5
Volume 36B. number 6 PHYSICS LETTERS 18 October 1971 MULTIPARTICLE PRODUCTION FROM e + - e INTERACTIONS AT HIGH B. BARTOLI, F. FELICETTI, H. OGREN and V. SILVESTRINI Laboratori Nazionali di Frascati del CNEN, Frascati, Italy G. MARINI, A. NIGRO and N. SPINELLI Istituto di Fisica dell'Universith, Sezione di Roma dell'INFN, Rome, Italy and F. VANOLI Istituto di Fisica Superiore dell'Universith, Sezione di Napoli dell INFN, Naples, Italy Received 20 August 1971 ENERGY Measurements of multiple particle production at ADONE, the Frascati ete - storage ring, have been carried out at C. M. energies 1.4 GeV to 2.4 GeV. The hadronic nature of the observed particles is discussed and a lower limit of 30 nbarn set for the total multiparticle cross section. We present the results of an experiment car- ried out at ADONE, the Frascati 2 × 1.5 GeV e+e - storage ring. This experiment was de- signed to perform an initial exploration of the features of e+e - interactions. Energies between 1.4 and 2.4 GeV in the center of mass system were explored in this experiment. A detailed description of the experimental apparatus (see fig. 1) has been given previously 4 ¢~ B,am axis ! ~"~ "'; sco, l TELE$C~.3 ~"~r'P~ TELE$COP~ 4 Fig. 1. Section of ~,',~ experimental apparatus orthogonal to beam axis. The 0 .'ceptance is between 60 ° and 120 ° (z-axis beinl, a!ong the beam direction). 598 [I]. The method used for analysis, and some preliminary results have already been presented elsewhere [2]. Let us recall here that the apparatus consists of four identical telescopes surrounding one ex- perimental section of ADONE and covering ~0.35 of the total solid angle as seen from the center of the apparatus*. Each telescope consists of absorbers, scintillation counters, and magneto- strictive spark chambers, which allow us to extract the following information concerning the detected particles: a) pulse height analysis in a lead-scintillator sandwich to identify electrons by their electro- magnetic showers; b) azimuthal direction, (p, of the detected particle (z-axis along the beam direction). When more than two particles enter the same telescope only that closest to the magnetostrictive pick-up is recorded. We also record the time of each event with respect to the beam-beam impact (At). 22 cm of Fe absorber cover the top two telescopes and above the absorber two large scintillation coun- ters (CR1, CR2), in anticoincidence with our trigger, drastically reduce the flux of detected * Actually the source has a finite longitudinal length [1] which is comparable with the linear dimension of the counters. This reduces the effective solid angle of the apparatus.

Multiparticle production from e+e− interactions at high energy

Embed Size (px)

Citation preview

Page 1: Multiparticle production from e+e− interactions at high energy

Volume 36B. number 6 P H Y S I C S L E T T E R S 18 October 1971

M U L T I P A R T I C L E P R O D U C T I O N F R O M e + - e I N T E R A C T I O N S A T H I G H

B. BARTOLI , F. F E L I C E T T I , H. OGREN and V. SILVESTRINI

Laboratori Nazionali di Frascat i del CNEN, Frascat i , Italy

G. MARINI, A. NIGRO and N. S P I N E L L I Ist i tuto di Fis ica del l 'Univers i th , Sezione di Roma dell ' INFN, Rome, Italy

and

F. VANOLI Ist i tuto di Fisica Superiore del l 'Universi th ,

Sezione di Napoli dell INFN, Naples, Italy

Received 20 August 1971

E N E R G Y

Measurements of multiple part icle production at ADONE, the Frascat i e t e - s torage ring, have been carr ied out at C. M. energies 1.4 GeV to 2.4 GeV. The hadronic nature of the observed par t ic les is d iscussed and a lower limit of 30 nbarn set for the total multiparticle c ross section.

We p r e s e n t the r e s u l t s of an e x p e r i m e n t c a r - r i e d out at ADONE, the F r a s c a t i 2 × 1.5 GeV e+e - s t o r a g e r ing . Th i s e x p e r i m e n t was de - s i g n e d to p e r f o r m an in i t ia l e x p l o r a t i o n of the f e a t u r e s of e+e - i n t e r a c t i o n s . E n e r g i e s b e t w e e n 1.4 and 2.4 GeV in the c e n t e r of m a s s s y s t e m w e r e e x p l o r e d in t h i s e x p e r i m e n t .

A d e t a i l e d d e s c r i p t i o n of the e x p e r i m e n t a l a p p a r a t u s ( see fig. 1) has b e e n g iven p r e v i o u s l y

4

¢ ~ B , a m ax is ! ~"~ "'; sco , l

T E L E $ C ~ . 3 ~ " ~ r ' P ~ TELE$COP~ 4

Fig. 1. Section of ~,',~ experimental apparatus orthogonal to beam axis. The 0 . 'ceptance is between 60 ° and 120 °

(z-axis beinl, a!ong the beam direction).

598

[I] . The m e t h o d u s e d fo r a n a l y s i s , and s o m e p r e l i m i n a r y r e s u l t s have a l r e a d y b e e n p r e s e n t e d e l s e w h e r e [2].

Le t us r e c a l l h e r e tha t the a p p a r a t u s c o n s i s t s of four i den t i ca l t e l e s c o p e s s u r r o u n d i n g one ex - p e r i m e n t a l s e c t i o n of ADONE and c o v e r i n g ~0 .35 of the to ta l so l id ang le as s e e n f r o m the c e n t e r of the a p p a r a t u s * . Each t e l e s c o p e c o n s i s t s of a b s o r b e r s , s c i n t i l l a t i o n c o u n t e r s , and m a g n e t o - s t r i c t i v e s p a r k c h a m b e r s , which a l low us to e x t r a c t the fo l lowing i n f o r m a t i o n c o n c e r n i n g the d e t e c t e d p a r t i c l e s :

a) p u l s e he igh t a n a l y s i s in a l e a d - s c i n t i l l a t o r s a n d w i c h to iden t i fy e l e c t r o n s by t h e i r e l e c t r o - m a g n e t i c s h o w e r s ;

b) a z i m u t h a l d i r e c t i o n , (p, of the d e t e c t e d p a r t i c l e ( z - a x i s a long the b e a m d i r e c t i o n ) . When m o r e than two p a r t i c l e s e n t e r the s a m e t e l e s c o p e only that c l o s e s t to the m a g n e t o s t r i c t i v e p i c k - u p is r e c o r d e d .

We a l so r e c o r d the t i m e of e a c h even t with r e s p e c t to the b e a m - b e a m i m p a c t (At). 22 cm of Fe a b s o r b e r c o v e r the top two t e l e s c o p e s and above the a b s o r b e r two l a r g e s c i n t i l l a t i o n coun- t e r s (CR1, CR2), in a n t i c o i n c i d e n c e with our t r i g g e r , d r a s t i c a l l y r e d u c e the flux of d e t e c t e d

* Actually the source has a finite longitudinal length [1] which is comparable with the linear dimension of the counters. This reduces the effective solid angle of the apparatus.

Page 2: Multiparticle production from e+e− interactions at high energy

Volume 36B, number 6 PHYSICS LETTERS 18 October 1971

cosmic rays. In a second stage of the experiment,

a second absorber (1.5 cm of iron, 5 cm lead) and two additional counters CR 3 and CR 4 were placed above CR I and CR 2. CR 3 and CR 4 were then put in anticoincidence with our tr igger, while CR I and CR 2 were simply recorded in as- sociation with each event. These marked events then give us information on the penetration of the detected par t ic les *

The reaction we wish to d iscuss here is

+ a + b + e + e- ~ + + a n y t h i n g (1)

w h e r e a + and b ± a r e c h a r g e d p a r t i c l e s . The m a s t e r c o i n c i d e n c e w h i c h t r i g g e r s the

a p p a r a t u s r e q u i r e s the p r e s e n c e of at l e a s t two c h a r g e d p a r t i c l e s (a + and b ±) d e t e c t e d in two d i f - f e r e n t t e l e s c o p e s * * . If, in a d d i t i o n to a + and b ±, o t h e r p a r t i c l e s e n t e r o t h e r t e l e s c o p e s , they a r e a l s o r e c o r d e d . If t he a d d i t i o n a l p a r t i c l e s a r e n e u t r a l s they wi l l g ive a p u l s e in the s c i n t i l l a t i o n s a n d w i c h (C+D) but not in the i n i t i a l c o u n t e r A.

The s e l e c t i o n of e v e n s f r o m r e a c t i o n (1) (non- c o p l a n a r e v e n t s ) i s m a d e wi th the fo l lowing c r i t e r i a :

a) m o r e t han two c h a r g e d p a r t i c l e s a r e d e t e c t e d ;

b) two c h a r g e d p a r t i c l e s a r e o b s e r v e d and t hey h a v e a n o n - c o p l a n a r i t y a n g l e , I A ~ I , l a r g e r t h e n 13 ° .

+ - a±b ± D e m o n s t r a t i o n o f the e x i s t e n c e o f e e -~ + any th ing . In fig. 2(a) we show t he d i s t r i b u t i o n of e v e n t s f u l f i l l i n g the a b o v e c r i t e r i a , a s a func - t i on of AL F r o m t h i s d i s t r i b u t i o n we can d e f i n e an i n t e r v a l i n - t i m e wi th the b e a m - b e a m i m p a c t . In fig. 2(b) we show the d i s t r i b u t i o n of non - c o p l a n a r i n - t i m e e v e n t s a s a f u n c t i o n of the d i s - t a n c e , L, b e t w e e n t he p a r t i c l e t r a j e c t o r y and t he e+e - b e a m ax i s . We s e e t h a t the i n - t i m e , n o n - e o p l a n a r e v e n t s , e s s e n t i a l l y c o m e f r o m b e a m i n t e r a c t i o n s . If we s e l e c t on ly t h o s e e v e n t s fo r w h i c h ILI ~< 30 m m we o b t a i n a t o t a l of 1033 e v e n t s .

The c o s m i c r a y b a c k g r o u n d , CR, v a r i e s fo r t he d i f f e r e n t e n e r g i e s and t he d i f f e r e n t d e t e c t e d c o n f i g u r a t i o n s (2 p a r t i c l e s d e t e c t e d , 3 p a r t i c l e s d e t e c t e d , t e c . ) f r o m 0% to 30%, the a v e r a g e c o n - t a m i n a t i o n being 16%.

• The minimum kinetic energy of a peon to be marked was ~ 350 MeV, while peons with more than ~ 500 MeV were vetoed by CR 3 and CR4, unless they

were absorbed by nuclear interaction (actually the fraction of particles absorbed is quite large: e.g. ~5~o of 400 MeV peons). In order to have a homo- geneous set of data the marked events have not been included in the total of events given in table i.

• * If a ~ and b i are peons their minimum energy to bc detected is ~ 75 MeV.

150

~ i n n i 40 50 60 70

~. d t ~channe ls~

t O 0

i i - 5 0 0 +50

C (m m) Cosmic

I r a y s Bhabha

50

" / y t,m 1 . . . .

e v e n t s 5 0

J UTL t a i l - ,~%

50 fO0 Pu lse h e i g h t f~channe ls )

2

g

e ÷ e ~ e + e-

e" e ~ a * + D*+ a n y t h i n g

%

! T

- 2 0

- f O ~ ' ~ ~ . .

. O "

I I U I n ~ I " ~ r 6 8 fO " 2

P r i m a r y e l e c t r o n e n e r g y ~ G e V j E i r

~. 30 _ ~] c 2 r r ' , 2 r~ ° •

'~ ', MC~,IT"

-,8o ~, -doo t ~ " ' doo' ' ,~o o @ C d e g r e e s )

Fig. 2. Analysis of non-coplanar evens (see text). (a) At distribution of events from the beam region. (b) L distribution of in-time events compared with the out-of-time (C. R.) normalized distribution (arrows indicate source definition. (c) pulse height distribution compared with C.R. and Bhabha elec- tron spectra. (d) the fraction of "marked" events compared to "marked" Bhabha events. (e) h(P dis- tribution compared with a phase space Montecarlo calculation for two possible peon final states.

To determine the amount of e -gas background, we have collected data with one beam and with two separated beams stored in the ring***. The average contamination over the full sample was 26~'~, although it var ies considerably with each detected configuration and increases with C. M. energy. A final correction of 18cJ~ was applied to the two charged tracks events due to the non- coplanarity cut [Atp[ ~< 13 ° . This correction was determined by a smooth interpolation of the experimental A(p distribution between -13 ° and +13 ° which, as will be seen, is consistent with a statist ical distribution determined by a Monte- carlo program.

After subtraction of CR and e-gas contamina- tion and after the A(p cut correction, a total of

*** The normalization of these e-gas background runs was obtained by monitoring single bremsstrahlung production on the residua| gas [2].

599

Page 3: Multiparticle production from e+e− interactions at high energy

Volume 36B, n u m b e r 6 P H Y S I C S L E T T E R S 18 Oc tobe r 1971

Tab le 1 L i s t of n o n - c o p l a n a r e v e n t s a c c o r d i n g to the i r de tec ted con f igu ra t i ons , a f t e r all the c o r r e c t i o n s were appl ied .

The c rude n u m b e r of e v e n t s de t ec t ed a r e g iven in p a r e n O ' e s i s (no. 4 c h a r g e d e v e n t s were de tec ted) .

C . M .

energy" E +E_ (~ev)

(I)

1.4

1.5

1.6

1.65

1.7

1.75

1.8

1.85

1.9

2.0

2.4

t o t a l s

Integrated Corrected luminosity Bhabha

(cm -2) events

(2)

l 1 9 x l O 32

231 720 ~ 34

67 166 = 17

76 170 ~: 17

130 261 + 21

83 152 • 16

115 189 ~ 18

514 770 :e 36

122 166 ~= 17

257 293 = 25

751 453 ± 23

!2465 * 1032 3812 :~ 83

N o n

Even t s with 2 cha rged p a r t i c l e s de tec ted

(3) (4)

(55) 472 ¢ 33 40.6 ± 9.4

(99) 90.7 ± 12.1

(32) 26.5 : 7.0

(44) 28.2 i 8.6

(59) 42.9 t 9.7

(46) 33.1 ± 8.5

(68) 50.1 ± 10.5

(109) 84.9 + 16.4

(45) 24.5 ~ 8.8

(145) 90.4 ± 17.9

(140) 22,6 -- 24,6

(842) 534.5 ± 43.7

c o p 1 a n a r e v e n t s

Even t s with Even t s with Even t s with Even t s with 2 cha rged 2 cha rged 3 cha rged 3 cha rged +1 neu t r a l +2 n e u t r a l s p a r t i c l e s +1 neu t r a l

de t ec t ed d e ~ c t e d de t ec t ed de t ec t ed (5) (6) (6) (7)

(8) (0) (6) (1) 6 . 4 ± 3 . 5 0 . 1 = 1 . 1 5 . 4 ± 2 . 5 0 , 6 ± 1 . 1

(15) (1) (12) (1) 11.1 ± 4 . 8 1.0 ~ 1 . 2 1 1 . 1 ± 3 . 8 0 . 6 ± 1 , 5

(4) (0) (6) (0) 2 . 8 ± 2 . 4 0.0 • 1.1 5.3 ¢ 2 . 5 0,0 ±1 .1

(7) (2) (2) (2) 6 . 4 ± 3 . 1 2.0 ± 1.5 1.7 • 1.5 2 . 0 ± 1 . 5

(7) (1) (1) (0) 4 . 1 ± 3 . 3 0 . 3 ± 1 . 1 0 . 0 ± 1 . 2 0 . 0 ± 1 . 3

(4) (0) (4) (0) 1,8 i 2.8 0.0 ± 1.1 3 , 4 ± 2 . 1 0.0 ~ 1 . 2

(4) (0) (2) (0) 1.0 ± 2,6 -0 .3 ± 1.1 2,0 ± 1.5 -0 .3 t 1,3

(23) (2) (10) (2) 25.9 ~6 .5 -2 .0 ± 1.7 1 0 , 6 ± 4 , 2 2 . 7 ± 2 . 3

(3) (2) (3) (0) 2.1 ~ 2 . 3 2 . 0 = 1 . 5 3 . 3 ± 2 . 0 0.0 ~ 1 . 2

(7) (0) (5) (0) 5.8 = 3 . 7 0.0 ± 1.1 5 , 8 ± 2 . 7 -0 .7 ~ 1 . 5

(26) (3) (13) (2) 2 1 . 9 ± 6 . 3 3 . 9 ± 2 . 5 12.7 =4 .1 1 . 7 ± 2 . 0

(108) (ii) (64) 89.3 • 13.6 6.9 ± 4.0 61.3 ± 9.1

Tota l n o n - c o p l a n a r

e v e n t s

(8)

(70) 53.0 ± 10.4

(128) 114.5 + 13.7

(42) 34.6 + 7.9

(57) 40.3 ¢ 9.5

(65) 47.3 + 10.5

(54) 38.3 + 9.3

(74) 52.5 + 11.0

(146) 122.1 + 18.6

(53) 31.9 ~ 9.5

(157) 101.3 ± 18.5

(184) 62.8 :L 25.9

(8) (1033) 6.6 ± 5.0 698,6 ± 47.1

698 e v e n t s r e m a i n . T h e s e e v e n t s a r e l i s t e d in t a b l e 1 f o r e a c h C . M . e n e r g y a c c o r d i n g to t h e i r d i f f e r e n t d e t e c t e d c o n f i g u r a t i o n s . In t h e s a m e t a b l e we g i v e t h e c o r r e c t e d n u m b e r of B h a b h a e v e n t s * c o l l e c t e d a t t h e s a m e t i m e u n d e r t h e s a m e c o n d i t i o n s . T h e i n t e g r a t e d l u m i n o s i t i e s in c o l u m n (2) w e r e d e d u c e d f r o m t h e s e B h a b h a e v e n t s in o r d e r to m i n i m i z e p r o b l e m s d u e to u n c e r t a i n t i e s in t h e s p a r k c h a m b e r s e f f i c i e n c i e s ( the c h a m b e r e f f i c i e n c i e s w e r e m e a s u r e d to be b e t w e e n 0 .85 a n d 0 .95 ) .

Nature of lhe observed particles. F i g . 2(c) s h o w s t h e p u l s e h e i g h t s p e c t r u m of p a r t i c l e s in t h e s h o w e r c o u n t e r s (C+D). T h e d i s t r i b u t i o n of t h e d e t e c t e d n o n - c o p l a n a r e v e n t s i s c o m p a r e d w i t h t h e s p e c t r u m of m i n i m u m i o n i z i n g p a r t i c l e s (C. R. ) a n d h i g h e n e r g y e l e c t r o n s f r o m B h a b h a

* See ref . [lJ for the c o r r e c t i o n s appl ied to the Bhabha even t s .

s c a t t e r i n g . T h e s p e c t r u m of n o n - c o p l a n a r e v e n t s i s s i m i l a r to t h e C. R. s p e c t r u m , a l t h o u g h i t s h o w s n o n n e g l i g i b l e t a i l t o w a r d s t h e l a r g e r p u l s e h e i g h t s . H o w e v e r t h e r e i s no c o r r e l a t i o n b e t w e e n l a r g e p u l s e h e i g h t s in t h e d i f f e r e n t telescopes f o r e a c h e v e n t . If t h e d e t e c t e d p a r t i c l e s w e r e p i o n s , t h i s t a i l i s w h a t o n e w o u l d e x p e c t d u e to t h e f o l - l o w i n g effects: t h e p r o b a b i l i t y to h a v e m o r e t h a n o n e p a r t i c l e in t h e s a m e t e l e s c o p e , e s t i m a t e d to b e 12% f r o m t h e f r a c t i o n o f e v e n t s w i t h m o r e t h a n two d e t e c t e d p a r t i c l e s ; n u c l e a r i n t e r a c t i o n s in t h e s a n d w i c h c o u n t e r s ; t h e p o s s i b i l i t y t h a t t h e d e t e c t e d p a r t i c l e i s a s l o w p i o n . W e c o n c l u d e t h a t t h e b u l k o f t h e d e t e c t e d p a r t i c l e s a r e no t h i g h e n e r g y e l e c - t r o n s , a n d t h a t t h e p u l s e h e i g h t s p e c t r u m i s c o m - p a t i b l e w i t h a l l o f t h e m b e i n g p i o n s .

In f ig . 2(d) we h a v e p l o t t e d a s a f u n c t i o n of t h e i n c i d e n t e l e c t r o n e n e r g y (E~:) t h e f r a c t i o n o f e v e n t s c o n t a i n i n g a p a r t i c l e w h i c h c r o s s e s t h e 22 c m of F e a b s o r b e r a n d s t o p s b e t w e e n C R 1 , C R 2

600

Page 4: Multiparticle production from e+e− interactions at high energy

Volume 36B, number 6 PHYSICS LETTERS 18 October 1971

and CR3, CR 4 (marked events). While the num- ber of marked Bhabha events decreases to zero at low energies, the number of marked non- coplanar events remains constant (within the large errors) at 16%. We can therefore exclude the possibility that these non-coplanar events are due to low energy (~< 500 MeV) electrons. Further, the fraction of marked non-coplanar events is consistent with a major part of the detected particles being pions. (We have calcu- lated that 16% of ~ 400 MeV pions would be marked).

Additional information on the nature of the non-coplanar events can be obtained from the A(p (non-coplanarity) distribution*. This distr i- bution is shown in fig. 2(e). For reference it is compared with the statitical distribution expected for e+e - - r,+~-r,+~ - and e+e - ~ ~+~;-~o~o (phase space Montecarlo calculation). We can conclude that the detected non-coplanar events have a A(p distribution compatible with some mixture of final states with a statistical angular distribution. They do not contain, for ]A(p I >I 13 °, a significant contribution from the reaction e+e - -- e+e-e+e - (the only plausible reaction which could give low energy non-coplanar electrons) since the distribu- tion for this reaction would be peaked around

~,~ : 0 [31. Energy dependence of the yield. In fig. 3 we

show the e n e r g y d e p e n d e n c e of t he r a t i o of n o n - c o p l a n a r e v e n t s to t he i n t e g r a t e d l u m i n o s i t y .~ = f . ~ (t)dt a t e a c h C. M. e n e r g y . T he d a t a p o i n t s of fig. 3 d i v i d e d by the e f f i c i e n c y of d e t e c - t ion , ¢ , of the a p p a r a t u s d i r e c t l y p r o v i d e t he c r o s s - s e c t i o n s .

Absolute z,alues of the cross-sections. T h e e v a l u a t i o n of c r o s s - s e c t i o n s i n v o l v e s a d e t a i l e d c a l c u l a t i o n of the e f f i c i e n c y of d e t e c t i o n of o u r a p p a r a t u s wh ich , of c o u r s e , d e p e n d s on the s t a t e s a c t u a l l y p r o d u c e d . T h e y i e l d (n D) of e v e n t s in a g i v e n d e t e c t e d c o n f i g u r a t i o n D (D cou ld be , fo r e x a m p l e , t h r e e c h a r g e d t r a c k s (3c) + a n e u t r a l ( In) d e t e c t e d in o u r a p p a r a t u s ) i s g i v e n by

n D =-[2"~¢A(xA

.t2 i s t he i n t e g r a t e d l u m i n o s i t y ; ~A is t he c r o s s - s e c t i o n to p r o d u c e a g i v e n c h a n n e l A ( for e x a m p l e ,

* ~ p is the dif ference of the angles between the az i - muthal project ion of the t racks and is zero when the two par t ic les go in opposite d i rec t ions . The sign of Acp is specular ly defined for left and right te lescopes . If one par t ic le goes in a top telescope the event will have a posit ive Aq9 if the other par t ic le l ies in the half plane {defined by the f i r s t track) containing the other top telescope. Consistently, if both par t ic les go in the bottom telescope A~p is posi t ive.

I033CNON COPLANAR E V E N T S ) / ~ p .

Ccm ~)

~ x t t ~e

2 x t • ~o

• ,~ , , z ~ , ----Y'---.---':'--? "~ '_- .~_-r_~.~ . . . . ~ " - " ~ ~"-~ ----'----:---_

714 ! t i ! i i l ,6 ,,s ~'o 212 2 C M EN~RSY E, + E. ( ' ~ e V )

Fig. 3. Energy dependence of the ratio of the number of non-coplanar events to the integrated luminosity .C. The curves are the result of a phase space M.C. cal- culation of this ratio for several possible channels using a constant cross-section for each channel of

30 nbarn.

7 A =(~(e+e - - - ,-r ~ ~ n ) ) ; ~ " - + - and EA is the efficiency of the apparatus to detect the configuration D from reaction A.

Since we have six different detected configura- tions of evens (2c, 2c+In, 2c+2n, 3c, 3c+n. 4c) in principle, apart from the statistical signifi- cance of some of our experimental numbers, it would be possible to extract from the data the cross-sect ions for six different channels once the efficiencies have been calculated. However. ap r io r i , there is no reason to res t r ic t the choice of final states to 6 or less channels and moreover the actual dynamics of the processes a r e unknown. A,

As an e x a m p l e , we h a v e c a l c u l a t e d the CD s u s i n g a s t a t i s t i c a l m o d e l of p ion p r o d u c t i o n ( i n v a r i a n t p h a s e s p a c e M o n t e c a r l o c a l c u l a t i o n ) . We o b t a i n e f f i c i e n c i e s ( see t a b l e 2) r a n g i n g f r o m -~: 1% to ~10% d e p e n d i n g on the C. M. e n e r g y , the

p r o d u c e d c h a n n e l , and the d e t e c t e d c o n f i g u r a t i o n . T h i s m e a n s , c l e a r l y , t h a t to o b t a i n c r o s s - s e c t i o n s we m u s t m u l t i p l y the o b s e r v e d n u m b e r s of e v e n t s by a c a l c u l a t e d , m o d e l d e p e n d e n t , n u m b e r r a n g i n g f r o m 10 to m o r e t h a n 100 in the d i f f e r e n t c a s e s . The s m a l l v a l u e s of t h e s e e f f i c i e n c i e s r e s u l t m a i n l y f r o m the s m a l l s o l i d a n g l e s e e n by the a p p a r a t u s and the e n e r g y c u t s on the d e t e c t e d p a r t i c l e s . To i n c r e a s e the u n c e r t a i n t y , c o r r e c - t i o n s fo r n u c l e a r a b s o r b t i o n ( a l r e a d y i n c l u d e d in t he ~ ' s of t a b l e 2, a s s u m i n g the p a r t i c l e s a r e p ions ) , t u r n out to be of the o r d e r of 20% - 5 0 ~ d e p e n d i n g on the e n e r g y and c h a n n e l . F o r a l l of

601

Page 5: Multiparticle production from e+e− interactions at high energy

Table 2 Values of the efficiencies to detect a particular configu- ration from several possible produced states of pions,

assuming a statistical model. (Invariant phase space Montecarlo calculation)

Produced Efficiency for detect ion of

state E++E. 2c 2c+ln 2c+2n 3c 3c+ln 4c GeV % % % % % %

1.4 2.2 0.7 0.0 Ir+s- no 1.8 1.4 0.5 0.0

2.4 0.6 0.2 0.0

I?*-2.ir” 1.4 1.1 0.7 0.2 1.8 1.0 0.7 0.1 2.4 0.7 0.4 0.1

7r+s-3a” 1.4 0.5 0.4 0.2 1.8 0.6 0.5 0.2 2.4 0.6 0.3 0.2

1.4 0.1 0.2 0.1 ?l+71-4s” 1.8 0.2 0.4 0.2

2.4 0.2 0.3 0.2

1.4 8.5 0.9 0.0 +-+- R7T7Tll 1.8 7.0 0.7 0.0

2.4 4.0 0.4 0.0

1.4 ?i’n-lit-no 1.8

4.0 1.5 0.0 0..4 0.1 0.0 4.1 1.4 0.0 0.4 0.1 0.0

2.4 3.5 1.0 0.0 0.2 0.1 0.0

1.4 lr+7r-7r+71-27r” 1.8

1.6 1.0 0.1 0.1 0.1 0.0 2.4 1.7 0.4 0.3 0.1 0.0

2.4 2.0 1.4 0.3 0.2 0.2 0.0

6.5 0.6 0.0 3n+ + 371

1.4 1.8 8.8 1.3 0.1 2.4 7.4 1.1 0.1

1.4 0.1 0.0 0.0 4i++ + 4r- 1.8

2.4 i

6.3 0.7 0.0 8.3 1.6 0.1

Volume 36B, number 6 PHYSICS LETTERS 18 October 1971

to safely extract a reasonably model independent cross section for multiparticle production.

Keeping in mind the above considerations, we have plotted in fig. 3 for several possible chan- nels (A) the value of NA/.&? (=EATA) calculated using the efficiencies obtained by the phase space MC program, and a constant cross-section (IJA) Of 30 nbarn.

Using these same efficiencies (eA), i.e. with the hypothesis that we are dealing with statistical production of pions, we can put a conservative lower limit on the value of the cross-section o(e+e- - a* + b* + anything) by assuming that only the channel with the largest efficiency con- tributes. This yields *

o(e+e- - a + b + anything) 2 30 nbarn

averaged over the energy range explored (1.4 - 2.4 GeV). This is in agreement with our prelimi- nary evaluation in the energy range 1.6 to 2.0 GeV.

* A slightly larger value for this limit could be set if one takes into consideration the separate configura- tions containing charged+neutrals.

References [l] B. Bartoli, F. Felicetti, G. Marini, A. Nigro,

H. Ogren, V. Silvestrini, N. Spinelli, F. Vanoli, Phys. Letters 36B (1971) 593.

]2] B. Bartoli, B. Coluzzi, F. Felicetti, G. Goggi, G. Marini, F. Massa, D. Scannicchio, V. STGestrini, F. Vanoli, Nuovo Cimento 70A (1970) 615.

[3] S. J. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. Letters 25 (1970) 9’72: and Cornell report

these reasons we feel that with the existing CLNS-152 (1971).

small solid angle apparatus it is very difficult

*****

602