33
Multiphoton dressing of an anharmonic superconducting many-level quantum circuit Martin P. Weides Johannes Gutenberg University Mainz, Germany and Karlsruhe Institute of Technology (KIT), Germany June 4 th 2015 Quantum Metamaterials Workshop QMM Spetses J. Braumüller, J. Cramer, S. Schlör, H. Rotzinger, L. Radtke, A. Lukashenko, P. Yang, S. T. Skacel, S. Probst, M. Marthaler, L. Guo, A. V. Ustinov Resonator Qubit fast-flux bias 300 µm

Multiphoton dressing of an anharmonic superconducting many ... · Neeley Nat. Phys. 4 (2008) FedorovNat. 481 (2011) Bruß PRL 88 (2002) Cerf PRL 88 (2002) Paraoanu JLTP 175 (2014)

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Multiphoton dressing of an anharmonic

    superconducting many-level quantum circuit

    Martin P. Weides

    Johannes Gutenberg University Mainz, Germany

    and Karlsruhe Institute of Technology (KIT), Germany

    June 4th 2015

    Quantum Metamaterials Workshop QMM Spetses

    J. Braumüller, J. Cramer, S. Schlör, H. Rotzinger, L. Radtke, A. Lukashenko, P. Yang,

    S. T. Skacel, S. Probst, M. Marthaler, L. Guo, A. V. Ustinov

    Resonator

    Qubit

    fast-flux bias

    300 µm

  • Martin Weides, QMM Spetses 2015 2

    � Introduction

    � Anharmonic many-level quantum circuit

    � Power spectroscopy

    � Dispersive resonator shift

    � Rabi sideband transition of multi-photon coupled levels

    � QMM � scale up! Concentric transmon qubits

    � 2d qubits with 10us coherence

    � Prospect

    � QuantumMagnonics: qubits & spinwaves

  • Martin Weides, QMM Spetses 2015 3

    Capacitively shunted Josephson Junction

    � Anharmonic oscillator

    Non-linear LC oscillator

    Magnetic flux Φ changes LJ(φ)

    Φ

    Transmon qubit

    Two lowest levels � Bloch sphere

  • Martin Weides, QMM Spetses 2015 4

    Quantum lab

    � Sputter tool (Al, Nb, NbN)

    � Tunnel junction shadow evaporation (Al-AlOx-Al)

    � Lithography and etching

    � Large volume He3/He4 dilution refrigerator

    �RF (18) and DC (24) wires, filters, amplifiers

    �9 samples (6 qubits, 3 resonators)

    � Time-domain setups (2), microwave spectroscopy

    � Software (simulation, measurement)

    200 nm

    10 µm

  • Martin Weides, QMM Spetses 2015 5

    � Introduction

    � Anharmonic many-level quantum circuit

    � Power spectroscopy

    � Dispersive resonator shift

    � Rabi sideband transition of multi-photon coupled levels

    � QMM � scale up! Concentric transmon qubits

    � 2d qubits with 10us coherence

    � Prospect

    � QuantumMagnonics: qubits & spinwaves

  • Martin Weides, QMM Spetses 2015 6

    Anharmonic many-level quantum circuit

    consideration of higher quantum levels:

    transmon qubit:

    weak anharmonicity

    Neeley Nat. Phys. 4 (2008)

    Fedorov Nat. 481 (2011)Bruß PRL 88 (2002)

    Cerf PRL 88 (2002)

    Paraoanu JLTP 175 (2014)

    enhanced security of key

    distribution in quantum

    cryptography

    quantum

    simulation

    efficient & robust

    quantum gates, qudit

    JB et al., PRB 91 (2015)

  • Martin Weides, QMM Spetses 2015 7

    Experiment

    � microstrip geometry

    � overlap Josephson junction

    � transmon regime: �� ≫ �� ⇒ ��~0.05

    � spectroscopic measurements

    � VNA readout tone

    � microwave drive/probe tone

    TL

    Blais PRA 69 (2004)

    Koch PRA 76 (2007)

    Sandberg APL 102 (2013)

  • Martin Weides, QMM Spetses 2015 8

    Qubit spectroscopy40cm

  • Martin Weides, QMM Spetses 2015 9

    Power spectroscopy – multiphoton transitions

    � five bound states in Josephson potential

    � dispersive shift scales with excitation

    number ‹n›

    Braumüller et al., PRB 2015

  • Martin Weides, QMM Spetses 2015 10

    Dispersive shift of higher levels

    � Rotating-wave Hamiltonian

    � g01 = 115 MHz, ∆≈1 GHz

    Braumüller et al., PRB 2015

    Qubit shift Resonator shift by qubit levels

    |S21(ω

    )|2

  • Martin Weides, QMM Spetses 2015 11

    Power spectroscopy – simulation

    measurement

    simulation

    Braumüller et al., PRB 2015

  • Martin Weides, QMM Spetses 2015 12

    Multiphoton dressing � − � , Rabi sidebands

    � 0 , 2 degenerate in rotating

    frame � dressing

    � Probing of level structure (in

    rotating frame) with weak

    probe tone

    measurement simulation

    Braumüller et al., PRB 2015

    Sweep drive power Pdµω

    & probe frequency ωpµω

  • Martin Weides, QMM Spetses 2015 13

    Multiphoton dressing – pumping the |�⟩-level

    Dynamical coupling of levels by probe tone

    � Autler-Townes like avoided crossing

    measurement

    simulation

    Braumüller et al., PRB 2015

    Sweep drive ωdµω

    & probe ωpµω

  • Martin Weides, QMM Spetses 2015 14

    Multiphoton dressing – pumping the |�⟩-level

    measurement

    simulation

    Braumüller et al., PRB 2015

  • Martin Weides, QMM Spetses 2015 15

    � Introduction

    � Anharmonic many-level quantum circuit

    � Power spectroscopy

    � Dispersive resonator shift

    � Rabi sideband transition of multi-photon coupled levels

    � QMM � scale up! Concentric transmon qubits

    � 2d qubits with 10us coherence

    � Prospect

    � QuantumMagnonics: qubits & spinwaves

  • Martin Weides, QMM Spetses 2015 16

    Adding complexity12 qubits on-chip with local detuning

    150 µm

    Resonator

    Flux bias I

    Qubit

    Transmission line

    MA thesis J. Cramer (2015)

    Φ

    Coherence

    T1=0.53 µs; T2 = 0.4 µs

    5 mm

  • Martin Weides, QMM Spetses 2015 17

    Novel design: Tunable concentric transmons

    Devoret, Schoelkopf Science (2013)

    � Long coherence: scalable quantum computation, error correction

    � High experimental flexibility by fast flux tuning

  • Martin Weides, QMM Spetses 2015 18

    Novel design: Tunable concentric transmon qubit (2d)

    Coherence �� limited by energy relaxation ��

    � Minimize surface/interface loss (TLS) � microstrip design

    � Reduce radiative decay , i.e. qubit‘s dipole moment

    � All Al-AlOx-Al technology

    � Qubit: electron-beam

    � All other: optical, lift-off

    � Fast (ns) tunability

    � Side-selective

    inductive ���-coupling

    Resonator

    Qubit

    fast-flux bias

    300 µm

  • Martin Weides, QMM Spetses 2015 19

    Concentric transmon qubit – low power spectroscopy

    ���/2�

    1

    2���/2�

    excitation tone

    dis

    pe

    rsiv

    e r

    eso

    na

    tor

    shif

    t

  • Martin Weides, QMM Spetses 2015 20

    Concentric transmon qubit – high power spectroscopy

    ���/2�

    1

    2���/2�

    exc

    ita

    tio

    n t

    on

    e

    dis

    pe

    rsiv

    e r

    eso

    na

    tor

    shif

    t

    1

    3���/2�

    1

    4���/2�

  • Martin Weides, QMM Spetses 2015 21

    Concentric transmon qubit – flux spectroscopy

    �� = 116MHz, �� = 69GHz, ��, = 138nA

    �� ��⁄ = 595

    Φ

    ~ Idc

  • Martin Weides, QMM Spetses 2015 22

    Pulsed (time-domain) measurements

    Pulsed dispersive qubit readout

    � resonator only driven during readout

    to avoid state collapse (quantum

    measurement)

    Time-resolved qubit manipulation

    � heterodyne single-sideband mixing

    � quantum state tomography

    to sample from sample

  • Martin Weides, QMM Spetses 2015 23

    Pulsed measurements – Rabi oscillations

    arg

    �11

    (a

    .u.) |0〉

    |1〉

    � (��)

  • Martin Weides, QMM Spetses 2015 24

    Pulsed measurements – Coherence

    P1

    P0

    0 10 20 30

    t [µs]

    T1=9.1 µs

    P1

    P0

    0 10 20 30

    t [µs]

    echo T2=10.2 µs

  • Martin Weides, QMM Spetses 2015 25

    Pulsed measurements – fast z (energy splitting)-control

  • Martin Weides, QMM Spetses 2015 26

    Pulsed measurements – Tomography, small detuning

    decay from

    1 2⁄ �|0〉 � |1〉� (x-axis)

    � Long coherence qubits

    �Measurement techniques (spectroscopic, pulsed)

    �Quantum Simulation (Spin-Bose)

    �Quantum Metamaterials (N Qubits- 1 Resonator)

  • Martin Weides, QMM Spetses 2015 27

    � Introduction

    � Anharmonic many-level quantum circuit

    � Power spectroscopy

    � Dispersive resonator shift

    � Rabi sideband transition of multi-photon coupled levels

    � QMM � scale up! Concentric transmon qubits

    � 2d qubits with 10us coherence

    � Prospect

    � QuantumMagnonics: qubits & spinwaves

  • Martin Weides, QMM Spetses 2015 28

    Magnon: quantized spin wave excitation

    Future information technology

    (e.g. spin-torque oscillator, spin-wave propagation control for logic)

    Strong magnon damping: magnon/phonon/electron scattering

    Grand challenge:

    To understand physics, single magnon information needed!

    Slavin et al., Nat. Nanotech. ´09 Vogt et al., Nat. Commun. ´14

    Attenuation length ~10 umLinewidth Δf > 1 MHz

    Magnonics: spin waves in nanostructures

  • Martin Weides, QMM Spetses 2015 29

    ‘Classical measurement’:

    � Inelastic scattering (neutron, photon, electron)

    � Ferromagnetic resonance

    Drawbacks:

    � Weakly (not coherent) coupled

    � Large flux, small signal (statistics)

    � Thermally excited population (T > 4 K)

    Difficult to access magnon ground state!

    Status quo

    magnonscattered

    incident

  • Martin Weides, QMM Spetses 2015 30

    � Quantum ground state (T=10 mK)

    � Ultra-low power spectroscopy, coherent coupling

    � How to achieve?

    Extend magnon to artificial spin!

    Access magnon lifetime and coherence via coherent coupling

    How to probe a single magnon?

  • Martin Weides, QMM Spetses 2015 31

    Strong coupling:

    � Qubit < 1 MHz

    � Magnon Ni80

    Fe20

    < 50 MHz, Y3Fe

    5O12

    < 5 MHz

    Coupling rate g (N number of spins in qubit mode volume V0)

    > 100 MHz (strong coupling)

    Coherent coupling requirement

  • Martin Weides, QMM Spetses 2015 32

    KIT-Team

    BA

    Cem Kücük

    Marcel Langer

    Tomislav Piskor

    Alexander Stehli

    Patricia Stehle

    MA

    Joel Cramer

    Lukas Grünhaupt

    Marco Pfirrmann

    Steffen Schlör

    Andre Schneider

    PhD

    Jochen Braumüller

    Saskia Meißner

    Sebastian Probst

    Ping Yang

    Technician

    Lucas Radtke

    Scientists

    Michael Marthaler

    Hannes Rotzinger

    Sasha Lukashenko

    Alexey Ustinov

    NIST

    Farnaz Farhoodi

    Jeffrey Kline

    Martin Sandberg

    Michael Vissers

    David Pappas

  • Martin Weides, QMM Spetses 2015 33

    Thank you for your attention