84
Multiscale modeling of optical and transport properties of solids and nanostructures Yia-Chung Chang Research Center for Applied Sciences (RCAS) Academia Sinica, Taiwan NTU Colloquium , March 14, 2017 In collaboration with Ming-Ting Kuo, NCU S. J. Sun, J. Velev, Gefei Qian, Hye-Jung Kim, UIUC Zhenhua Ning, Chih-Chieh Chen, UIUC/RCAS Ching-Tang Liang, I-Lin Ho, RCAS J. W. Davenport, R. B. James, BNL T. O. Cheche, U. Burcharest, W. E. Mahmoud

Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Multiscale modeling of optical and transport properties of solids and nanostructures

Yia-Chung Chang

Research Center for Applied Sciences (RCAS)Academia Sinica, Taiwan

NTU Colloquium , March 14, 2017

In collaboration with

Ming-Ting Kuo, NCU

S. J. Sun, J. Velev, Gefei Qian, Hye-Jung Kim, UIUC

Zhenhua Ning, Chih-Chieh Chen, UIUC/RCAS

Ching-Tang Liang, I-Lin Ho, RCAS

J. W. Davenport, R. B. James, BNL

T. O. Cheche, U. Burcharest, W. E. Mahmoud

Page 2: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Outline

• Optical excitations of solids/nanostructures

modeled by: density-functional theory (DFT),

tight-binding (TB), k.p model, and

effective bond-orbital model (EBOM)

• Transport and thermoelectric properties of

nanostructure junctions modeled by non-equilibrium

Green function method, including correlation

• Examples: zincblende/cubic semiconductors,

quantum wires, and QDs and QD tunnel junctions

Page 3: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Flow chart of BSE calculation for

excitation spectra

[ G. Onida, L. Reining, A. Rubio

Rev. Mod. Phys., 74, 601, (2002)]

Excitation spectra

DFT packages:

VASP, CASTEP

Abinit

WIEN2K

LMTO

SIESTA

LASTO

Page 4: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Linearized Slater-type orbital (LASTO) method

•Inside MTs: exact numerical solution (u) & du/dE

•Outside MTs: Slater-type orbitals, rn-1 e-br Ylm(Ω)

•Match boundary conditions for each spherical harmonics

[J. W. Davenport, Phys. Rev. B 29, 2896 (1994)]

Page 5: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Symmetry-adapted basis

•Irreducible segment

Use of symmetry can reduce the computation effort significantly

• Symmetry-adapted basis was not commonly adopted in DFT calculations

• (For general k, point symmetry is lost)

• For large supercell calculations, only k=0 is needed, the use of symmetry-adated basis can be very beneficial

• Examples:

1. Defects in solids with high point symmetry

2. High-symmetry nanoparticles like C60.

3. Optical excitations of nanoclusters

4. Excitonic excitation of solids with high symmetry

128-atom fcc supercell

[Y.-C. Chang, R. B. James, and J. W. Davenport, PRB 73, 035211 (2006)]

Page 6: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Optically allowed transitions for Td group

•Only the following 6 (& exch.) out of 100 possible configurations are allowed:

•Polarization matrix in RPA:

•Polarization matrix in symmetry-adapted basis:

[Use FFT]

Using Wigner-Ekart theorem:

Page 7: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•BSE (solid line)

•RPA (dashed line)

LiFSi

Optical spectra calculated by Bathe-Salpeter Eq.

in LASTO basis

•Results similar to LAPW results:

•[Puschnig* and C. Ambrosch-Draxl, PRB 66, 165105 (2002)]

Page 8: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

GaAs

AlAs1X1 SL

Exp

Optical spectra of GaAs, AlAs & SLs

AlAsGaAs

[Exp. data taken from [M. Garriga et al., Phys. Rev. B 36, 3254 (1987)]

Page 9: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Supercell method in plane-wave basis

Page 10: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•dzt •10

•Symmetrized Plane-wave basis

•Ψ = Σs C(Gs)|Gs>

•Gs

•The star of G

•Gs

•(001)

•(001)

•(010)

Page 11: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•dzt •11

Page 12: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•dzt •12

Page 13: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

The meta-Generalized Gradient Approximation

mGGA (TB09) [F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)]

Becke-Roussel exchange potential

[A.D. Becke & M.R. Roussel, Phys. Rev. A 39, 3761 (1989)]

TDDFT with mGGA :

[V.U. Nazarov & G. Vignale, PRL 107, 216402(2011)]

Page 14: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Band structure comparison

Page 15: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Comparison between LASTO & WIEN2k

Page 16: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Excitation spectra

Si GaAs

Page 17: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Dielectric functions of InGaAs & InAsP alloys

obtained by TDDFT based on mGGA

[F. Tran and P. Blaha, PRL 102, 226401 (2009)]

[V.U. Nazarov and G. Vignale, PRL 107, 216402(2011)]

Page 18: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

H k E

e E E E E

p

ik

xy xx xy zz

, ,

,

' '

' '

2 21

S tra in H am ilton ian

H

V D de de

de V D de

de de V D

st

H xy xz

xy H yz

xz yz H

1

2

3

3 3

3 3

3 3

e ij= ( ij+ ji)/2

V H = (a 1+ a 2)( x x+ y y+ zz)

D 1= b(2 x x- y y- zz)

D 2= b(2 y y- x x- zz)

D 3= b(2 zz- x x- y y)

a 1 , a 2 , b , d = defo rm ation po ten tia ls.

i

2

3

4

1

Bond-orbital model

[S. Sun,Y. C. Chang, PRB 62, 13631 (2000)]

Page 19: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

InAs/GaAs Self assembled quantum dots

GaAs

InAs

Wetting layer

Lattice mismatch 7%

Incident light

Infrared detector

Laser

Area density

211 /10 cm

Page 20: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Bond-orbital model

x (0,0,1)

y (0,1,0)sv’ sv

[S. Sun,Y. C. Chang, PRB 62, 13631 (2000)]

Page 21: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Valence force field (VFF) Model

V d d d

d d d d d d

ij ij ij

ij

ij

ijk ij ik ij ik

j ki

ij ik

1

4

3

4

1

4

3

43

2

0

22

0

2

0 0

2

0 0

, ,

, , , ,

i labels atom positions

j , k label nearest-neighbors of i

dij = bond length joining sites i and j

d0,ij is the corresponding equilibrium length

ij= bond stretching constants

d ijk= bond bending constants

We take dijk2 = dijdik

i

2

3

4

1

di1

di2di3

di4

Page 22: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions
Page 23: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Ground Transition Energy Varying With

Dot Height (comparing to Experiment)

Dot base length 200Å

20 40 60 80 100

1.04

1.08

1.12

1.16

1.20

1.24

Theoty

Experiment

Energy (eV)

Island height (A)

Theory

Page 24: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

PL

IEXC~5000W/cm2

EEXC=2.41eV

InAs/GaAs QDs

3ML PIG

T=7K

Inte

nsit

y (a

rb. u

nits

)

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30

EDET=1.062eV

PLE

+LO phonon transition

weaker transitions

strongest transitions

Energy (eV)

Log

of

Inte

nsit

y (a

rb. u

nits

)PL/PLE Characterization: Electronic Structure

Ground state at 1.062eV

Excited states:

Strongest at 1.147eV and 1.229eV

Weaker at 1.121eV and 1.197eV

E1

2

4

E

E

HH

H1,23

3

Ec

Ev

EWLe

EWLh

1.5

2eV

59meV

26meV1

.45

eV

1.0

62

eV

50meV

32meV

1.1

47

eV

1.2

29

eV

GaAs GaAsQD

InA

s W

L

~310+50meV

~150+50meV

1.1

97eV

1.1

21

eV

?

[Data from A. Madhkar (USC)]

Page 25: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

E1

2

4

E

E

HH

H1,23

3

Ec

Ev

EWLe

EWLh

59meV

26meV1

.45

eV

1.0

62eV

50meV

32meV

1.1

47eV

1.2

29eV

~310+50meV

~150+50meV

1.1

97eV

1.1

21eV

E1

2

E

E

3

E4

E5

EWLe

11

0m

eV

16

2m

eV

18

4m

eV

Ec

~310+50meV

2500 2000 1500 1000

0.0

0.1

0.2

0.3

0.4

184 meV

6.7mm

162 meV

7.62mm

110 meV

11.3mm

Normal incidence

Bias: -0.5 V

@77K

Pho

tocurr

ent

(nA

)

Wavenumber (cm-1)

Intra-band Transitions

Data from A. Madhkar (USC)

Page 26: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Intra-band Transitions

Table 4 Inter-sub band transition matrix elements of ground electron state to upper

three electron states, 1

2

, ,c i cr

. B=200A, h=80A.

Symmetry state i

(Ei(DEE1E1)E

1)

x y z

A1

#2 (0.111)

#3 (0.123)

#4 (0.197)

0

0

0

0

0

0

0.2

57

201

A2

#2 (0.106)

#3 (0.114)

0

0

0

0

28.5

0

B1,B2

#2 (0.109)

#3 (0.138)

#4 (0.201)

0

0

0

0

0

0

15

42

14

A1-B1n

#1 (0.062)

#2 (0.162)

#3 (0.218)

446

0.2

0.4

446

0.2

0.4

0

0

0

B1-A1n

#2(0.049)

#3(0.061)

#4(0.135)

#5(0.161)

536

659

376

10.2

536

659

376

10.2

0

0

0

0

Page 27: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Effective bond-orbital model for QWRs

•(a)

•(b)

•(c)

•(d)

-8

-6

-4

-2

0

2

4

-1 0 1 2

-8

-6

-4

-2

0

2

4

-1 0 1 2

Wave Vector, k

E (

eV)

-1 0 1 2

-8

-6

-4

-2

0

2

4

InAs

KL X

-8

-6

-4

-2

0

2

4

-1 0 1 2

-8

-6

-4

-2

0

2

4

-1 0 1 2

Wave Vector, k

E (

eV)

-1 0 1 2

-8

-6

-4

-2

0

2

4

GaSb

KL X

-8

-6

-4

-2

0

2

4

-1 0 1 2

-8

-6

-4

-2

0

2

4

-1 0 1 2

Wave Vector, k

E (

eV)

-1 0 1 2

-8

-6

-4

-2

0

2

4

GaAs

KL X

-8

-6

-4

-2

0

2

4

-1 0 1 2

-8

-6

-4

-2

0

2

4

-1 0 1 2

Wave Vector, k

E (

eV)

-1 0 1 2

-8

-6

-4

-2

0

2

4

CdTe

KL X

[Y. C. Chang, W. E. Mahmoud, Comp. Phys. Comm., 196, 92 (2015)]

Page 28: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5

-0.8

-0.6

-0.4

-0.2

0.0

InAs NW VB

d = 5nm

-1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.5 1.0 1.5 2.0 2.5

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.5 1.0 1.5 2.0 2.5

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

InAs NW CB

d = 5nm

-1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.5 1.0 1.5 2.0 2.5

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.5 1.0 1.5 2.0 2.5

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

InAs NW CB

d = 7nm

-1

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

InAs NW VB

d = 7nm

-1

•(a)

•(b)

•(c)

•(d)

Page 29: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•(c)

•(a)

•(d)

•(b)

0

1

2

3

4

5

6

7

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0

1

2

3

4

5

6

7

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10

cm

)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0

1

2

3

4

5

6

7

-14

InAs NW

d = 5nm

0

1

2

3

4

5

6

7

0.4 0.8 1.2 1.6 2.0

0

1

2

3

4

5

6

7

0.4 0.8 1.2 1.6 2.0

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10

cm

)

0.4 0.8 1.2 1.6 2.0

0

1

2

3

4

5

6

7

-14

InAs NW

d = 7nm

0

1

2

3

4

5

6

7

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

0

1

2

3

4

5

6

7

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10

cm

)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

0

1

2

3

4

5

6

7

-14

GaSb NW

d = 5nm

0

1

2

3

4

5

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0

1

2

3

4

5

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10

cm

)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0

1

2

3

4

5

-14

GaSb NW

d = 7nm

Page 30: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Excitation spectra of colloidal QDs

•r0

•0.65

•2.25 •2.69

•ZnTe

•core

•ZnSe

•shell

•Po

tenti

al (

eV)

•0 •Rb•R

•Figure 1. Schematic bulk band-offset for

•ZnTe/ZnSe CSQD.

•buffer

Te

[8-band or (6+2)-band k.p model]

[Exp. data from S.M. Fairclough et al., J. Phys. Chem. C 116, 26898 (2012)]

Page 31: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Absorption coefficient for ZnTe/ZnSe CSQDs

Page 32: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Transport through nanostructure junctions

Page 33: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Green function approach for GMR

[J. Velev and Y.-C. Chang, Phys. Rev. B 63, 184411 (2001)]

Fe4/Cr3/Fe4

trilayer junction

A. Fert & P. Grunberg

2007 Nobel Prize (GMR)

(Fe2/CrM/Fe2)N

multiilayer junction

Page 34: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

DFT to Tight-binding conversion

Page 35: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

GaAs zineblende/wurtzite heterostructure

H. Shtrikman et al., Nano Lett., 9, 215 (2009);

D. Spirkoska1 et al., https://arxiv.org/ftp/arxiv/papers/0907/0907.1444.pdf

Page 36: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Transport characteristics of GaAs ZB/WZ junctions

Normal-incidence conductance

Page 37: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Tunneling current spectroscopy of a nanostructure

junction involving multiple energy levels

ZPXPS

Substrate Substrate Substrate

Tip Tip Tip

in

out

dps EEEz,,

P. Liljeroth et al, Phys. Chem.chem. Phys. 8, 3845 (2006)

Page 38: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

1E

2E

L R

(a) No bias (b) Forward bias

FE

SourceDot

Drain

aV

(c) Reverse bias

aV

Energy diagram for STM-QD junction

Page 39: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Theory vs. Experiment for STM-QD tunneling spectra

[Data from L. Jdira et al., Phys. Rev. B 73, 115305 (2006)]

Reverse bias Forward bias

[M.T. Kuo & Y. C. Chang, PRL, 99, 086803 (2007)]

Page 40: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

M-level case

s ,1 N

ssss jjjj

j nnNNa )(1 ,,

ssss jjjj

j nnNNb 2,,

ss jj

j nnc

ssss '',','

' )(1 jjjj

j nnNNa

ssss '',','

' 2 jjjj

j nnNNb

ss ''

'

jj

j nnc

'jj

,2,2,,,0

,..,,,,

'54'321

'

5

'

4

'

3

'

2

'

1

jjjj

jjjjjjjjjj

UUUU

acpacpbapabpaap

s,N

Page 41: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Z. Yuan et al., Science, 295, 102 (2002)

•單光子發射器(Single-Photon generator)

0

10

20

30

40

50

60

-27 -25 -23 -21 -19 -17

-Eg (meV)

Inte

nsit

y (

arb

. u

nit

s)

X-

X

X2

X+

M. T. Kuo, Y. C. Chang, PRB

1

1.5

2

2.5

3

3.5

4

4.5

5

0.001 0.01 0.1 1 10

/2r

Pe

ak

s

tre

ng

th

(a

rb

. u

nits

)

X

X2

Page 42: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Quantum interference in triple-QD junction[C. C. Chen, Y. C. Chang, M. T. Kuo, PCCP, 17, 6606 (2015)]

[M. Seo et al., Phys. Rev. Lett.110, 046803 (2013)]

Page 43: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Thermal rectification properties of QD junctions

ZT=S2GT/k

S=dV/dT

[M. T. Kuo, Y. C. Chang, Phys. Rev. B 81, 205321 (2010)]

Page 44: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Thermoelectric properties of TQD junctions

[C. C. Chen, M. T. Kuo, Y. C. Chang, PCCP, 17, 19386 (2015)]

Page 45: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

TE behavior of QD array[M. T. Kuo, Y. C. Chang, Nanotechnology 24 175403 (2013) ]

(Fs=0.01)

Page 46: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Enhancement in TE efficiency of QD junctions

dueto increase of level degeneracy

[P. Murphy and J. Moore, Phys. Rev. B 76, 155313 (2007)]

[M. T. Kuo, C. C. Chen,Y. C. Chang, Phys. Rev. B 95, 075432 (2017)]

DQDSingle QD(Fs=0.1)

Page 47: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

• Computation codes were implemented for electronic and optical exciationcalculations by using symmetry adapted PW & LASTO basis.

• Electronic states and optical linear response of nanoclusters (with high symmetry) by including the quasi-particle self-energy correction (GW approximation) and the excitonic effects can be calculated efficiently.

• For high-symmetry (Oh,Td,C3v,D2d) systems, our method improves the computation efficiency by two-three orders of magnitude.

• Self-assembled or colloidal QDs can be suitably modeled by VFF model for strain distribution+EBOM for electronic states

• Intra-level and inter-level Coulomb interactions play keys roles in the optical properties

• Non-equilibrium transport and correlation are important in the analysis of nanostructure junction devices

• Computation codes were implemented for electronic and optical exciationcalculations of 1D and 2D materials by using PW-B spline mixed basis.

Summary

Page 48: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

DFT with LASTO basis

Page 49: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•dzt •49

•Optical spectra of SiH4 cluster

Page 50: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•dzt •50

•Optical spectra of 1nm Si clusters

Page 51: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Effect of asymmetric tunneling

meVout 1

Shell-filling

Shell-tunneling

meVin 10

meVin 1.0

Page 52: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Comparison with continuum Model

Page 53: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10 cm

)

0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

1.0

-14

p-type InAs NW

d = 7nm

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10 cm

)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

-14

p-type GaSb NW

d = 7nm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10 cm

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-14

p-type GaSb NW

d = 5nm

0.0

0.4

0.8

1.2

1.6

0.0 0.1 0.2 0.3

0.0

0.4

0.8

1.2

1.6

0.0 0.1 0.2 0.3

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10 cm

)

0.0 0.1 0.2 0.3

0.0

0.4

0.8

1.2

1.6

-14

p-type InAs NW

d = 5nm

Page 54: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

polymer semiconductorspolymer semiconductors

Modeling of Quantum Wires

Page 55: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions
Page 56: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions
Page 57: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Emission spectrum of QD transistor

Page 58: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Symmetry-adapted basis for large supercells

Page 59: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Coupled-wave transfer method

• Energy and wave functions computed using a stabilized transfer matrix technique by dividing the system into many slices along growth direction.

• Envelope function approximation with energy-dependent effective mass is used.

• Effective-mass Hamiltonian in k-sapce:

[(kx2+ky

2 )/mt(E)+z2/ml(E)-E]F(k) +Σk’[V(k,k’)+Vimp(k,k’)]F(k’)=0

is solved via plane-wave expansion in each slice.

• 14-band k·p effects included perturbatively in optical matrix elements calculation

• Dopant effects incorporated as screened Coulomb potential

• The technique applies to quantum wells and quantum dots (or any 2D periodic nanostructures)

Page 60: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Charge densities of low-lying states in lens-shaped QD

s-like

d-like

px/py like

pz like

Page 61: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Quantum well intrasubband photodetector (QWISP)

for far infared and terahertz radiation detection

[Ting et al., APPLIED PHYSICS LETTERS 91, 073510 (2007)]

Page 62: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Quantum well intrasubband photodetector (QWISP)

for far infared and terahertz radiation detection

Page 63: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Quantum well intrasubband photodetector (QWISP)

for far infared and terahertz radiation detection

Page 64: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Submonolayer QD infrared photodetector[Ting et al., APPLIED PHYSICS LETTERS 94, 1 (2009)]

Page 65: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Optical absorption spectra of Si

Si

Page 66: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•dzt •66

•Comparison in CPU time

Page 67: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•GW approximation for Quasi-particle energy

Page 68: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

• ω Integration & plasma pole approximation

Page 69: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•How to obtain symmetrization coefficients

•Ref.

Page 70: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•Evaluating matrix elements

•Symmetry reduction factor ~ nh2

Page 71: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•dzt •71

•Optical spectra of 1nm Si clusters

Page 72: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.0

GaSb NW VB

d = 5nm

-1

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

GaSb NW CB

d = 5nm

-1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

GaSb NW CB

d = 7nm

-1

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

GaSb NW VB

d = 7nm

-1

•(c)

•(d)

•(b)

•(a)

Page 73: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

GaAs NW VB

d = 7nm

-1

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

GaAs NW CB

d = 7nm

-1

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

GaAs NW CB

d = 5nm

-1

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.0

GaAs NW VB

d = 5nm

-1

•(c)

•(a)

•(b)

•(d)

Page 74: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

CdTe NW VB

d = 7nm

-1

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

CdTe NW VB

d = 5nm

-1

•(c)

•(a)

•(b)

•(d)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

CdTe NW CB

d = 7nm

-1

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

CdTe NW CB

d = 5nm

-1

Page 75: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

ZnSe NW VB

d = 5nm

-1

2.8

3.2

3.6

4.0

4.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.8

3.2

3.6

4.0

4.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.8

3.2

3.6

4.0

4.4

ZnSe NW CB

d = 5nm

-1

•(c)

•(a)

•(d)

•(b)

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

ZnSe NW CB

d = 7nm

-1

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

ZnSe NW VB

d = 7nm

-1

Page 76: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave vector, k (cm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Si NW VB

d=5nm

-1

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave vector, k (cm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.3

-0.2

-0.1

0.0

Si NW VB

d=7nm

-1

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Ge NW VB

d = 7nm

-1

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Wave Vector, k (nm )

E (

eV

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.0

Ge NW VB

d = 5nm

-1

•(c)

•(d)

•(b)

•(a)

Page 77: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

•(a)

•(b)

0

1

2

3

4

5

6

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0

1

2

3

4

5

6

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10

cm

)

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0

1

2

3

4

5

6

-14

GaAs NW

d = 7nm

0

2

4

6

8

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

0

2

4

6

8

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10

cm

)

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

0

2

4

6

8

-14

GaAs NW

d = 5nm

Page 78: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

0

2

4

6

8

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2

0

2

4

6

8

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10

cm

)

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2

0

2

4

6

8

-14

ZnSe NW

d = 7nm

0

2

4

6

8

10

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

0

2

4

6

8

10

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10

cm

)

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

0

2

4

6

8

10

-14

ZnSe NW

d = 5nm

0

1

2

3

4

5

6

7

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

0

1

2

3

4

5

6

7

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10

cm

)

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

0

1

2

3

4

5

6

7

-14

CdTe NW

d = 5nm

0

1

2

3

4

5

6

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0

1

2

3

4

5

6

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10

cm

)

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0

1

2

3

4

5

6

-14

CdTe NW

d = 7nm

Page 79: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10 cm

)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

2.5

-14

n-type InAs NW d = 5nm

d = 7nm

d = 15nm

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5

Photon Energy (eV)A

bso

rpti

on

Co

eff

icie

nt

(10 cm

)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

-14

n-type GaSb NW d = 5nm

d = 7nmd = 14nm

Page 80: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10 cm

)

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-14

p-type Si NW

d = 5nm

0.0

0.4

0.8

1.2

1.6

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.4

0.8

1.2

1.6

0.0 0.1 0.2 0.3 0.4 0.5

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10 cm

)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.4

0.8

1.2

1.6

-14

p-type Si NW

d = 7nm

0.0

0.4

0.8

1.2

1.6

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.4

0.8

1.2

1.6

0.0 0.1 0.2 0.3 0.4 0.5

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10 cm

)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.4

0.8

1.2

1.6

-14

p-type Ge NW

d = 7nm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5

Photon Energy (eV)

Ab

so

rpti

on

Co

eff

icie

nt

(10 cm

)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-14

p-type Ge NW

d = 5nm

Page 81: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions
Page 82: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Application to optical excitation of solids & superlattices

•K =

•[Puschnig* and C. Ambrosch-Draxl, PRB 66, 165105 (2002)]

•for k in IBZ

•Use time-reversal symmetry

Page 83: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Piezoeletric Potential

Page 84: Multiscale modeling of optical and transport properties of solids … · 2017-03-14 · 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 E DET =1.062eV PLE +LO phonon transition weaker transitions

Supercell calculations in symmetry-adpated LASTO basis

[Y.-C. Chang, R. B. James, and J. W. Davenport, PRB 73, 035211 (2006)]