independent Manipulated variables

Dependent Controlled variables

Page 10: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 10

A process is said to be controllable/operable if the controlled variables can be kept in its set points in

steady state, in spite of the disturbances acting on the plant

Mathematically, for a process to be controllable, the gain matrix of the process should be able to be inverted, that is, its determinant should be K ≠ 0.

DKK

MVMV

KKKK

CVCV

2d

1d

2

1

2221

1211

2

1

+

=

Model of a 2x2 process

Controlability/Operability

Page 11: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 11

A process is said to be controllable/operable if the controlled variables can be kept in its set points in

steady state, in spite of the disturbances acting on the plant

If the determinant K ≠ 0, then we can find values of the MV’s that maintain the CV’s on spite of the value of the DV’s. (Assuming they remain within the appropriate range).

=

DKK

CVCV

KKKK

MVMV

2d

1d

2

11

2221

1211

2

1Model of a 2x2 process

Controlability/Operability

Page 12: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 12

FA, xA

FS, xAS = 0 FM, xAM

SssAs

AAA

ssAs

AAAM

SA

AAAM

SAMSAM

FFFxFF

FFFxx

FFxFx

FFFFFF

+

−+∆

+

−=∆⇒

+=

∆+∆=∆⇒+=

22 )()()1(

In this blending process

• Can FM and xAM be controlled independently?

• Is there interaction among the process variables ?

Controlability

xA = cte.

Page 13: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 13

FA, xA

FS, xAS = 0 FM, xAM

0)()(

)1()(

)( 222 ≠+−

=+−

−+

−=

SA

A

SA

AA

SA

AA

FFF

FFxF

FFxFKDet

Yes, the process is controllable!

Would it be controllable if xAS were different from zero?

∆∆

+

+

−=

∆∆

S

A

ssAs

AA

ssAs

AA

AM

M

FF

FFxF

FFFx

xF

22 )()()1(

11

Page 14: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 14

Interaction

G11

G21

G12

G22 u2

u1 y1

y2

=

=

)s(U)s(U

)s(G)s(G)s(G)s(G

)s(Y)s(Y

2

1

2221

1211

2

1

Open loop

How does it behave in closed loop?

Page 15: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 15

Interaction

G11

G21

G12

G22 u2

u1

y1

y2

R1

R2

w1

w2

Control with SISO controllers R

Page 16: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 16

Closed loop

G11

G21

G12

G22 u2

u1

y1

y2

R1

R2

w1

w2

)yw(RG)yw(RGuGuGy

)yw(RG)yw(RGuGuGy

2222211121

2221212

2221211111

2121111

−+−==+=

−+−==+=

2222

22211

222

1212

22111

2121

111

1111

wRG1

RG)yw(RG1

RGy

)yw(RG1

RGwRG1

RGy

++−

+=

−+

++

=

Page 17: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 17

Interaction

2121212222111

2121

121212222111

1212122221111

2222

22211

222

1212

111

2121

111

1111

wRGRG)RG1)(RG1(

RGwRGRG)RG1)(RG1(

RGRG)RG1(RGy

)wRG1

RG)yw(RG1

RGw(RG1

RGwRG1

RGy

−+++

−++−+

=

+−−

+−

++

+=

G11

G21

G12

G22 u2

u1

y1

y2

R1

R2

w1

w2

2222

22211

222

1212

22111

2121

111

1111

wRG1

RG)yw(RG1

RGy

)yw(RG1

RGwRG1

RGy

++−

+=

−+

++

=

Page 18: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 18

Interaction (Loop 1)

2121212222111

2121

121212222111

1212122221111 w

RGRG)RG1)(RG1(RGw

RGRG)RG1)(RG1(RGRG)RG1(RGy

−+++

−++−+

=

G11

G21

G12

G22 u2

u1

y1

y2

R1

R2

w1

w2

w1 y w2 affect y1

If G12 or G21 are = 0 the closed loop dynamics is the one of a SISO system u1 --- y1

If R2 is commuted to manual the dynamics of loop 1 changes

2222111

2121

111

1111 w

)RG1)(RG1(RGw

)RG1(RGy

+++

+= 1

111

1111 w

)RG1(RGy

+=

Page 19: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 19

Interaction

TT

u1

q T

Condensate

Fv u2

FT

u2

u1 T q

Page 20: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 20

Reactor

Reactor

TT

T

Coolant Product

u Reactant

AT

Input output interaction in both variables

Open loop interaction

Page 21: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 21

Reactor

Reactor

TT

T

Refrigerante Producto

TC

u Reactante

AT

AC

Input - output interaction in both variables

Closed loop interaction

Page 22: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 22

Interaction

How to measure the degree of interaction? Is is possible to control the process using SISO

controllers? If so, which is the best pairing of input – output

variables?

u1

u2 y1

y2

Page 23: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 23

Steady state gain matrix

=

2

1

2221

1211

2

1

uu

kkkk

yy

The steady state gain matrix is not a good measure of interaction:

It depends on the units of the different variables

It does not reflect the main characteristic associated to interaction: the change in gain in a control loop when other loop switch from auto to man or vice versa.

Page 24: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 24

Bristol Relative Gain Array (RGA) Bristol 1966 McAvoy 1983

2221

1211

2

1

21

yy

uu

λλλλ

G

u1

u2

y1

y2

λ11

G

u1

u2

y1

y2

λ11 measures the change in gain between u1 and y1 in the experiments described below

im;cteyj

i

jk;cteuj

i

j,i

m

k

uy

uy

≠∀=

≠∀=

∂∂

∂∂

Page 25: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 25

Best choice 1j,i =λ

0j,i =λ

∞=λ j,i 2.08.0y8.02.0y

uu

2

1

21

RGA

The RGA can be used to choose adequately the pairing of manipulated and controlled variables in MIMO systems, selecting those pairs with minimum interaction in steady state (or at any other frequency).

im;cteyj

i

jk;cteuj

i

j,i

m

k

uy

uy

≠∀=

≠∀=

∂∂

∂∂

0j,i <λ Instability

Page 26: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 26

RGA

G

u1

u2

y1

y2

λ11

2221212

2121111

ukuk0yukuky

∆+∆==∆∆+∆=∆

21122211

2211

22

21122211

1111

22

21122211

ctey1

1

122

21121111

kkkkkk

kkkkk

k

kkkkk

uy

uk

kkuky

2

−=

−=λ

−=

∆∆

∆−∆=∆

=

21122211

2211

21122211

2112

21122211

2112

21122211

2211

2

1

21

kkkkkk

kkkkkk

kkkkkk

kkkkkk

yy

u u

−−−

−−

Page 27: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 27

Example: Distillation Column

V

L

x1

x2

−9.99,89,89,9

xx

V L

2

1

Strong interaction associated to the pairing ( L x1) (V x2)

Instability with ( L x2) (V x1)

RGA

−−

=35.038.082.099.0

)0(G

% %

% %

Page 28: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 28

RGA

T1)G(G)G()G(RGA −×=Λ=

=×=Λ

=

−=

4.06.06.04.0

)G(G)G(

1.03.02.04.0

G

4321

G

T1

1

Sum of elements of a RGA row or column is 1

RGA does not depend on the units or scaling of u and y

When dealing with asymmetric processes, the inverse matrix can be substituted by the pseudoinverse

Matlab RGA = G.*pinv(G)’

Page 29: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 29

Example

=×=Λ

=

=

04.004.1014.005.091.0

yy

)G(G)G(

u u u 0.08-0.140.260.02-0.35-0.46

pinv(G) uuu

5.040132

yy

2

1T1

321

3

2

1

2

1

y1 must be paired with u1

y2 must be paired with u2

Page 30: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 30

Example RGA

−−=

40.51.5427.141.10.317.163.45.308.16

G

−−−

03.295.008.045.097.041.048.199.050.1

yyy

u u u

3

2

1

321

The only admissible SISO pairing is:

y1 ---- u1 y2 ---- u2 y3 ---- u3

With a higher interaction in the third loop

RGA

Page 31: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

RGA

Prof. Cesar de Prada ISA-UVA 31

−−=

40.51.5427.141.10.317.163.45.308.16

G

−−−

03.295.008.045.097.041.048.199.050.1

yyy

u u u

3

2

1

321

RGA

im;cteyj

i

jk;cteuj

i

j,i

m

k

uy

uy

≠∀=

≠∀=

∂∂

∂∂

Notice that, if λ > 1, when changing from auto to man, the resulting gain will be larger than before and, likely, the loop will tend to oscillate. By the contrary, if λ < 1, will provide a slower response.

Page 32: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 32

Distillation Column

1

2

Page 33: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 33

Open loop experiment

50 55

1s60e648.0

1seKG

s7.21

11

sd11

11

11

+=

+τ=

−−

1s7.84e815.0

1seKG

s4.34

21

sd21

21

21

+=

+τ=

−−

1

2

Page 34: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 34

Open loop experiment

47.9 53

1s3.54e894.0

1seKG

s6.21

12

sd12

12

12

+−

=+τ

=−−

1s9.41e236.0

1seKG

s61.6

22

sd22

22

22

+−

=+τ

=−−

Page 35: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 35

Open loop Model

FOPD Step response models

Both loops open

1s60e648.0

1seKG

s7.21

11

sd11

11

11

+=

+τ=

−−

1s7.84e815.0

1seKG

s4.34

21

sd21

21

21

+=

+τ=

−−

1s3.54e894.0

1seKG

s6.21

12

sd12

12

12

+−

=+τ

=−−

1s9.41e236.0

1seKG

s61.6

22

sd22

22

22

+−

=+τ

=−−

Page 36: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 36

Watch the experiment!

1s8.72e99.0

1seKG

s7.22

11

sd11

11

11

+=

+τ=

−−

Change of 0.5%

1s65.66e38.0

1seKG

s9.30

21

sd21

21

21

+=

+τ=

−−

In non-linear systems, smaller input changes can provide better results

50 51

Page 37: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 37

Plan well the experiment

1s67.66e82.0

1seKG

s36.22

12

sd12

12

12

+−

=+τ

=−−

1s02.57e35.0

1seKG

s5.4

22

sd22

22

22

+−

=+τ

=−−

47.9 49

Page 38: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 38

RGA

−−

=236.0815.0894.0648.0

K

−=

265.0265.1265.1265.0

RGA

−=

1.91.81.81.9

RGA

−−

=35.038.082.099.0

K

Page 39: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 39

Head composition control with bottom impurity control in manual

IMC tuning λ=50 min. Kp = 2.19, Ti = 70.85 min.

Page 40: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 40

Bottom impurity control with head composition control in manual

IMC tuning λ=35 min. Kp = -5.47, Ti = 45.2 min.

Page 41: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 41

Control loop interaction

CONTROLProcess 1

INTERACT 12PV1

response toCO2

INTERACT 21PV2

response toCO1

CONTROLProcess 2

PROCESS 11PV1

response toCO1

PROCESS 22PV2

response toCO2

+- ++

+- ++

1y

2y

1setpointy

2setpointy

1u

2u

Page 42: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 42

Open loop response G between 1-1 with the bottom impurity control in automatic

Dynamics has changed completely! Gain G11 changed from 0.99 to 0.11 and the type of response is different

λ11 = 0.99/0.11 = 9

50 51

Page 43: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 43

Head composition control with bottom impurity control in automatic

Switch from man to auto in the bottom impurity control loop

Process dynamics changes completely

Page 44: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 44

RGA

−=

1.91.81.81.9

RGA

Page 45: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 45

Open loop response G22 with the head composition control in automatic

Dynamics has changed completely! Gain G22 changed from -0.35 to -0.043and the type of response is different

λ22 =

-0.35/(-0.043)

= 8.1

47.9 49

Page 46: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 46

Bottom impurity control with head composition control in automatic

Switch from man to auto in the head composition control loop

Dynamics has changed completely

Page 47: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Example: Mixing two streams

Prof. Cesar de Prada ISA-UVA 47

AT FT

F , x

F1 , x1

F2 , x2

u1

u2 21 FFF +=

Global balance:

Composition balance:

2211 x Fx Fx F +=

2ss

221

2111

ss2

21

212

2221

221122112

21

2211121

2121

2211

F)F F(

)xx( FF)F F(

)xx(Fx

F)F F(

)x Fx F(x)F F(F)F F(

)x Fx F(x)F F(x

FFF F Fx Fx Fx

∆+−

−∆+−

=∆

∆+

+−++∆

++−+

=∆

∆+∆=∆++

=

Linearization in a certain steady state point

Page 48: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Example: Mixing two streams

Prof. Cesar de Prada ISA-UVA 48

∆∆

+−

−+−

=

∆∆

2

1

ss2

21

211

ss2

21

212

FF

11)F F(

)xx( F)F F(

)xx(F

Fx

Steady state gain matrix

Eliminating F2 between both equations:

2

211 xx

xx . F F−−

= FF

xxxx

xxxx

1 1

21

2

2

21F,F 1

=−−

=

−−

2211222121112211121112 xFxFxFxFxFxFFxxFxFFxxFxFFxFx +=++−=+−=⇒−=−

21 FFF += 2211 x Fx Fx F +=

Page 49: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 49

Mixing two streams

RGA :

Which is the best pairing between manipulated and controlled variables? What influences the answer?

1F 2F

FF1

FF1

FF11−

FF11−

F

x

1F 2F

Page 50: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 50

Mixing two streams

Case F1 = 10, F = 15 1F 2F

FF1

FF1

FF11−

FF11−

F

x

1F 2F

Case F1 = 3, F = 15

1F 2F

2.0F

x

1F 2F

8.0

2.08.0

1F 2F

67.0F

x

1F 2F

67.0

33.0

33.0

Page 51: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 51

RGA(jω)

))j(G(RGA ω

RGA was originally formulated for the steady state case (zero frequency), but the same concept can be applied to the operation of the process at any other frequency to measure the interaction during transients.

Page 52: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Niederlinski stability theorem

Prof. Cesar de Prada ISA-UVA 52

Let’s assume that inputs and outputs of a multivarible system have been ordered so that y1 is controlled with u1, y2 is controlled with u2, etc. and each pair is controlled with a regulator having integral action, then, the closed loop is unstable if:

0)0(G

))0(Gdet(n

1iii

<

∏=

Page 53: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 53

Singular values

selected areGGy GG of seigenvaluelargest m)min(l,k the m),G(l fi

)GG()GG()G(

**

*i

*ii

=

×

λ+=λ+=σ

)G()G()G( i σ≤λ≤σ

Eigenvalues of G:

)G()G( number condition )G(max )G(min ii σ

σ=σ=σσ=σ

)G(max)G( ii

λ=ρSpectral radious:

How to compute the eigenvalues of a non-square matrix? Singular values

0IG =λ−

)G(1)G( 1−σ=σ

Page 54: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 54

SVD

[ ]

σ

σ

=Σ=

m

2

1

v...vv

000000000...0000

u...uuVUGn

1

l21

1v v v1u uu *VV UUals)(orthonorm matricesunitary )mm(V),ll(U

2iijji2iijji1-*1- =δ==δ===

××∗∗

Columns of U: ui output singular vectors: unitary eigenvectors of GG*

Columns of V: vi input singular vectors: unitary eigenvectors of G*G

Page 55: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 55

SVD

iii uGvUVVUGVVUG

σ=Σ=Σ=⇒Σ=

∗∗

One input in the direction vi gives an output in the direction ui

σi gives the gain of G in the direction vi

2i

2i2ii2ii2ii

2i2i

vGv

Gv)G(uu

1u,1v sA

==σ=σ=σ

==

G vi ui

Directions computed using SVD are orthogonals

Page 56: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 56

Interaction using SVD

Opposite to the RGA, the SVD depend on the scaling of the matrix, so, in oreder to obtin sensibles results, the G matrix should be scaled to units used in the controller

First column of V (row of V*) provides the combination of controller moves with the largest effect on the controlled variables, these ones changing in the direction given by the first column of U. The second column of V provides the second largest effect, etc.These gains are given by the singular values σi

∗Σ= VUG

Page 57: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Pairing variables with SVD

Prof. Cesar de Prada ISA-UVA 57 2output and 2input toingcorrespond ones thelueslargest va thebeing

column) (secondgain largest second with therepeated is procedure Then the1.output - 1input is pairing drecommende theso 1,output

withassociated 0.872,- is luelargest va theoutput, in the and 1input

with associated is 0,794- luelargest va theinput, in the 0.490-0.872-

direction

output theand 0.608-0.794-

direction input ebetween th appearsgain largest

794.0608.0608.0794.0

272.000343.7

872.0490.0490.0872.0

VUG

2345

G

−−−

−−=Σ=

=

∗∗

G u y

Page 58: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Selecting variables with Cn

Prof. Cesar de Prada ISA-UVA 58

G u y

)G()G( Cnumber condition n σ

σ==

Multivariable systems with large condition number presents pairs with very large or very small gains that will make difficult the design of a good control system. So, may be that only a subset of the inputs and outputs should be selected for control. This subset can be selected using the Cn

Page 59: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Example: Mixing streams

Prof. Cesar de Prada ISA-UVA 59

AT FT

F , x

F1 , x1

F2 , x2 u2

For F1 = 3, F2 = 2 x1 = 0.7 x2 = 0.2 The steady state is : F 5, x = 0.5

−=

+−

−+−

=11

25/5.125/1

11)F F(

)xx( F)F F(

)xx(F)0(G

ss2

21

211

ss2

21

212

−−−

=

−0.70680.7075-0.7075-0.7068-

0707.0001.4143

01.09999.09999.001.0

)1106.004.0

(svd

Cn = 1.4143/0.0707 = 20.0

u1

Page 60: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

=

−−−

=

0.70680.7075-0.7075-0.7068-

V

01.09999.09999.001.0

U

=

−−−

=

0.70680.7075-0.7075-0.7068-

V

01.09999.09999.001.0

U

Example: mixing streams

Prof. Cesar de Prada ISA-UVA 60

=

−−−

=

0.70680.7075-0.7075-0.7068-

V

01.09999.09999.001.0

U

AT FT

F , x

F1 , x1

F2 , x2 u2

Largest singular value 1.4143

Second largest singular value 0.0707

x controlled with F2

F controlled with F1

u1

Page 61: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Example: mixing streams

Prof. Cesar de Prada ISA-UVA 61

AT FT

F , x

F1 , x1

F2 , x2 u2

=

−=

6.04.04.06.0

RGA

1106.004.0

)0(G

u1

RGA analysis recommends the same pairing: (but not always)

x controlled with F2

F controlled with F1

25.01*04.0

det(G(0))index kiNiederlins

1106.004.0

)0(G

==

−=

Page 62: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 62

MULTILOOP vs Centralized

L

F

T

A

Multiloop: several independent PID controllers

One single multivariable

controller

L

F T

A

Controlador

Centralizado

Designing control systems in multivariable processes

Page 63: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 63

Decoupling

G

u1 y1

y2

R1 w1

R2 w2

u2

D

Find a matrix D such that GD behaves as a diagonal (or quasi diagonal) matrix, so that the interaction is cancelled

Page 64: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 64

Steady state decoupling

G

u1 y1

y2 G(0)-1

R1 w1

R2 w2

u2

If D is chosen as αG(0)-1 ,then G(s) G(0)-1 is diagonal in steady state, so that there is no interaction at equilibrium. This decoupler is very easy to compute and implement because G(0)-1 = inverse of the steady state gain matrix

Page 65: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 65

Control structure with Decoupling

CONTROLProcess 1

CONTROLProcess 2

DECOUPLER 12PV1

decoupled fromCO2

DECOUPLER 21PV2

decoupled fromCO1

+- ++ ++

+- ++ ++

1feedbacku

2feedbacku

1totalu

2totalu

1y

2y

1setpointy

2setpointy

)(12 sD

)(21 sD

)(11 sG

)(21 sG

)(12 sG

)(22 sG

2decoupleu

1decoupleu

PROCESS 11PV1

response toCO1

INTERACT 21PV2

response toCO1

PROCESS 22PV2

response toCO2

INTERACT 12PV1

response toCO2

Page 66: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 66

2x2 Multivariable Decoupling

It requires 4 dynamical models: – Process 11 (how CO1 influences PV1) – Interact 12 (how CO2 influences PV1) – Interact 21 (how CO1 influences PV2) – Process 22 (how CO2 influences PV2)

These models must be obtained from validated

experimental data. Loop decoupling is not use very often because it

requires a certain effort in terms of modelling, tuning and maintenance, and MPC can provide better performance spending similar resources.

Page 67: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 67

Interaction, Single loop PI

Controllers tuned independently with the other loop in manual

94.5 95

Page 68: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 68

With decoupling

94.5 95

Same tuning

Page 69: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 69

With decoupling

2.6 3

Page 70: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 70

SS Decoupling

−−

=

−−

=−

37.2888.1049.2303.10

35.038.082.099.0

)0(G1

1

G

u1 y1

y2

R1 w1

R2 w2

u2

−−

37.2888.1049.2303.10

Page 71: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 71

With SS decoupling

94.5 95

Same tuning

Page 72: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 72

With SS decoupling

2.6 3

Page 73: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 73

Multivariable Control

G

u1 y1

y2 w1

R w2 u2

The controller receives signals from all controlled variables (and perhaps measurable disturbances) and computes simultaneously control actions for all actuators taking into account the interactions.

Page 74: Multivariable Processesprada/multivariablesUK.pdf · Control of multivariable processes using SISO controllers RGA Control loop pairing Decoupling Control Multivariable Control

Prof. Cesar de Prada ISA-UVA 74

Reactor FT

FT

FC

FC

TT AT

MBPC

Temp Conc.

Coolant

Product

u1 u2

Multivariable Predictive Control MPC

DMC, GPC, EPSAC, HITO, PFC,....