48
Carbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material Study providing data for the automotive and insulation industry Authors: Martha Barth (nova-Institute), Michael Carus (nova-Institute) Download this study and further nova sustainability studies at: www.bio-based.eu/ecology MultiHemp

MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

Carbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material

Study providing data for the automotive and insulation industry

Authors: Martha Barth (nova-Institute), Michael Carus (nova-Institute)

Download this study and further nova sustainability studies at:

www.bio-based.eu/ecology

MultiHemp

Page 2: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

2 © 2015 nova-Institut GmbH, Version 2015-04

Table of contents

1 Introduction ............................................... 3 2Naturalfibresincomparison ..................... 5 2.1 Flax .................................................. 8 2.2Hemp ............................................... 9 2.3Jute ................................................ 10 2.4Kenaf .............................................. 12

3Carbonfootprint ...................................... 14 3.1Introductiontothecarbonfootprint methodology .................................. 14 3.2Goalandscopeforflax,hemp, juteandkenaf ................................ 15 3.3Retting ............................................ 18 3.4Carbonfootprintofflax .................. 20 3.5Carbonfootprintofhemp .............. 22 3.6Carbonfootprintofjute .................. 24 3.7Carbonfootprintofkenaf ............... 26

4Discussionofresults ............................... 28 4.1Comparisonofthecarbonfootprint offlax,hemp,juteandkenaf ......... 28 4.2Comparisonwithfossil basedfibres ................................... 29

5Discussiononfurthersustainability aspectsofnaturalbastfibres .................. 31

6Executivesummary ................................. 33

7Acknowledgement .................................. 34

8References .............................................. 35

9Appendix ................................................. 39

ImprintCarbonFootprintandSustainabilityofDifferentNaturalFibresforBiocompositesandInsulationMaterial-Studyprovidingdatafortheautomotiveandinsulationindustry.

Thisisaninterimreportofworkpackageseven“economical /environmental assessment”withintheEuropeanFP7project“Multipurposehempfor industrialbioproductsandbiomass”(project acronym: MultiHemp). The researchleadingto theseresultshasreceivedfundingfromtheEuropeanUnion,SeventhFrameworkProgramme (FP7/2007-2013) under grantagreementn°311849.

Project coordinator: Dr. Stefano Amaducci(UniversitàCattolicadelSacroCuore)

www.multihemp.eu

Publisher:MichaelCarus (Responsibleunderpresslegislation) nova-InstitutGmbH Industriestraße300, 50354Hürth,Germany [email protected]

Authors: MarthaBarth(nova-Institute), MichaelCarus(nova-Institute)

Cover picture (sources): WangYuFu,InstituteofBast FibreCrops,ChineseAcademy ofAgriculturalSciences2015; THERMONATURGmbH&Co.KG 2015;nova-InstitutGmbH2015

Layout: nova-InstitutGmbH

nova-Institut GmbHChemieparkKnapsackIndustriestraße30050354Hürth,Germany

T+49(0) 22 33 / 48 14-40F+49(0) 22 33 / 48 [email protected]

Page 3: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 3

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

1 Introduction

Natural fibresareanenvironmentally friendlyalternative to glass and mineral fibres (forexample: Haufe & Carus 2011, La Rosa etal. 2013). In the last twenty yearsmore andmorenaturalfibreshavestartedbeingusedinbiocomposites,mainlyfortheautomotivesectorandalsoasinsulationmaterial.

Intheyear2012,30,000tonnesofnaturalfibreswereusedintheEuropeanautomotiveindustry,

mainlyinso-calledcompressionmouldedparts,anincreasefromaround19,000tonnesofnaturalfibresin2005.AsshowninFigure1,in2012flaxhadamarketshareof50%ofthetotalvolumeof30,000tonnesofnaturalfibrecomposites.Kenaffibres,witha20%marketshare,arefollowedbyhempfibres,witha12%marketshare,whileothernaturalfibres,mainly jute,coir,sisalandabaca,accountfor18%(Carusetal.2014).

Figure 1: Use of natural fibres for composites in the European automotive industry 2012 (total volume 30,000 tonnes, without cotton and wood); “others” are mainly jute, coir, sisal and abaca (nova 2015, based on Carus et al. 2014)

-Institute.eu | 2015©

20%

12%

18%

50%

Flax

Kenaf

Hemp

Others (mainly Jute, Coir, Sisal and Abaca)

Use of Natural Fibres for Composites in the European Automotive Industry 2012

(without Cotton and Wood)

Total volume 30,000 tonnes

The total volume of the insulation marketin Europe is about 3.3 Million tonnes – theshareof flaxandhemp insulationmaterial is 10,000–15,000tonnes(ca.0.5%)(Carusetal.2014).

LifeCycleAssessmentsandcarbonfootprintsofnaturalfibrescannotbecomparedeasily,asfinalresultsdepend,amongotherthings,onthedefinitionofthesystemboundary,thefunctionalunitandthedatasets,aswellastheallocation

Page 4: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

4 © 2015 nova-Institut GmbH, Version 2015-04

proceduresused(Weissetal.2012).Moreover,theassumptionsregardingagriculturalyieldsandagriculturalpracticecanalsohaveasignificantinfluence. In addition to thesemore generalissues, reviewingLCAsof natural fibres alsoshowthatthereareonly limiteddataonmanyprocessstepswithinthefibrevaluechainofbastfibres.Also,carbonstorageinnaturalfibresisnotalwaysclearlyshown;duetotherettingprocess,theissueisrarelydiscussed.

ThemostdemandingstepwhileconductingaLifeCycleAssessment (LCA)orcalculatingacarbonfootprint isthecollectionof inventorydata inordertocreatethe lifecycle inventory(LCI).Moreover,dataavailability isan issueashighqualitydataarelimited.Thisisparticularlythecaseforjuteandkenaf.

Basedon theabovedescribedsituation, theobjectiveofthisstudyistoevaluatethecarbonfootprintofthefourmostimportantnaturalfibresusedintheautomotiveandinsulationindustry:flax,hemp,juteandkenaf(inalphabeticorder),andtoprovidethe industrywithreliabledataregarding the environmental impact of thesefibres,aswellaswith informationonhow tochoosethenaturalfibrewiththelowestcarbonfootprint.

Thisisdoneby:•conductingacomprehensiveliteraturereview(about45referencesincludingLCAstudiesandreferencesofagriculturalproduction);

•collecting initialprocessingdataduring thecourseoftheEUFP7MultiHempproject.

Moreover,sincethecarbonfootprintaddressesonlytheimpactcategoryclimatechange,furthersustainabilityissuesaredescribedseparately.

The European FP7 MultiHemp project is anopportunity to improve the inventory dataof hempaswell as somespecificsonkenaf(www.multihemp.eu).Hence,this leafletshowsthepreliminarydataasapre-studywithintheMultiHemp project. As part of this project,comprehensive Life Cycle Assessments onhempwillbeconducted,usingprimarydatafromdifferent locations,varieties, fertilizeruseandvariousprocesses.Asafirststep,a literaturereviewwas undertaken to reflect the currentstateofscienceandtoidentifydatagaps.Thisbrochureshowsthe intermediatestate,whichevaluatesvariousLifeCycleAssessmentstudiesonnaturalfibres.Anupdateandasensitivityanalysis on collected primary data on hempare scheduled for 2016. Moreover, data fortherettingprocessforhempandkenafwillbeobtainedthroughrettingexperimentswithintheMultiHempproject(seechapter3.3“Retting”).

Page 5: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 5

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

2 Natural fibres in comparison

Natural fibres can be defined as fibres fromplant,animalormineralorigin.Mineralfibressuchasasbestosoccurnaturallyas inorganicsubstances. Fibres from animals and plantsareorganic.Animalfibres includeforexamplewool,cashmere,silkandalpaca.Plantfibresareextractedfromplants.Dependingontheir

functionwithintheplant,fibresmaybelocatedindifferentregionsoftheplant.Forexamplefibresfromdicotyledonscanmainlybesubdividedinseedfibres,stemfibresandfruitfibres.Figure2 gives an overview of organic and inorganicnaturalfibres(Müssig&Slootmaker2010).

Figure 2: Overview of natural fibres (Müssig & Slootmaker 2010, adapted from Müssig 2015. – by courtesy of Müssig)

Page 6: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

6 © 2015 nova-Institut GmbH, Version 2015-04

Fibresfoundinthestemsofdicotyledons(stemfibres)arealsoreferredtoasbastfibres(FAO2008)(e.g.flax,hemp,nettle,jute,kenaf,ramie).Theyprovidetheplantwithitsstrengthandarevery longastheyusuallyrunacrosstheentirelengthofthestem.Naturalplantfibresareusuallyconsideredmoreenvironmentally friendly than synthetic fibresfor several reasons, such as: the growth ofplantsresultsinsequestrationofCO2fromtheatmosphere,naturalplantcultivationconsumesless energy than the production of syntheticpolymersandfibres,naturalfibresareproducedfromrenewableresources,unliketheproductionofsyntheticfibreswhich leadstodepletionofnaturalresources.Furthermore,attheendoftheirlifecyclenaturalplantfibresarebiodegradable.However,cultivationandprocessingofnaturalplant fibres consumesmore water,may use

syntheticfertilizersandpesticides,andresultsin emissions of greenhouse gases in someprocessingstages(Ranaetal.2014).Thepropertiesofnaturalfibresare influencedby the conditions necessary for growth:temperature, humidity and precipitation, soilcomposition,andtheair;allaffecttheheightoftheplant,strengthofitsfibres,density,etc.Thewaytheplantsareharvestedandprocessedalsoresults inavariationofproperties.Processedtoacompressingmouldedpart,thedifferencesinpropertiesare lowerthandifferencesofthenatural fibres. Table 1 shows properties ofselectednaturalfibres(flax,hemp, jute,ramie,sisal),whichcanallbeusedforbiocompositesand insulationmaterial; these properties arecompared to the properties of glass fibre(E-Glass).

Table 1: Natural fibre properties compared to glass fibre (nova 2015)

Density Fineness Young’s Modulus /E-Modul

Elongation at break

Breaking strength

E-Glass - - adjustable + + + - - + +

Flax + +/- + + + +

Hemp + - + + + +/-

Jute + + + + +/-

Kenaf + +/- + + +/-

Ramie + + + + + + +

Sisal + + - + / - + + +/-

Compared with petrochemically basedfibres, natural fibres can be processed intocompositesjustaswellwithapolymermatrixindifferentproductionprocedures.Besidestheirenvironmental friendliness,naturalfibreshavegoodstiffnessandstrengthandat thesametimepossessalowdensitycomparedwithglassfibre.Young’sspecificmodulusofnatural-fibre-reinforcedcompositesiscomparablewiththatof glass-fibre composites. Good lightweightconstruction potential and positive break

behaviour(i.e.theybreakwithoutroughedgesand thecomponentsdonotsplinter) are theadvantagesofnaturalfibrecomposites.Howevertheirmoistureexpansioncharacteristics,theirflammability and their variable quality aredisadvantages(Graupner&Müssig2010,p.67).

Globally, cotton is the largest natural fibreproduced,withanestimatedaverageproductionof 25 million tonnes during recent years (2004–2012) (FAOSTAT2015). Jute accounts

Page 7: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 7

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

Figure 3: Development of worldwide natural fibre production 1961–2013 without cotton (nova 2015, based on FAOSTAT 2015)

-Institute.eu | 2015© * without Cotton

Worldwide production of natural fibres 1961–2013* (in million tonnes)

0

1

2

3

4

5

6

7

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

1994

1993

1992

1991

1990

1989

1988

1987

1986

1985

1984

1983

1982

1981

1980

1979

1978

1977

1976

1975

1974

1973

1972

1971

1970

1969

1968

1967

1966

1965

1964

1963

1962

1961

SisalRamieJuteHempFlaxCoir

foraround3milliontonnesofproductionperyear(basedondatafrom2004–2012,FAOSTAT2015). Other natural fibres are produced inconsiderably smaller volumes.Globally, bastfibresplayarathersmallandspecializedroleincomparisontootherfibres.Theoverviewofworldwideproductionof“other”naturalfibresfor1961–2013basedonFAOdata(Figure3)shows

thatjutehasalwaysbeenthemostdominantofthesematerials.Apart fromsomefairlystrongfluctuations,theoverallvolumeofnaturalfibresproducedgloballyhas increasedslightlyoverthe last fifty years. The amount of jute hasstayedmoreorlessthesame,coirhassteadilyincreaseditsproductionvolume,andproductionofflaxandsisalhasdecreased.

Flax,hemp,juteandkenaf(inalphabeticalorder)arethemaintypeofbastfibresdiscussedinthisstudy.Thenextsectioncontainsinformationonthesefourbastfibres.Forfurther informationon natural fibres please refer tohttp://www.naturalfibres2009.org/en/fibres/index.html. Informationonflax(andhemp)fibresisavailableat http://www.mastersoflinen.com/eng/lin/1-la-filiere-de-proximite.For industrialuseofhempinEurope,pleasevisit theEuropeanIndustrialHemp Association online at http://eiha.org.

Factsabout jute (andkenaf)arepresentedbytheinternationaljutestudygroupaswellastheIndian jutecommissionerandtheBangladeshJuteAssociationinDhakaandareavailableathttp://jute.org and http://jutecomm.gov.in/jute.htm,andhttp://bja.com.bd,respectively.

Page 8: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

8 © 2015 nova-Institut GmbH, Version 2015-04

2.1 Flax

Latinname:Linum usitatissimum L.

Flaxisanerectannualplantgrowingbetween1.0to1.2mtall,withslenderstems.Flaxfibresareamongst theoldestfibres in theworld:theproductionoflinengoesbackatleasttoancienttimes.Flaxfibreistwiceasstrongasthatofcottonandfivetimesasstrongasthatofwool;itsstrengthincreasesby20%whenwet(Tahiretal.2011).The yield stability of flax depends on thevarietyanditsresistancetodiseases.Becauseoftheaccumulationofharmfulfungi,bacteriaandrootextractions,asix-yearcultivationgapisrecommendedsoasnottosufferatotalloss of the harvest.Moreover, the nutrientsupply to the plant, in particular nitrogen,shouldbecontrolledcarefullyandnotexceedrecommendedamounts.Afterflaxcultivation,thesoilisleftwithfewnutrientsandismostlyweed-free(Heylandetal.2006,p.283).

Flax – cultivation area and production volumeTheEU,Belarus,theRussianFederationandChinaarethemostimportantproducerregionsofflaxfibres.France,theUK,theNetherlandsandBelgiumarethemostimportantproducers

offlaxwithintheEU.In2012Franceproduced52,400 tonnes, theUK13,825 tonnes, theNetherlands 13,290 tonnes and Belgium10,000tonnesofflaxfibres(FAOSTAT2015).Theglobalflaxcultivationareawasaround220,000hectaresin2012.WithinEuropeandglobally,Francehas thehighestcultivationarea,witharound61,000hectares in2012(FAOSTAT2015).

Flax – main applicationFlaxismainlyproducedinthetraditionalwayof long-fibre processing with a precedingfield-rettedflaxstraw.Thiscanbeonlydoneinareaswithhighhumidity,forexamplenearthecoast.Upto90%oftheEuropeanflaxlongfibreissoldtoChinaandprocessedintoyarn,fabricsandcloths.Theby-producttow(shortfibre)isusedindifferenttechnicalapplications,just like the fibres from the total fibre line(biocompositesinautomotiveapplicationsandinsulation).Inperiodsofhighdemandfromthelinenfashionmarket,highamountsoftheshortfibresarealsomechanicallycottonizedandusedincombinationwithcottonorviscose/lyocell(Carusetal.2014,p.54).

Flax – relevance for the automotive industryAs is shown in Figure 1, flax fibres had amarketshareof50%intheuseofnaturalfibresforcomposites intheEuropeanAutomotiveIndustry in 2012. It is predicted that flaxfibreswillcontinuetoplayadominant rolewithinnaturalfibres,sincealargeamountoftechnicalshortfibreswillalwaysbecreatedas side-products (tow) of the long-fibretextileproduction,whichcanbesoldataneconomicpriceatrelativelygoodquality.Theonlydisadvantage is: If the fashionyear issuccessful, thetextile industryalsorequiresmoreshortfibres,inordertocottonizethemandprocess them togetherwithcotton. Incycles,thisleadstoscarcityandasignificantprice increases.Thisproblemwillcontinuetoexistandmaybeleadtoaslightdecreaseinuseofflaxfibres(Carusetal.2014).

Flax (Linum usitatissimum L.) (Source: nova 2015)

Page 9: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 9

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

1Exception:Herbicidesmightbeusedduringfieldpretreatment.

2.2 Hemp

Latinname:Cannabis sativa L.

Hempisataprootannualherbaceousplantwitherectstemreachingupto4metersinheight(Amaducci & Gusovius 2010). Its benefits(suppressing weeds, free from diseases,improvingsoilstructureandnoconsumptionofpesticides)makehempanattractivecropforsustainablefibreproduction.Hempisacrop thathasgreatadaptability toclimaticconditionsanditdoesnotrequirepesticides1

orirrigationwater.Itsconsumptionoffertilizersismodestandhempcropssuppressweedsandsomesoil-bornediseases,whichmeansthatattheendofitscultivation,soilconditionis improvedandhealthier (Gonzalez-Garciaetal.2007).

Hemp – cultivation area and production volumeHemp crop originates from the temperateregions of central Asia but is nowadayscultivated worldwide. China, Canada andEurope are themost important cultivationregionsofhemp.In2011theglobalcultivationareaofhempwasabout80,000haworldwide

andtheoverallhempfibreandhempseedproductionwasataround175,000 tonnes.While global overall hemp productionincreasedbetween2000and2011,cultivationareashavefluctuatedbutremainedconstantoverall,suggestinganimprovementinyields(Carusetal.2014,p.51).In2014thecultivationareaofhempinEuropeincreasedto17,000ha–thehighestlevelsincetenyears (EIHA2015).ThemaincultivationmemberstatesareFrance,theUKandtheNetherlands(Carusetal.2014,p.52).

Hemp – main applicationHempisusedfordifferentmarketapplications.These are providedwith fibres, shives andseeds/oil.InEurope,hempismainlyproducedinthetotalfibrelinetogaintechnicalshortfibres.LongfibreprocessingfortextilesdoesnotexistinEuropeanymore.InEuropethemainhempfibreproductsarepulpandpaper,followedbyinsulationmaterialsandcompressionmouldingparts for theautomotive industry.Themostdominantproductfromhempshivesisanimalbedding, especially for horses. The mostimportantmarketforhempseedsisanimalfeedandfood(Carusetal.2014).

Hemp – relevance for the automotive industryIn2012hempfibreshadamarketshareof12%asnaturalfibresforcompositesusedintheEuropeanAutomotiveIndustry(asseeninFigure1). In2005hempfibreshadamarketshareof9.5%intheuseforcomposites intheEuropeanAutomotive Industry.Between2005and2012hempfibreincreaseditsmarketshare.Thedevelopmentforhempfibresinthecomingyears isexpectedtodependonthefollowingfactors(Carusetal.2014):•Hempfibresarealmostexclusivelyproducedin Europe, with some quantities comingfromChina.Thisdominancecouldchange,dependingonhempindustriesbeingsetupinCanada,theU.S.andRussia;

Hemp (Cannabis sativa L.) (Source: nova 2015)

Page 10: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

10 © 2015 nova-Institut GmbH, Version 2015-04

•InEurope(andinfutureprobablyalsointheU.S.andCanada)hempfibresareproducedinatotalfibreline,inamodernandtechno-economicoptimizedprocessingline;

•With this technology, it is possible toproduceatechnicalshortfibreunderhighecologicalandsocialstandardsatthesamepricelevelofAsianimports;

•However,thistechnologyhasitslimitationswhenitcomestofibrefineness,regularityandresidualshivecontent.Thismeansthatpress-mouldedpartscaneasilybeproduced

atahighquality,buttheycanpossessanirregularsurfacestructure,whichdoesnotallowforverythinlaminations;

•Tosolveproblemsofirregularity,additionaltreatments such as steam explosion,ultrasound or different chemical orenzymatic processing could be feasibleapproaches.Theseverymodernprocesseshavenotcomeintomainstreamusesofar,mostlyduetocostreasons.Fibrequalitycouldbeevenbetterthanthoseobtainedbywaterretting,butpricesaremuchhigher.

2.3 Jute

Latinname: Corchorus capsularis L. / Corchorus olitorius L.

Jute,tossa jute (Corchorus olitorius L.) and white jute (Corchorus capsularis L.) areextensivelycultivatedin Indiafortheirfibre.Juteisanannuallygrownnaturalfibre.Tossajute and white jute are similar in generalappearance.Theyhave longstraightstems

about3cmincircumferenceandarebranchedatthetop.Thetwospeciesmainlydiffer intheir fruits:whereaswhite jutehasarough,wrinkled,sphericalseedboxofabout0.75cmindiameter,tossajutehasanelongatedpodlikeaminiaturecucumberabout5cmlong.Furthermore,whitejuteisusuallyshorterthantossajute.Whitejuteisgrownonlower-lyingground,whiletossa jute isgrownonhigher

White jute (Corchorus capsularis L.) (Source: Müssig & Slootmaker 2010, adapted from Müssig 2015. - by courtesy of Müssig)

Tossa jute (Corchorus olitorius L.) (Source: Müssig & Slootmaker 2010, adapted from Müssig 2015. - by courtesy of Müssig)

Page 11: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 11

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

ground(Rahman2010).Goodconditionsforjutecultivationare inthefloodplainsofthegreatriversofthetropicsandsub-tropicsforexample,whereirrigation,oftencharacterizedby extensive flooding, and alluvial soilscombinedwithlongdaylengthsareavailable.Juteisgrowninrain-fed,hothumidandsub-tropicalconditionsintheBengalBasininIndiaandinBangladesh(Sobhanetal.2010).

Jute – cultivation area and production volumeJuteisthemostimportantnaturalfibreofthebastfibres,andthesecondmostdominantnaturalfibreontheworldmarketaftercotton.In2012worldwideproductionof jute layat3.5million tonnes.With1.9million tonnes,India is the most important producingcountry,closelyfollowedbyBangladeshat1.5milliontonnes.China(mainland) isthethirdimportantcountry,with45,000tonnesin2012,followedbyUzbekistan,with20,000tonnes.Less than1%of theworld’sproduction isproducedinotherEastAsiancountries(Nepal: 14,424 tonnes, Myanmar: 2,650 tonnes)(FAOSTAT2015).The overall production area is about 1.6millionhectares.Theproductionarea inIndiais800,000hectaresandinBangladesharound760,000hectares(FAOSTAT2015).

Jute – main applicationJutehasawiderangeofusage.Thedominantand traditional application of jute fibreworldwide ispackagingmaterials (suchashessian,sacking,ropes,twines,carpetbackingcloth,etc.).Moreover,juteisalsousedforso-called“diversifiedjuteproducts”toovercomethe declining market for the conventionalproductsofjute.Thesearegenerallyproductsfornew,alternativeandnon-traditionalusesofjute.Forinstance,juteisusedforthefollowingapplications:floorcoverings,hometextiles,technicaltextiles,geotextiles,jute-reinforcedcomposites(automotive interiorparts),pulpandpaper,particleboards,shoppingbags,handicrafts,clothing,etc.(Rahman2010).

Jute – relevance for the automotive industryJute could indeed become an importantnaturalfibrefortheautomotivesector.Volumesandlogisticsareatahighlevel,butthefoggingproblem from batching oil has thoroughlydamagedthereputationof jute(batchingoilisusedinthetextileprocesschaintomakethefibreseasiertoprocess).Todayitshouldbeeasytoobtainlargevolumesofjutefibresfreeofbatchingoil,especiallysinceprocessingcapacitiesoftensurpassdemand from themostly decreasing traditional applications.However, the ecologically and sociallyquestionable activity of water retting andthelackofamodernprocessingtechnologyremainproblematic(Carusetal.2014,p.58).

Jute field (Source: Gupta 2015)

Page 12: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

12 © 2015 nova-Institut GmbH, Version 2015-04

2.4 Kenaf

Latinname:Hibiscus cannabinus L.

KenafisanannualplantoriginatingfromWestAfrica,growingto1.5-3.5mtallwithawoodycore.Thestem’sdiameteris1–2 cmandtheyareoften,butnotalways,branched.Thefruitisacapsule2cmindiameter,containingseveralseeds.Thestemcontainsabastfibreportioncomprising 26–35% (by dry weight). Theaveragelengthofthefibreis2.5 mm,providingadesirableblendformanypulpandpaperapplications.Otherusesofkenafbastfibreincludecordage,compositematerials,andcoarsecloth(Parietal.2014).Kenafshows

robustmechanicalproperties(Ajietal.2009).In recent years, two main reasons havecontributedtotheveryhighinterestinkenafcultivation.One iskenaf’sability toabsorbnitrogenandphosphoruswithinsoil.Theotheris thatkenaf isable toaccumulatecarbondioxideatasignificantlyhighrate(Ajietal.2009).

Kenaf – cultivation area and production volumeTheFAOgroupskenafstatisticstogetherinonecategorywithso-called“alliedfibres”. IndiaandChinaarethemostimportantproducersofkenaf,accordingtoFAOdata,sincethreequarters of the world’s kenaf productionoriginated there in2011/2012.Bangladeshisnotincludedasakenaf-producingcountryatall, even thoughfibre tradersaswell asmanufacturers have repeatedly stated thatkenaffibresareimportedfromBangladeshonaregularbasis(Carusetal.2014,p.50).Basedon http://jute.org itcanalsobestatedthatkenafismainlygrowninChinaandIndonesia.

Kenaf – main applicationKenafcanbegrownforvariousapplications.Thecrophastraditionallybeenusedtoproducefibreandfood.Thefibrescanbeusedtomakecordage, rope, burlap cloth, and fishnetsbecause of its rot andmildew resistance.Besidesthesetraditionalapplicationstherearealsoanumberofnewuses,suchaspaperpulp, building materials, biocomposites,beddingmaterial,oilabsorbents,etc.Recentlyithasalsocometobeconsideredanimportantmedicinalcrop,asitsseedoilhasbeenshowntocurecertainhealthdisordersandhelp incontrolling blood pressure and cholesterol(Monti&Alexopoulou2013).

Kenaf – relevance for the automotive industryKenaf fibres are used as reinforcement orfiller inpolymercompositematerials,whichare used increasingly in the automotiveindustries.Kenaffibrecompositesareusedinautomotiveapplicationsprimarilybecause

Kenaf (Hibiscus cannabinus L.) (Source: nova 2015)

Page 13: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 13

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

of its lightweightandend-of-lifeproperties(Monti&Alexopoulou2013).Carusetal.(2014)statethatthegrowingdemandforkenaf intheautomotiveindustrystemsmostlyfromtheexplicitwishesofsomeOEMs.Inthiscontextthefollowingconsiderationsarise(Carusetal.2014):

•Non-wovenproducersarereportinghighfibrelossesduringtheprocessingofkenaffibres;

• Water retting is practiced to obtain thedesired fibre qualities. However waterretting impliesnegativeecologicaleffects(biochemicaloxygendemandoftherettingwater)andnegativesocial impacts (mostlyworkingconditionsandwages) inthefibreproducingcountries,e.g.Bangladesh,IndiaandIndonesia;

• Nevertheless, the quality of water-rettedkenaffibresmakethemespeciallyinterestingfortheautomotiveindustry,sincetheyallowfor very thin laminations on composites,whicharedesirablefordesignandweightreasons;

•Itisnoteasytodistinguishkenaffibresfromjutefibres,socustomerscannotalwaysbecertainthattheirbalelabelled“kenaf”doesnotcontainany jute. Inthetextileprocesschain,juteistreatedwithbatchingoiltomakethefibreseasiertoprocess.Duetofoggingproblems,fibrestreatedwithbatchingoilarenotacceptablefortheautomotiveindustry.Howeverifjutefibresthatarefreeofbatchingoilareused,there isnofoggingandtheycan be processed just as well as kenaf,sometimesevenbetter.

Kenaf field (Source: Müssig 2013)

Page 14: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

14 © 2015 nova-Institut GmbH, Version 2015-04

3 Carbon footprint

3.1 Introduction to the carbon footprint methodology

The Carbon Footprint is an abbreviation orsynonym,becauseasidefromacarbonbalancebeingcreated,agreenhousegasbalanceisalsocreated,which, inadditiontocarbondioxide(CO2),alsoincludesmethane(CH4),nitrousoxide(NO2)andchlorofluorocarbons.ThemethodologyisconsistentwithISO14040andISO14044(PAS20502011).TherearethreemainProductCarbonFootprintstandardsthatareappliedworldwide:

PAS2050,GHGProtocolandISO14067.ThemaindifferencetoLifeCycleAssessments isthat insteadofmany impact categories (e.g.globalwarmingpotential,acidificationpotential,eutrophication,ozoneformationpotential),onlythe impactcategoryglobalwarmingpotentialisconsidered.ThecharacterizationfactorsarebasedonthedefaultvaluesgivenbytheIPCC2013–timeframe100years,(seeTable2),inkgCO2-eq;CO2:1,N20:265,CH4:28(Stockeretal.2013).Thiscarbonfootprint isanassessmentfrom“cradletogate”.

Table 2: Global Warming Potential of the considered greenhouse gas emissions (Stocker et al. 2013)

Greenhouse gas emissions Formula Characterization factor

Carbon dioxide CO2 1

Methane CH4 28

Nitrous oxide N2O 265

Biogenic carbon storageNointernationalagreementonhowtointegratethe storage of biogenic carbon in LCA andcarbon footprint hasbeen reachedasof yet(furtherreadingsforexample:PAS2050(2011)

andGrießhammer&Hochfeld(2009)).Therefore,forthecalculationofthecarbonfootprintinthispublication,biogeniccarbonstoragehasnotbeenincluded.Insteadwepresentstoredcarbondioxideseparately-seeTable3.

Table 3: Typical values of compositions and stored carbon dioxide of flax, hemp, jute and kenaf fibres

Unit Flax Hemp Jute Kenaf

Cellulose kg/kg fibre 0.72 0.65 0.57 0.55

Hemicellulose kg/kg fibre 0.18 0.15 0.13 0.14

Lignin kg/kg fibre 0.03 0.10 0.14 0.12

Stored carbon dioxide kg CO2/kg fibre 1.39 1.39 1.33 1.27

Thestoredcarbondioxide in theconsideredfibres(seeTable3)iscalculatedonthebasisoftypicalcellulose,hemicelluloseandlignincontentofthefibres(databasedonhttps://www.ecn.nl/phyllis2/Browse/Standard/ECN-Phyllis##1010)and their embedded carbon content. The

calculationsshowthatflax,hemp,juteandkenaffibrestoreovertheirlifetime(whichisnottakenintoconsideration)around1.3to1.4kgofCO2 perkgfibre.Therearenosignificantdifferencesbetweentheabovementionedfibres.

Page 15: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 15

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

3.2 Goal and scope for flax, hemp, jute and kenaf

Subsequent, general specifications for thesystemusedinthisstudyaredescribed:

Functional unitInthisprojectthefunctionalunit isdefinedas“onetonneoftechnicalfibrefortheproductionofnon-wovens”forbiocompositesorinsulationmaterial.Thecarbonfootprintiscalculatedperonetonneoftechnicalfibres.

Time-related coverageInventory data related to current conditions(2013/2014) of the agricultural system, fibreprocessingand transportationwereobtainedfrom farmersandfibreproducersandwherenecessary complemented with bibliographicsources.

Geographical coverageThegeographicalareascovered inthisstudyareEurope for hempandflax, India for jute,and Bangladesh/India for kenaf. Moreover,Bangladesh/Indiatransportationtonon-woven-producerswasassumedtotakeplaceinEurope.

System boundariesThisstudycoversthecultivation,harvest,retting,processingandtransportationofnatural-bast-fibresfromthenorthwestofEurope(flaxandhemp), IndiaandBangladesh(juteandkenaf)tonon-woven-producers inEurope (Figure4belowshowsaschematicdiagramofLife-Cycle-Analysisprocessesfromcradletogate.).

Figure 4: General system boundary and processes in this study (nova 2015)

-Institute.eu | 2015©

Transport I(field to processing)

Transport II(Asia to Europe)

Transport III(within Europe)

Fibre processing

Baled straw or rough fibre bundles

Baled straw or rough fibre bundles

Baled fibres

Baled fibres

Baled fibres at factory gate

Cultivation, Harvest & Retting

System boundary

Page 16: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

16 © 2015 nova-Institut GmbH, Version 2015-04

The system studied includes the followinggeneralprocesses:

•Field operations,includingmachineryfor:•soilpreparation•sowing•fertilizer-application•pesticide-application•cutting•turning(incaseofhempandflax)•swathing(incaseofhempandflax))•balerandbale-mover (incaseofhempandflax)

• SeedsBasedonastudyfromEvansetal.(2006)thecarbon, methane and NOx requirement ofseedsisestimatedasfollowed:Theemissionsforcultivationwereassumedtobeasdetailedasthoseforfibre-cultivation,withanallocationtoseedof70%.Roadtransportationtothecultivationareawitharoundtripof100kmandlow-densitypolyethylene(LDPE)packagingweighing4kgwerealsoassumed.

• FertilizationThisgroupclassifiesemissionsfrommineralfertilizers and emissions from organicfertilizer (pig slurry) for hemp (scenario 2).Inventorydataontheproductionoffertilizersused in the system were taken from theEcoinventdatabase(“ecoinventdatav2.0”). Pleasenote that only a second scenario isconducted for hemp fibres using organicfertilizer (pig slurry). This is due to the factthatflaxdoesnottolerateorganicfertilizers.Juteandkenafarenotfertilizedwithorganicfertilizer (manure), because the amount ofanimalproductionistoolowtoleaveamanuresurplusforfertilization.Ontheotherhand,theNetherlands and the north of Germany do

havepigslurryandpoultryandcattlemanuresurpluses.Furthermore,thenorthofGermanyboastshighquantitiesoffermentationresidues.Thereforetheapplicationoforganicfertilizer(here:pigslurry)isonlytakenintoconsiderationinthehempfibresystem(scenario2).

• Fertilizers induced N2O-emissions1%ofappliedN(alsofromthenitrogen-yieldofthepigslurry).

• PesticidesAccordingtothedefinitionofEPA2,herbicides,insecticidesandfungicidesandtheiremissionsare included inthissystemstage. InventorydataweretakenfromtheEcoinventdatabase(“ecoinventdatav2.0”).

• Transportation Ifromthefieldtothefibreprocessingfacility,orfromthewater-rettingfacilitytothe“fibre-fine-opening-process”.

• Fibre Processing(electricityforthemachineryanddieselfuelforthefork-lifterattheproduction-site):

• Totalfibreline(flaxandhemp)• Fibrefineopeningprocess(juteandkenaf)

• Transportation IIfromthefibreprocessingsite inAsiatotheharbourinHamburg.

• Transportation IIIfrom the fibre processing site in Europe ortheharbour inHamburg to thenon-woven-producerinEurope.

2EPA (http://www.epa.gov/pesticides/about/ - lastaccessed2015-02-24)usesthefollowingdefinitionofpesticide:Apesticide isanysubstanceormixtureofsubstancesintendedfor:preventing,destroying,repelling,

ormitigatinganypest.Thoughoftenmisunderstoodtoreferonlytoinsecticides,thetermpesticidealsoappliestoherbicides,fungicides,andvariousothersubstancesusedtocontrolpests.

Page 17: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 17

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

AllocationWithin LCA, allocation occurs whenever aprocessproducesmorethanoneproduct(multi-outputprocess),inwhichcasetheenvironmentalburden caused by the process needs to bedistributed over the different products. TheISO14040providesa listofhowtoapproachallocation,withthefollowingpreference:• Avoid allocation by system expansion orincreaseddetail

•Partitioningbasedonphysicalrelationships•Partitioningbasedonotherrelationshipssuchasincome(Baumann&Tillmann2004)

Allocationwasnecessarywithinthestudyasall four fibresystemsprovidemore thanoneproduct:e.g.thefibreprocessalsoproducesshivesanddust(seeFigure5).Inthispublicationmass-based allocationwas used for all four

investigatedsystems,asit ismorestablethaneconomicallocation,whichfluctuatesmore.Buteconomicallocationalsohas itsproblems,asthepricesofnaturalfibresfluctuateaccordingtosupplyanddemand,whichisaffectedbymanyfactors,rangingfromagriculturalyieldtofashiontrends.Additionally,pricesfortheby-products(hempandflaxshives,juteandkenafcores)canvarywidely,dependingontimereference,regionandfibretype.Especiallythepriceforjuteandkenafcoresisunknown.All the different fibre types produced out ofthe total fibre line (as seen inFigure5) havebeen summarized to one output of fibre forsimplificationreasons.Similarly,thisprocedurewasadaptedforothernaturalfibres,ascanbeseenintheAppendix.

Figure 5: Typical product fractions of a total fibre line for hemp fibre production (nova 2015)

-Institute.eu | 2015©

Hemp straw100%

Hemp shives55%

Hemp fibres28%

Others15%

Loss of material / water

2%

11% filter dust

2% fibre waste

2% residues of metal, stones,

wood

0.1% binding twine

21% technical fibres15–80 mm

4% short fibres10–20 mm

3% super short fibres1–2 mm

Page 18: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

18 © 2015 nova-Institut GmbH, Version 2015-04

3.3 Retting

Retting isa (micro)biological fibreseparationprocess,which canbe conducted in severalways,includingdewandwaterrettingandsomenewprocessessuchaschemical,enzymaticorsteamexplosion.Afterharvesting,thestemsareusuallykepteither inthefield(dewretting)orunderwater(waterretting)fortwotothreeweeks,duringwhichthepecticsubstancesthatbindthefibretootherplanttissuesaresoftenedanddegradedbymicroorganismbasedenzymaticactivity.Thetraditionalmethodsforseparatingthelongbastfibresaremostlybasedonwaterretting,andalsobasedondew.Bothmethodsrequire 14 to 28days to degrade the pecticmaterials,hemicellulose,andpartiallignin.Eventhoughthefibresproducedfromwaterrettingcanbehighquality,thismethodhasitsweaknesses,inthat it takesa longtimeandcauseswaterpollution (Tahir et al. 2011).Furthermore, theprocedureutilizesgreatquantitiesofwater,whichinturnleadstolargequantitiesofwastewater.Wastewaterrequiresconsiderabletreatment,asithasahighbiologicalandchemicaloxygendemand.Forexample,Zawanietal.(2013)haveshownthatduringjuterettinginpondsthereissharpincreaseinthewater’sbiochemicaloxygenandchemicaloxygenuptake.Moreover,Mondal&Kaviraj(2007)foundthatrettingwaterleadstoasharpdecreaseindissolvedoxygen.Lastly,ithasbeenknownforcenturiesthatthedepletionofoxygenduetorettingwaterinriverscausesfishmortality.Ingeneral,waterrettingcanbeusedwithflax,hemp,kenafand jute.Nowadays it ismostlyusedwithkenafandjute.Lookingatgreenhousegasemissions, literatureonlystatesmethaneemissionsforjutewaterretting.Incomparison,literaturedoesnotprovidedataforGHGemissionfromdewretting,thoughtheymightexist.

Thefollowingreferenceson jutewaterrettingwerefound:

• Banik et al. (1993) state that: “… in vitroexperiments carried out in our laboratory

indicate that about 3.1mg ofmethane areevolvedpergramof jute stem retted”. Theexperimentswereconductedoverfouryearsinjute-rettingtanksinWest-Bengal,India

• Islam&Ahmed (2012),basedondata fromtheInternationalJuteStudyGroup2011,saythat“Methaneemittedduringrettinghasbeenestimatedtobe1-2m3kg-1ofsolidmaterial,which on computation gives an average of1.428kgmethaneperkgofjutefibre.…Itcanbeusedforhouseholdpurpose”(p.27).ThesenumbersarealsomentionedinÜllenbergetal.(2011,p.138)forstemretting.MoreoverthisarticlealsomentionsthatCO2andmethane,which are the main contributors to globalwarming,areemittedduringretting.Therearenonumbers listedforCO2-emissionsduringretting.Therettingofjute-ribbonscauseslessemissions(Üllenbergetal.2011,p.138)

•Mudge&Adger (1994, p. 23–24) calculatewiththefollowingapproach“…,foranaerobicdecompositionofcoarsefibres inthisstudyit isassumedthatat least12percentoftheanaerobically decomposing stem tissue inrettingpondsisconvertedtomethane,sincethedecomposingmixtureinthefloodedricefieldsdoesnotdiffergreatlyfromthedecomposingtissueintherettingponds”.Andestimated15%ofstemsaresaidtohavedecomposingstemtissue.Basedonthisestimatewecalculatedmethaneconversionforonetonneofstem;thisaccountsfor0.018 tonnesmethanepertonneofstem.

• Apart from CO2, methane and H2S maysometimesbeproducedduringtheanaerobicphase. Accumulating volatile fatty acids,especiallybutyricacid,areresponsibleforthecharacteristic,unpleasantsmellarisingfromwater retting (Ayuso1996).However,directairemissionsfromrettingwerenottakenintoaccountinthisstudyduetoalackofemissiondata.

Page 19: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 19

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

Sincethedataabove(seealsoTable4) isnotconsistentanditssourcescannotbeverified,thecarbondioxideequivalentofthemethaneemissions varies greatly: between 400 to 40,000 tonnesCO2-eq per tonneof jute fibre.Theprocessofrettinghasnotbeencoveredsofar inofthe literatureconsultedonLifeCycleAssessments. We suggest that experimentsshould measure values for greenhouse gasemissionsoftherettingprocess(dewandwaterretting); experiments have been planned forhempandkenafwithintheMultiHempproject.Resultsareexpectedbytheendof2015.Expertshavehithertoestimatedthatgreenhousegasemissionsfromwaterrettingmaybehighercomparedtothoseoffieldretting,becauseoftheassumedmethaneemissionsduringwaterretting.Ontheotherhand,expertsstatethatN2Oemissionsfromfieldrettingcannotyetbeexcluded.SinceN2Oemissionshaveaglobalwarming potential of 265 kg CO2-eq per kg (GWP 100) of nitrous oxide emission, theseemissionscouldalsohaveanegativeeffectonthecarbonfootprint.Rettingwasnot included

in this study due to the already mentioneduncertaintyofthegivendata;nevertheless, itsinfluencemaybesignificant.Theresultsfromdewandwaterrettinginhempandkenafaresettobeincludedinbrochureupdates.Thenextchapterspresent lifecycle inventorydataaswellastheseparatelycalculatedcarbonfootprintsforeachnaturalfibre.

Table 4: Methane emissions during water retting of jute

Methane emitted during water retting of jute

Unit Banik et al. (1993)

Islam & Ahmed (2012) and Data

from the Interna-tional Jute Study

Group 2011

Mudge & Adger (1994)

Geographic coverage India Bangladesh Global

Methane per kg solid material m3 CH4/kg solid material estimation: 1-2

Methane per t stem kg CH4/t stem 3.1 18(*)

Methane per t fibre kg CH4/t fibre 15.5(**) 1,428 90(**)

CO2-eq per t fibre kg CO2-eq/t fibre 43439,984

(not scientifically comprehensible)

2,520

(*) own calculation based on the estimations in Mudge et al. (1994). (**) values calculated on the methane-emission per tonne of stems and the assumption that 1 t stem is processed to 0.2 t fibres (plus shives).

Scene of jute water retting (Source: Gupta 2015)

Page 20: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

20 © 2015 nova-Institut GmbH, Version 2015-04

3.4 Carbon footprint of flax

Data for flax fibre productionwere gatheredfromflaxfibreproducersinMiddleEuropeandcomplementedwithdatafromtheliterature.TheinventorydatausedareshowninTableAintheAppendix.Figure6showsstagesinthelifecycleofflaxfibreproductionincludedinthisstudy.

Cultivationandharvestconsistsofthefollowingstages:pre-sowingapplicationofpesticides,ploughingandharrowing,fertilizerapplication,sowing,pesticideapplication,cuttingtheplants,turning,swathing,balingandbalemoving.Lorriestransportbaledflaxstraw.Fibreisprocessedinatotalfibreline,followedbylorrytransportofthefibrestothegateofthenon-wovenproducer.

Figure 6: System boundary and process chain of the flax fibre production (total fibre line) (nova 2015)

-Institute.eu | 2015©

Sowing (incl. seed production)

Fertilizer application

(incl. fertilizer

production)

Harvesting (cutting) Turning Baling

Transport (field to processing)

Transport (within Europe)

Swathing Bale moving

Cultivation & Harvest

Fibre processing

Baled flax straw

Baled flax straw

Baled flax fibres

Baled flax fibres at non-woven producer

Bale moving

Bale opening Decortication Cleaning

processFine

opener Baling Bale moving

System boundary

Shives

Dust

Field retting

Pre-sowing-application

of pesticides(incl. pesticide

production)

Ploughing &

harrowing

Pesticide application

(incl. pesticide

production)

Page 21: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 21

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

The (cradle to gate) carbon footprint of flaxfibreproductioninthecasedescribedaboveis 798 kg CO2-eq/tonne of flax fibre. The resultis presented in Figure 7, which shows thegreenhousegasemissionsfortheproductionandtransportationofonetonneofflaxfibrearrivingfromEuropeatthefactorygateofanon-wovenproducerinGermany.Cultivationandharvest issubdivided intofivestagesandisshowninFigure7:fieldoperations,seedproduction,fertilizerproduction,releaseof

fertilizer-inducedN2O-emissionsandpesticidesproduction(mainlyherbicides).Theimpactfromtransportingthestrawtothefibreprocessingfacility,fibreprocessingandtransportationofthefibretothefactorygateofanon-wovenproducerareshownseparately.Ascanbeseen,theimpactoffertilizerproduction isthehighest, followedbythefieldoperations.EmissionsfromthefibreprocessingstephavethethirdhighestreleaseofGHGemissions.

Figure 7: Greenhouse gas emissions of 1 tonne flax fibre from the cultivation in Europe to the factory gate of the non-woven producer in Germany (nova 2015)

-Institute.eu | 2015©

798Total

75Pesticides

10

124Fibre processing

Field operations

Seeds

156

32

Fertilizer 250

0

67

Fertilizer-induced N2O-emissions 85

Greenhouse gas emissions per tonne f lax f ibre

Transport I(field to processing)

Transport II(Asia to Europe)

Transport III(within Europe)

200 300100 700600 900800 1000 1050400 500[kg CO2-eq/t �ax f ibre]

0

0

Page 22: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

22 © 2015 nova-Institut GmbH, Version 2015-04

3.5 Carbon footprint of hemp

Thecultivationsystemforhempissimilartotheflaxsystem,withthefollowingdifferences:higherapplicationofmineral fertilizer,harrowingandsowingaredoneinonestepandnoapplicationofpesticidesaftersowing.Howeverpesticideapplicationcantakeplacebeforesowingaspre-treatmentofthefieldwithherbicides.FurtherprocessstepsareshowninFigure8.InventorydataofthehempfibreprocessisshowninTableBintheAppendix.

TwodifferentscenariosaredescribedforhempfibrecultivationintheNetherlands:scenariooneinvolvesfertilizinghempwithmineral fertilizer,while scenario two uses organic fertilizer, inparticular pig slurry. The latter scenariowasbasedontworeasons:(1)PigslurryisavailableinlargeamountsinthenorthoftheNetherlands.(2) Hemp tolerates organic fertilizer. For theotherfibrestheuseoforganicfertilizers isnotassessed, as flax does not tolerate organicfertilizer.Moreover, IndiaandBangladesh,thecultivationregionsfor juteandkenaf,havenomanuresurpluses.

Figure 8: System boundary and process chain of the hemp fibre production (total fibre line) (nova 2015)

-Institute.eu | 2015©

Harrowing & sowing (incl. seed production)

Fertilizer application

(incl. fertilizer

production)

Harvesting (cutting) Turning Baling

Transport (field to processing)

Transport (within Europe)

Swathing Bale moving

Cultivation & Harvest

Fibre processing

Baled hemp straw

Baled hemp straw

Baled hemp fibres

Baled hemp fibres at non-woven producer

Bale moving

Bale opening Decortication Cleaning

processFine

opener Baling Bale moving

System boundary

Shives

Dust

Field retting

Pre-sowing-application

of pesticides(incl. pesticide

production)

Page 23: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 23

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

Figure 9: Greenhouse gas emissions of 1 tonne hemp fibre from the cultivation in Europe to the factory gate of the non-woven producer in Germany (nova 2015)

-Institute.eu | 2015©

200 300100 700600 900800 1000 1050400 500

Total (scenario 1: Mineral fertilizer)

Pesticides

Fibre processing

Scenario 1:Field operations

Seeds

Scenario 1:Mineral fertilizer

00

Scenario 1: Mineral fertilizer-induced N2O-emissionsScenario 2: Organic fertilizer-induced N2O-emissions

Greenhouse gas emissions per tonne hemp f ibre

[kg CO2-eq/t hemp f ibre]

835

682

13

10

137

100

110

11

366

259

67

131

96

Scenario 2:Field operations

Transport I(field to processing)

Transport II(Asia to Europe)

Transport III(within Europe)

Total (scenario 2: Organic fertilizer)

Scenario 2:Organic fertilizer

0

The(cradletogate)carbonfootprintofhempfibre scenario one is 835 kgCO2-eq/tonne ofhemp fibre, whereas the carbon footprint ofhempfibrescenariotwois682kgCO2-eq/tonneofhempfibre.AsisshowninFigure9,theuseof fertilization,bothmineralandorganic,wasidentified asmost responsible for emissionscontributingtogreenhousegasemissions.

Therefore,usingorganic fertilizer can reducethecarbonfootprintofhempfibreatthefactorygate. Field operations, release of fertilizerinducedN2O-emissionsandemissionsfromthefibreprocessing facilityare thesecondmostimportantcontributorstothecarbonfootprintinbothscenarios.Transportationprocessesareproportionallysmall,however,ascultivationandnon-wovenproductionislocatedinEurope.

Page 24: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

24 © 2015 nova-Institut GmbH, Version 2015-04

3.6 Carbon footprint of jute

Figure 10 indicates the system studied forcradletogatejutefibreproduction.Cultivationtofibreprocessingstepsareassumedtotakeplacein IndiaandBangladesh;transportationfromIndiatoaharbourinHamburg,Germany,isdonebyshipsandcontinuesonlandwithlorriesheadedtothefactorygateofGermannon-wovenproducers.InventorydataandassumptionsaresummarizedinTableCintheAppendix.Thejutelifecyclestartswithagriculturalcultivation;thejuteisthencutandsubmergedinapondorinariverforwaterretting.Afterrettingthefibres

aremanually extracted from the stems, thenwashedanddried.Farmersdothismanually.Sobhanetal.(2010)statethatnotallagriculturalanddecorticationworkisdonemanually,butforexamplebullock-ortractordrivenploughsareusedtoproducefinetilth.Lastly,thesun-driedfibresaredeliveredinroughfibrebundlestotheso-called“fine-opening-processing”site,wherethefibresarerefinedandcut intothedesiredlengthforsellingtothenon-wovenproducer(thisisonlythefirstpartofthewholetextileprocess,whichleadstosliverforyarnproduction).

Figure 10: System boundary and process chain of the jute fibre production (nova 2015)

-Institute.eu | 2015©

Sowing (incl. seed production)

Fertilizer application

(incl. fertilizer

production)

Harvesting (cutting)

Submersing of plants

Manual washing

Transport I(field to processing)

Transport II(Asia to Europe)

Transport III(within Europe)

Manual extracting of fibres

Sun drying

Cultivation, Harvest & Retting

Fibre processing

Rough jute fibre bundles

Rough jute fibre bundles

Baled jute fibres

Baled jute fibres

Baled jute fibres at non-woven producer

Bundle opening

Fine opener Baling Bale

moving

System boundary

Dust

Stems

Water retting

Ploughing &

harrowing

Pesticide application

(incl. pesticide

production)

Manual weeding

Page 25: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 25

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

Figure 11: Greenhouse gas emissions of 1 tonne jute fibre from the cultivation in India to the factory gate of the non-woven producer in Germany (nova 2015)

-Institute.eu | 2015©

Total

9Pesticides

Transport I(field to processing)

Fibre processing

Seeds 2

Fertilizer

Transport II(Asia to Europe)

Transport III(within Europe)

Fertilizer-induced N2O-emissions

766

11

90

306

126126

67

114

Greenhouse gas emissions per tonne jute f ibre

Field operations 41

200 300100 700600 900800 1000 1050400 500[kg CO2-eq/t jute f ibre]

0

The(cradletogate)carbonfootprintofthejutefibrescenariois766kgCO2-eq/tonneofjutefibre.Figure11 shows that fertilizationcontributesmosttoGHGemissions. Incontrasttohempandflax, juteplantcultivation isdonemainlymanually,butsmall tractorsarealsousedfor

this kind of work. Because of manual fieldoperationsemissionsresultingfromthisprocessarequitesmall.Ontheotherhand,emissionsfromtransportingthejutefromAsiatoEuropehavetobetakenintoaccountaswell.TheseGHGemissionsaresignificant.

Page 26: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

26 © 2015 nova-Institut GmbH, Version 2015-04

3.7 Carbon footprint of kenaf

Figure12belowpresentsthesystemstudiedfor cradle togate kenaf fibreproduction, forwhich cultivation and fibre processing areassumedtotakeplaceinIndiaandBangladesh.Transportation to the harbour in Hamburg,Germany, happens via ship and continueswith lorriesgotothefactorygateofthenon-woven producer in Germany. Inventory dataandassumptionsaresummarized inTableDintheAppendix.Kenaf– like jute– iscutandwaterretted.Afterretting,thefibresaremanually

extractedfromthestems,thenwashedandsun-dried. These activities are donemanually byfarmers,butnotallagriculturalanddecorticationstepsaredonemanually:somefieldapplicationsinvolvetractors(Sobhanetal.2010).Lastly,thedriedfibresaredeliveredinroughfibrebundlestotheso-called“fine-opening-processing”site,wheretheyarerefinedandcutintothedesiredlengthforsellingtothenon-wovenproducer.Thesefinishingstepsaredonewithmachines.

Figure 12: System boundary and process chain of the kenaf fibre production (nova 2015)

-Institute.eu | 2015©

Sowing (incl. seed production)

Fertilizer application

(incl. fertilizer

production)

Harvesting (cutting)

Submersing of plants

Manual washing

Transport I(field to processing)

Transport II(Asia to Europe)

Transport III(within Europe)

Manual extracting of fibres

Sun drying

Cultivation, Harvest & Retting

Fibre processing

Rough kenaf fibre bundles

Rough kenaf fibre bundles

Baled kenaf fibres

Baled kenaf fibres

Baled kenaf fibres at non-woven producer

Bundle opening

Fine opener Baling Bale

moving

System boundary

Dust

Stems

Water retting

Ploughing &

harrowing

Pesticide application

(incl. pesticide

production)

Manual weeding

Page 27: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 27

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

Figure 13: Greenhouse gas emissions of 1 tonne kenaf fibre from the cultivation in India/Bangladesh to the factory gate of the non-woven producer in Germany (nova 2015)

-Institute.eu | 2015©

Total

Pesticides

Fibre processing

Field operations

Seeds

Fertilizer

Fertilizer-induced N2O-emissions

9

767

30

11

32

296

123

66

111

90

Greenhouse gas emissions per tonne kenaf f ibre

Transport I(field to processing)

Transport II(Asia to Europe)

Transport III(within Europe)

200 300100 700600 900800 1000 1050400 500[kg CO2-eq/t kenaf f ibre]

0

123

Regardingthekenafscenario,Figure13showsthatfertilizationisthemaincontributortokenaf’scarbon footprint.The (cradle togate)carbonfootprintofthekenaffibrescenario is767kgCO2-eq/tonneofkenaffibre.Incontrasttohempandflax,kenafplantsaregenerallycultivatedmanually,butsometimessmalltractorsarealso

usedforthiskindofwork.Becauseofmanualfieldoperations,emissionsstemmingfromthisprocess are quite small. On the other hand,emissionsfromtransportingthekenaffromAsiatoEuropehavetobetakenintoaccountaswell.TheseGHGemissionsaresignificant.

Page 28: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

28 © 2015 nova-Institut GmbH, Version 2015-04

4 Discussion of results

4.1 Comparison of the carbon footprint of flax, hemp, jute and kenaf

Figure 14: Comparison of the greenhouse gas emissions per tonne natural fibre (flax, hemp, jute and flax) (nova 2015)

-Institute.eu | 2015©

Field operations Seeds Fertilizer Fertilizer-induced N

2O-emissions

Pesticides Transport I(field to processing)

Fibre processing Transport II(Asia to Europe)

Transport III(within Europe)

Comparison of the greenhouse gas emissions per tonne natural f ibre

Hemp(scenario 1: Mineral fertilizer) 835

798Flax

Jute 766

Kenaf 767

Hemp (scenario 2: Organic fertilizer) 682

200 300100 700600 900800 1000 1050400 500[kg CO2-eq/t natural f ibre]

0

Figure 14 sums up the results of our GHGemissioncalculation for flax,hemp, juteandkenaf. The result is thatGHGemissions pertonneshownosignificantdifferences,especiallywhen taking the uncertainty of the data intoaccount(seetheerrorbars).Howevertherearesomedifferencesinresults,whicharedescribedinmoredetailbelow:

•Theemissionsrelatedtothefertilizersubsystemare the most important contributors togreenhousegasemissionsofeachconsideredbastfibre.

• However, the use of organic fertilizer forhempcultivation(scenario2)minimizestheseemissions. Organic based fertilization is,however,notanoptionforallfibres, forthefollowingreasons:someplants,likeflax,donottolerateorganicfertilizer;inthecaseofkenafandjute,thereisinsufficientorganicfertilizer,astheseplantsaregrowninareaswithlowanimalproduction(withthereforenomanuresurplusestoturnintoorganicfertilizer).

• Pesticides contribute relatively little to thecarbonfootprintofeachfibre,exceptfortheemissions stemming from pesticides usedduringflaxcultivation.Duetoitslowshading

Page 29: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 29

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

4.2 Comparison with fossil based fibres

Intheimpactcategorygreenhousegasemission,naturalfibresshowloweremissionsthanfossilbasedmaterials. For instance, production of 1 tonne of continuous filament glass fibreproducts (CFGF)extractedandmanufacturedfrom rawmaterials for factory export hasanaverageimpactof1.7tonnesCO2-eq(PwC2012).Basedondata fromEcoinvent 3, glass fibreproductionhasanimpactof2.2tonnesCO2-eqpertonneglassfibre.Comparedwithnaturalfibres,whichhavegreenhousegasemissionsbetween0.5–0.7 tonnesofCO2-eqper tonneofnaturalfibre(fromcultivationtofibrefactoryexitgate,excludingtransporttothecustomer),impacton

climatechangefromglassfibreproductionisthreetimeshigherthantheimpactfromnaturalfibreproduction.This is also reflected in the impact categoryprimaryenergyuse.Figure15showsprimaryenergy use for the production of hemp fibrecompared to a number of non-renewablematerials.Withabout5GJ/t,theproductionofhempfibreshowsthelowestproductionenergyofallthematerialsbyfar.Forexample,primaryenergyforproducingglassfibreaccountsforupto35GJ/tofglassfibre,whichisseventimesasmuchprimaryenergyashempfibreuses(Haufe&Carus2011).

capacity, flax is prone to weed infestation(Heyland et al. 2006, pp. 285). Therefore,herbicidesusuallyneedtobeappliedforflaxinhigherdoses.Inthetwohempscenarios,theshareofpesticidesisverylow:herbicidesareonlyusedtopreparethefield,butnopesticidesareappliedduring thegrowingperiod.Dueto itsvigorousgrowth,shadingcapacityandresistancetodiseases,hempcanbegrownwithout theuseof herbicidesor fungicides(Heylandetal.2006,pp.304).

•Fieldoperations,decorticationandtransportationdiffer for juteandkenafandhempandflax.Fieldoperationsanddecorticationaremainlydonemanually,which causes relatively lowemissions. Since jute and kenaf are grownandprocessedoutsideofEurope,however,transportationmust be taken into account,bothoverlandtransportfromthefarmtotheprocessingsiteaswellasmarinetransportationto the factory gate in Europe. This meansthatforkenafandjute,emissionscausedbytransport constitute a large portion of totalemissions,onlybeingsurpassedbyemissionscausedbyfertilizerproduction.Inotherwords,lowemissionsfrommanualfieldoperationsareoffsetbytheemissionscausedbytransportfromAsiatoEurope.

• Another important contributor to overallgreenhousegasemissionsforhempandflaxstraw is their procession into fibres. Theseemissionsaremainlycausedby theenergyconsumption for decortication and fibreopening.Juteandkenaffibreopening,isdonebymachines;ontheotherhand,decorticationis done manually. Therefore the impact offibreprocessingfor juteandkenaf issmallercomparedtohempandflaxfibreprocessing.

•Forflaxcultivation,theemissionsfromfieldoperationsarequitehighincomparisonwithhempfieldoperations.Thisisduetothelowerstrawandcoherentfibreyieldperareaunitofflax.Additionally,emissions forflaxseedproductionarecomparablyhigher,duetoahighersowingrate.Jutehasaverylowsowingrateincomparisontokenaf,soemissionsfromjuteseedproductionarelowercomparedwiththeotherbastfibres.

• Life cycle stage transport III contributesthe same amount of emissions in eachfibre scenario, because this stage involvestransportationofthebaledfibreswithinEurope,eitherfromtheharbourinHamburgorfromthefibreprocessingfacilityinEuropetothenon-wovenproducer.Theseemissionsarebasedonthesameassumptionsforallscenarios.

Page 30: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

30 © 2015 nova-Institut GmbH, Version 2015-04

Figure 15: Primary energy use of different materials in GJ/t (Haufe & Carus 2011)

0

50

100

150

200

250

300

350

Carbon fibre PUR PES EPS PP Glass fibre Mineral wool Hemp fibre

GJ/

t

Naturalfibresareusedinbiocomposites,amongotherthings.Biocompositesarecomposedofapolymerandnaturalfibres,the latterofwhichgivesbiocompositestheirstrength.Figure16indicates that hemp fibre composites showgreenhousegasemissionsavingsof10to50%comparedtotheirfunctionallyequalfossilbasedcounterparts;whencarbonstorageisincluded,

greenhousegassavingsareconsistentlyhigher,at30–70%(Haufe&Carus2011).However,thegreat advantage of natural fibres comparedto glass fibres, in terms of greenhouse gasemissions,onlypartiallyremainsfortheirfinalproducts, because further processing stepsmitigatetheirbenefits.

Page 31: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 31

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

5 Discussion on further sustainability aspects of natural bast fibres

Although carbon footprints are a very usefultooltoassesstheclimate impactofproducts,a comprehensive ecological evaluationmustconsiderfurtherenvironmentalcategories.Onlytakingintoaccountgreenhousegasemissionscan lead to inadequate product reviews andrecommendationsforaction,inparticularwhenother environmental impacts have not beenconsideredatall.Therefore,onetaskoffurtherstudies istotakeother impactcategories intoconsideration.Sincenaturalfibresareusedinmanyindustrysectors,certificationisasuitableinstrumenttoprovesustainability.At themoment therearecertification systems available which insurethe production of biomass in a social andenvironmentally sustainableway. For natural

technicalfibrestherearetwofavourablesystemsinplacewhicharerecognizedworldwide.Theseare(inalphabeticalorder):

1.InternationalSustainability&CarbonCertification(ISCCPLUS)for foodandfeedproductsaswellasfortechnical/chemicalapplications(e.g.bioplastics)andapplicationsinthebioenergysector (e.g. solid biomass). For furtherinformationsee:http://www.iscc-system.org/en/iscc-system/iscc-plus/.

2.RoundtableonSustainableBiomaterials(RSB)isaninternationalmulti-stakeholderinitiativefortheglobalstandardandcertificationschemeforsustainableproductionofbiomaterialsandbiofuels.Forfurtherinformationsee:http://rsb.org.

Figure 16: GHG emissions expressed in percent for the production of fossil based and hemp based composites for a number of studies – showing the effects of biogenic carbon storage where available (Haufe & Carus 2011)

hemp-based composites, accounted for carbon storage

hemp-based composites, not accounted for carbon storage

fossil-based composites

GH

G e

mis

sion

s in

%: f

ossi

l- an

d he

mp-

base

d

com

posi

tes

com

pare

d

Hem

p fib

re/P

P vs

. G

F/PP

mat

Hem

p fib

re/P

P vs

. G

F co

mpo

site

Hem

p fib

re/P

P vs

. PP

com

posi

te

Hem

p fib

re/E

poxy

vs

. ABS

aut

omot

ive

do

or p

anel

Hem

p fib

re/P

TP

vs. G

F/PE

S bu

sex

terio

r pan

el

Hem

p/PP

vs.

G

F/PP

bat

tery

tray

100%

80%

60%

40%

20%

0%

4 5 6 7 8 9

Page 32: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

32 © 2015 nova-Institut GmbH, Version 2015-04

According to ISCC PLUS the sustainableproductionofnaturalfibresischaracterizedbythesixprinciplesmentionedbelow(ISCCcertifiesaccordingtotheseprinciples) (ISCC2014). Inaddition,ISCCstatesaseventhprinciple,whichdealswiththedesignationofgreenhousegasemissionsandwhichneedstobeappliedfortheproductionofbiomass(ISCC2013).Theseprinciplesare:1.Biomassshallnotbeproducedonlandwith highbiodiversityvalueorhighcarbonstock. Highconservationareasshallbeprotected.

2.Biomass shall be produced in an environmentally responsible way. This includes the protection of soil, water and airandtheapplicationofGoodAgricultural Practices.

3.Safeworkingconditionsthroughtrainingand education, use of protective clothing and properandtimelyassistanceintheeventof accidents.

4.Biomassproductionshallnotviolatehuman rights, labour rightsor land rights. It shall promoteresponsible labourconditionsand workers’health,safetyandwelfareandshall bebasedonresponsiblecommunityrelations.

5.Biomass production shall take place in compliancewith all applicable regional andnational lawsandshall followrelevant internationaltreaties.

6.Good management practices shall be implemented.

7.Calculationandverificationofgreenhouse gas emissions must be provided by the biomassproducer.

The entire land area of a farm/ plantation,including agricultural land, pasture, forestand any other landmust comply with ISCCStandard202(ISCC2014) (Principle1–6).EUMemberCountriesthathaveimplementedCross

Complianceonlyneed tocontrolPrinciple1, as Principles 2 to 6 are already covered byCrossComplianceandothercontrolsystems.Moreover,thedesignationofGHGemissionsismandatoryforbiomassproductionandmustbeavailableatthefirstgatheringpoint(seepoint7above)(ISCC2013).Natural fibres certified as sustainable havehithertobeenunavailableonthemarket.As isshownabove,EUmembercountriescultivatingfibresonlyneedtofulfilprincipleoneandcarryoutthecalculationofgreenhousegasemissionswithinISCCPLUS(seepoint7).FornaturalfibresfromAsiatheprocedureismorecomplex,duetoforinstanceworkingconditionsandtheimpactofwaterrettingontheenvironment.Is there any benefit to using sustainability certificates for technical fibres?Certificationexpressesandallocatestheaddedvalueofsustainabilitywithinthemarket.Italsoyields further positive economic effects andhasfar-reachingpositiveeffects.Firstofall, itstrengthenssustainablewaysofusingresources.Forcompaniesproducingfibres,itstrengthenstheirmarketingeffects,asthecertificationlabelraisesattentionandhelpstoestablishbrands.More important, however, is the fact thatcompaniesaregiventheopportunitytoaddanadditionalmargin to theirproductsbasedontheemotionalperformance(“GreenPremium”)thatispartofoverallproductperformanceandvaluedbyendconsumers.Moreover,certificationstrengthens companies’ supply chains as itensurestransparencyandprocessreliability.Especiallytheautomotiveindustryandthebio-buildingsectorareinterestedinshowingthatthematerialstheyuseare“green”.Asmentionedbefore,naturalfibreswhicharecertifiedbyISCCPLUSorRSBarenotyetavailableontheworldmarket.TheISCCPLUScertificationprocessiscurrentlyunderwayfordifferentproducerswithinEurope,viz.theNetherlands,France(nofinaldecisionasof yet, status:endofFebruary2015)andRomania(startedspring2015).Soitisexpectedthatthefirstsustainablecertificatednaturalfibreswillbeavailablebytheendof2015.

Page 33: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 33

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

6 Executive summary

Naturalfibressuchasflax,hemp,juteorkenafare being usedmore andmore in technicalapplications.Themainnewapplications thathavebeendevelopedandimplementedoverthelast20yearsarebiocompositesinautomotiveinteriorsandinsulation.

Thecarbonfootprintofthesenaturalfibres ismuchlowerthantheircounterpartsglassandmineral fibres. The production of 1 tonne ofglassfibresshowsacarbonfootprintofabout 1.7–2.2tonnesCO2-eq,whereasnaturalfibresonlyhaveacarbonfootprintofabout0.5–0.7tonnesCO2-eqpertonneofnaturalfibre(untilthefactorygate,excludingtransporttothecustomer).Thisisonlyonethirdofthecarbonfootprintofglassfibres.However, the initial advantagenaturalfibreshaveoverglassfibresdecreasesforthefinalproduct,becausefurtherprocessingstepsoffsettheircarbonfootprint.Nevertheless,naturalfibrecompositehavea20–50%lowercarbonfootprintcomparedtoglassfibrecomposites.

Thecarbon footprintsof thedifferentnaturalfibresflax,hemp, juteandkenafarenotverydifferent.Intherangeofuncertainty,thecarbonfootprinttothefactorygateoftheEuropeannon-wovenproducerintheautomotiveorinsulationsector isabout750kgofCO2-eqpertonneof

naturalfibreforallfournaturalfibres.Juteandkenafshowlessemissionsduringcultivation,harvestinganddecorticationbecauseofmanualprocessing,butlongtransporttoEuropelevelsthisadvantage.

Becausefertilizershaveahighshareinthetotalcalculationofemissions,substitutingmineralfertilizersbyorganicfertilizersleadstoalowercarbonfootprintof650kgofCO2-eqpertonneofnaturalfibre.Usingorganicfertilizer isonlypossibleifthecropandtheregionaresuitable(availabilityofanorganicfertilizersurplusfrommeat production). Currently pig slurry andfermentationresiduesareonlyusedforhempgrown in the north of the Netherlands andGermany.

ThedataonGHGemissionsintheproductionofnaturalfibresstillshowsomegaps,especiallyforwaterandfieldretting,wherenosoliddataareavailable.TrialsinItalyintheyear2015withintheMultiHempprojectframeworkwillfillthesegaps.Natural fibres that show ISCCPLUSorRSBcertificates for the sustainable production ofbiomass have hitherto been unavailable ontheworldmarket. Europeanhempfibres areexpectedtobethefirstnaturalfibrewithanISCCPLUScertificate,attheendof2015.

Page 34: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

34 © 2015 nova-Institut GmbH, Version 2015-04

7 Acknowledgement

Theauthorswishtoacknowledgefundingfrom EUMultiHempproject(Grantagreement311849)(www.multihemp.eu).

nova-Institutethanksthefollowing expertsfortheircontributiontothis paper(inalphabeticalorder):

• Dr. Stefano Amaducci (UniversitàcattolicadelSacroCuore,Italy)-projectcoordinatorinMultiHempproject

• Heinz Amolsch (ThermoNaturGmbH&Co.KG)

• Albert Dun (HennepverwerkingsbedrijfDunAgroB.V.,TheNetherlands)–partnerinMultiHempproject

• Bernd Frank (BafaGmbH,Germany)–partnerinMultiHempproject

• Subrata Gupta (JuteCommissioner,India)

• Dr. Hans-Jörg Gusovius (Leibniz-InstitutfürAgrartechnikPotsdam-Bornime.V.,Germany)-partnerinMultiHempproject

• John Hobson (PlantFibreTechnologyLtd,GreatBritain)

• Prof. Dr. Jörg Müssig (HochschuleBremen,Germany)- partnerinMultiHempproject

• Mark Reinders (HempFlax,TheNetherlands)

• Farid Uddin (ServicesandSolutionsInternationalLtd.,Bangladesh)

• Alfons Üllenberg (ConsultantforRuralDevelopment)

• Wang Yu Fu (ChineseAcademyofAgriculturalSciences(CAAS),InstituteofBastFibreCrops,China)

The authors of the study

Dipl.-Ing. Martha Barth – nova-Institute (Germany) studied at the TechnicalUniversity of Vienna and attheMontanuniversitätLeoben(Austria) and graduated in„Industrial EnvironmentalProtection, Waste Disposal

TechnologyandRecycling“.Forseveralyears,sheworkedatanengineeringofficeandwasinchargeofconstructionsupervisionregardingchemicalandenvironmentalsubjectsaswellastheplanningandmonitoringoftheresearchandremediation of contaminated sites in Austria.Withhercomprehensiveknowledgeofwaste,supplyanddisposalmanagement,MarthaBarthsupportsthenovateaminthefieldsustainabilityassessment of innovative products. LifeCycleAssessmentand the implementationofsustainabilitycertificationsofbio-basedproductsarealsopartofherwork.

Dipl.-Phys. Michael Carus – nova-Institute (Germany) physicist, founder andmanaging director of thenova-Institute, is workingforover20yearsinthefieldofBio-basedEconomy.Thisincludesbiomassfeedstock,

processes, bio-based chemistry, polymers,fibresandcomposites.The focusofhisworkare market analysis, techno-economic andecologicalevaluationaswellasthepoliticalandeconomicframeworkforbio-basedprocessesandapplications(“levelplayingfieldforindustrialmaterial use”). Since 2005,Michael Carus ismanaging director of the European IndustrialHempAssociation(EIHA).Michael Carus is main author of differentfundamentalreportsandpolicypapersonBio-basedEconomyintheEU.Mostofthemcanbedownloadedforfree:www.bio-based.eu/policy

Page 35: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 35

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

Aji, I.S., Sapuan, S.M., Zainudin E.S., and Abdan, K. 2009:Kenaf fibres as reinforcement for polymericcomposites:areview. In: InternationalJournalofMechanicalandMaterialsEngineering(IJMME),Vol.4,No.3,239–248.

Amaducci, S., Amaducci, M.T., Benati, R., and Venturi, G. 2000:Cropyieldandqualityparametersof fourannualfibrecrops(hemp,kenaf,maizeandsorghum)intheNorthofItaly.In:IndustrialCropsandProducts,Vol.11,No.2,pp.179–186.

Amaducci, S. & Gusovius, H.-J. 2010:Hemp –Cultivation, Extraction and Processing.In: Müssig, J. (Ed.): Industrial Applications ofNaturalFibres-Structure,PropertiesandTechnicalApplications.Chichester(UK):JohnWiley&Sons.Pp.109–134.

Ardente, F., Beccali, M., Cellura, M., and Mistretta, M. 2008: Buildingenergyperformance:ALCAcasestudyof kenaf-fibres insulation board. In: Energy andBuildings,Vol.40,No.1,pp.1–10.

Banik, A., Sen, M., and Sen, S.P. 1993: Methane emission from jute-retting tanks. In:EcologicalEngineering,Vol.2,No.1,pp.73–79.

Baumann, H. & Tillmann, A.-M. 2004: TheHitchHiker’sGuidetoLCA.Anorientation inlifecycleassessmentmethodologyandapplication.Lund,Sweden:Studentlitteratur.

Behmel, U. 2014:personalcommunicationwithM.Carus,Germany.

Bhardwaj, H.L., Webber, C.L., and Sakamoto, G.S. 2005:Cultivationof kenafandsunnhemp in themid-Atlantic United States. In: Industrial Crops andProducts,Vol.22,No.2,pp.151–155.

Bocsa, I., Karus, M., and Lohmeyer, D. 2000:Der Hanfanbau - Botanik, Sorten, Anbau undErnte,MärkteundProduktlinien.Münster-Hiltrup:Landwirtschaftsverlag.

Carus, M., Eder, A., Dammer, L., Korte, H., Scholz, L., Essel, R. and Breitmayer, E. 2014:Wood-PlasticComposites(WPC)andNaturalFibreComposites(NFC):EuropeanandGlobalMarkets2012andFutureTrends.Hürth(DE):Carus,M.,nova-InstitutGmbH.

Carus, M., Vogt, D., and Breuer, T. 2008:Studie zur Markt- und Konkurrenzsituation beiNaturfasernundNaturfaserwerkstoffen(DeutschlandundEU). In:GülzowerFachgespräche,Band26.Gülzow (DE): Fachagentur NachwachsendeRohstoffee.V.(FNR).

Cherrett, N., Barrett, J., Clemett, A., Chadwick, M., and Chadwick, M.J. 2005: EcologicalFootprintandWaterAnalysisofCotton,Hemp and Polyester. Stockholm: StockholmEnvironmentalInstitute(SEI).

Dissanayake, N.P.J. 2011: Life Cycle Assessment of Flax Fibres for thereinforcementofpolymermatrixcomposites.PhDthesisattheUniversityofPlymouth.

EIHA 2015: personalcommunicationwithL.Sarmento,Germany.

Essel, R. 2013: ResultsfromafieldtriptoHempTechnologyLtd.Halesworth,UK.

Evans, A., Ruff, E., and Mortimer, N. 2006:SelectiveLifeCycleAssessmentsforAgriculturalFleeceProductionfromHempandPolypropyleneProducedfromCrudeOil.NorthEnergyAssociatesLtd. Prepared for DEFRA project EnvironmentalAssessment Tools for Biomaterials (NF0614),Stocksfield,England.

FAO 2008:TechnicalPaperNo.56:Discovernaturalfibres2009-ProceedingsoftheSymposiumonNaturalFibres.Availableathttp://www.fao.org/docrep/011/i0709e/i0709e00.htm(lastaccessed2015-02-24).

FAOSTAT 2015:Statistical database of the FAO. Available at: http://faostat3.fao.org/home/E(lastaccessed2015-02-24).

González-García, S., Hospido, A., Moreira, M.T., and Feijoo, G. 2007:Life Cycle Environmental Analysis of HempProduction for Non-wood Pulp. In Manuscriptof: LCM 2007 in Zurich. Available at http://www.lcm2007.org/paper/109.pdf (lastaccessed2015-02-10).

González-García, S., Hospido, A., Feijoo, G., and Moreira, M.T. 2010a:Lifecycleassessmentof rawmaterials fornon-woodpulpmills:HempandFlax. In:Resources,ConservationandRecycling,Vol.54,No.11,pp.923–930.

González-García, S., Moreira, M.T., Artal, G., Malanodo, L., and Feijoo, G. 2010b:Environmental impact assessment of non-woodbased pulp production by soda-anthraquinonepulpingprocess.In:JournalofCleanerProduction,Vol.18,No.2,pp.137–145.

8 References

Page 36: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

36 © 2015 nova-Institut GmbH, Version 2015-04

Gosh, T. 1983: HandbookofJute.FAOPublication.

Graupner, N. & Müssig, J. 2010:Technical Applications of Natural Fibres: AnOverview.In:Müssig,J.(Ed.):IndustrialApplicationsof Natural Fibres - Structure, Properties andTechnicalApplications.Chichester(UK):JohnWiley&Sons.Pp.63–71.

Grießhammer, R. & Hochfeld, C. 2009:ProductCarbonFootprintMemorandum-Positionstatementonmeasurement andcommunicationof theproduct carbon footprint for internationalstandardization and harmonization purposes.Freiburg(DE):Öko-Institute.V.

Haufe, J. & Carus, M. 2011:HempFibresforGreenProducts–Anassessmentoflifecyclestudiesonhempfireapplications.TheEuropeanHempAssociation (EIHA).Availableathttp://bio-based.eu/download/?did=1086&file=0 (lastaccessed2015-02-05).

Heyland, K.-U., Hanus, H., and Keller, E.R. 2006:Ölfrüchte, Faserpflanzen, Arzneipflanzen undSonderkulturen. Handbuch des Pflanzenbaus,Volume4.Stuttgart(DE):EugenUlmerKG.

Hossain, M.D., Hanafi, M.M., Jol, H., and Hazandy, A.H. 2011:Growth, yield and fiber morphology of kenaf(hibiscuscannabinusL.)grownonsandybrissoilas influenced by different levels of carbon. In:AfricanJournalofBiotechnology,Vol.10,No.50,pp.10087–10094.

ISCC 2014:ISCC PLUS 202 Standard on SustainabilityRequirements for the Production of Biomass.InternationalSustainability&CarbonCertification(ISCC). Available athttp://www.iscc-system.org/uploads/media/ISCC_EU_202_Sustainability_Requirements-Requirements_for_theProduction_of_Biomasse_2.3.pdf(lastaccessed2015-03-27).

ISCC 2013:ISCC PLUS 201 System Basics ISCC PLUSStandard for the certification of sustainablebiomass and its processing steps. InternationalSustainability & Carbon Certification (ISCC).Availableathttp://www.iscc-system.org/uploads/media/ISCC201SystemBasics.pdf (lastaccessed2015-03-27).

Islam, K. & de Silva, H. 2011:Jute value chain in Bangladesh: Informationand knowledge gaps of smallholders. Reportof LIRNEasia. Available at http://lirneasia.net/wp-content/uploads/2010/07/jute.vc_1.pdf (lastaccessed2015-02-27).

Islam, M.S. & Ahmed, S.K. 2012:TheImpactsofJuteonEnvironment:AnAnalyticalReviewofBangladesh.In:JournalofEnvironmentandEarthScience,Vol.2,No.5.,pp.24-31.

Islam, M. 2014:Research Advances of Jute Field Weeds inBangladesh:AReview.In:ARPNJournalofScienceandTechnology,Vol.4,No.4,pp.254–268.

Krishnan, K.B., Doraiswamy, I., and Chellamani, K.P. 2005:Jute. In:R.R.Franck(Ed.):Bastandotherplantfibres.Cambridge:WoodheadPublishing.Pp.24–93.

La Rosa, A.D., Cozzo, G., Latteri, A., Recca, A., Björklund, A., Parrinello, E., and Cicala, G. 2013:Life cycle assessment of a novel hybrid glass-hemp/thermosetcomposite.In:JournalofCleanerProductionVol.44,pp.69–76.

Lam, T.B.T., Hori, K., and Iiama, K. 2003:Structural characteristics of cell walls of kenaf(Hibiscus cannabinus L.) and fixation of carbondioxide.In:JournalofWoodScience,Vol.49,No.3, pp.255–261.

Mahapatra, B.S., Mitra S., Sinha, M.K., and Ghorai, A.K. 2009:Researchanddevelopmentinjute(Corchorussp.)andalliedfibresinIndia-Areview.In:IndianJournalofAgronomy,Vol.54,No.4,pp.361–373.

Mohammad, S.I. & Sheikh, K.A. 2012:TheImpactsofJuteonEnvironment:AnAnalyticalReviewofBangladesh.In:JournalofEnvironmentandEarthScience,Vol.2,No.5,pp.24–31.

Mondal, D.K. & Kaviraj, A. 2007:Ecotoxicologicaleffectsofjuterettingonthesurvivalof two freshwaterfishandtwo invertebrates. In:Ecotoxicology,Vol.17,No.3,pp.207–211.

Monti, A. & Alexopoulou, E. 2013:Kenaf:AMulti-PurposeCropforSeveralIndustrialApplications – New Insights from the BiokenafProject.London:Springer-Verlag.

Monti, A. & Zatta, A. 2009:FromgrowingKenaftoitsindustrialuse.Presentationof EU Project Crops2Industry. Available at: http://www.crops2industry.eu/images/pdf/poznan/6%20UniBO.pdf(lastaccessed2015-02-24).

Mudge, F. & Adger, N. 1994:Methane emissions from rice and coarse fibreproduction.CSERGEGECWorkingPaper94-08.

Munder, F., Fürll, C., and Hempel, H. 2005:Processing of bast fibre plants for industrialapplication. In: Mohanty, A.K., Misra,M. & L.T.Drzal (Eds.): Natural fibres, biopolymers andbiocomposites.BocaRaton(FL):CRCPress.Pp.109–140.

Page 37: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 37

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

Müller-Sämann, K.M., Reinhardt, G., Vetter, R., and Gärtner, S. 2003:NachwachsendeRohstoffeinBaden-Württemberg:Identifizierung vorteilhafter Produktlinienzur stofflichen Nutzung unter besondererBerücksichtigungumweltgerechterAnbauverfahren.Mülheim (DE): Institut für umweltgerechteLandbewirtschaftung,MülheimandHeidelberg(DE):InstitutfürEnergie-undUmweltforschung.

Müssig, J. & Slootmaker, T. 2010:Types of Fibre. In: Müssig, J. (Ed.): IndustrialApplicationsofNaturalFibres-Structure,PropertiesandTechnicalApplications.Chichester(UK):JohnWiley&Sons.Pp.41–48.

Pari, L., Hepin, X., and Reinders, M. 2014: Harvesting,ProcessingandLogisticsoftheFibreCrops–D1.3FIBRAprojectinterimreport.

PAS 2050: 2011:Specificationfortheassessmentofthe lifecyclegreenhousegasemissionsofgoodsandservices.London(UK):BritishStandardsInstitution(BSI).

Pless, P.S. 2001:Technical and environmental assessment ofthermal insulationmaterialsfrombastfibercrops.DissertationattheUniversityofCalifornia.

PwC 2012:Life cycle assessment of CFGF – ContinuousFilament Glass Fibre Products. Reportprepared for GlassFibreEurope. Available at: http://www.glassfibreeurope.eu/wp-content/uploads/GFE-2012-02-LCA-report.pdf (lastaccessed2015-03-02).

Rahman, S. Md. 2010:Jute - A Versatile Natural Fibre - Cultivation,Extraction and Processing. In:Müssig, J. (Ed.):IndustrialApplicationsofNaturalFibres-Structure,PropertiesandTechnicalApplications.Chichester:JohnWiley&Sons.Pp.135–161.

Rana, S., Pichandi, S., Parveen, S., and Fangueiro R. 2014:Natural Plant Fibers: Production, Processing,Properties and Their Sustainability Parameters.In:RoadmaptoSustainableTextilesandClothing.TextileScienceandClothingTechnology.Singapore:SpringerVerlag.Pp.1-35.

Rijswijk, K., Brouwer, W.D., and Beukers, A. 2001:Application of Natural Fibre Composites in theDevelopment of Rural Societies. Structuresand Material Laboratory, Faculty of AerospaceEngineering,DelftUniversityofTechnology,FAO.

Salmon-Minotte, J. & Franck, R. R. 2005:Flax. In:R.R.Franck(Ed.):Bastandotherplantfibres.Cambridge:WoodheadPublishing.

Scheer-Triebel, M. & Leon, J. 2000:IndustrialFibre-QualityAssessmentandInfluenceofCropManagement inFibreCrops:aLiteratureReview. In:Pflanzenbauwissenschaften–GermanJournalofAgronomy,Vol.4,No.1,pp.26–41.

Schmidt, A.C., Jensen, A.A., Clausen, A.U., Kamstrup, U., and Postlethwaite, D. 2004:AcomparativeLifeCycleAssessmentofBuildingInsulation Productsmade of stonewool, paperwoolandflax.In:InternationalJournalofLifeCycleAssessment,Vol.9,No.1,pp.53–66.

Singh, D.P.:Mesta(HibiscusCannabinus&HibiscusSabdariffa).Report of Central Research Institute for Jute &Allied Fibres, West Bengal, India. Available at: http://assamagribusiness.nic. in/mesta.pdf (lastaccessed2015-02-03).

Sobhan, M.A., Sur, D., Amin, M.N., Ray, P., Mukherjee, A., Samanta, A.K., Guha Roy, T.K. Abdullah, A.B.M., Bhuyan, F.H., Roul, C., and Roy, S. 2010:Jutebasics.IJSGPublication.

Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, B., and Midgley, P.M. (Eds.) 2013:IPCC-ClimateChange2013:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFifthAssessment Report of the IntergovernmentalPanelonClimateChange.Cambridge&NewYork:CambridgeUniversityPress.

Stricker, J.A., Prine, G.M., and Riddle, T.C. 2006:Kenaf -Apossiblenewcrop forcentralFlorida.Institute of Food and Agricultural Sciences,UniversityofFlorida.

Tahir, P., Ameld B.A., Syeed O.A.S., and Zakiah A. 2011:Rettingprocessofsomebastplantfibresanditseffectonfibrequality:areview. In:BioResources,Vol.6,No.4,pp.,5260–5281.

Thüringer Landesanstalt für Landwirtschaft (Ed.) 2009:AnbautelegrammFaserlein(LinumusitatissimumL.).Dornburg,Germany.

Üllenberg, A., Simons, J., Hoffmann, J., Siemers, W., Baoy, N., Abdullah, A.B.M., Murthy, P.V.G.K., and Geisen J. 2011:Nachwachsende Rohstoffe für die stofflicheNutzung - Auswirkungen für Entwicklungs- undSchwellenländer: Am Beispiel von Palmkernöl,Kokosöl, Rizinusöl, Naturkautschuk und Jute.Eschborn (DE): Deutsche Gesellschaft fürInternationaleZusammenarbeit(GIZ)GmbH.

Page 38: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

38 © 2015 nova-Institut GmbH, Version 2015-04

van der Werf, H.M.G. 2004:LifeCycleAnalysisoffieldproductionoffibrehemp,theeffectofproductionpracticesonenvironmentalimpacts.In:Euphytica,Vol.140,No.1-2,pp.13–23.

van der Werf, H.M.G. & Turunen, L. 2008:Theenvironmental impactsof theproductionofhempandflaxtextileyarn.In:IndustrialCropsandProducts,Vol.27,No.1,pp.1–10.

Vetter, A., Graf, T., Heydrich, R., Reidel, H., Wurf, G., and Biertümpfel, A. 2002:Anbau und Verwertung von Faserpflanzen inThüringen-Teilbericht:EinflussagrotechnsicherMaßnahmen und Sortenwahl auf Ertrag undQualität.ThüringerLandesanstaltfürLandwirtschaft-Themenblatt-Nr.4203430/2002.

von Francken-Welz, H. 2003:VergleichendeBewertungderErtragsfähigkeitundFaserqualitätvonLein(LinumusitatissimumL.),Hanf(CannabissativaL.)undFasernessel(UrticadiocaL.) zur Produktion hochwertiger Industriefasern.SchriftenreihedesInstitutesfürPflanzenbau,Band4/2003.Aachen(DE):ShakerVerlag.

Weiss, M., Haufe, J., Carus, M., Brandão, M., Bringezu, S., Hermann, B. and Patel, M.K. 2012:AreviewoftheEnvironmentalImpactsofBiobasedMaterials.In:JournalofIndustrialEcology,Vol.16,No.S1,pp.169–181.

Zawani, Z., Chuah-Abdullah, L., Ahmadun, F.-R., and Abdan, K. 2013:AcclimatizationProcessofMicroorganismsfromActivated Sludge in Kenaf-Retting Wastewater.In: Ravindra, P., Bono, A., and Chu, C. (Eds.).Developments in Sustainable Chemical andBioprocessTechnology.NewYork:Springer.Pp.59–64.

Zöphel, B. & Kreuter T. 2001:NachwachsendeRohstoffe(Hanf,Flachs,SalbeiundKamille)-AnbauundBedeutungfürdenLebensraumAcker.Leipzig(DE):SächsischeLandesanstalt fürUmweltundGeologie.

Page 39: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 39

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

9 Appendix

Theinventoryofallin-andoutputsoftheconsiderednaturalfibreprocessesarelistedinthefollowingtables.

TableA:LCIdataonflaxFLAX

Materials / Energy Units ValueRange (+/-)

Data source /Reference Comments

Inputs

Seeds (sowing rate) kg/ha*a 110 10 in Vetter et al. (2002): 120–140 kg/ha in Schmidt et al. (2004): 80 kg/ha in Müller–Sämann et al. (2003): 110–140 kg/ha in Pless (2001): 100–130 kg/ha in van der Werf & Turunen (2008): 115 kg/ha

Fertilizers

Nitrogen kg N/ha*a 40 10 in Zöphel & Kreuter (2001): N-P-K: (60–120)-(80–160)-(70–120) in Schmidt et al. (2004): N-P-K: 40-17-70 in Dissanayake (2011): N-P-K: 40-50-50 in Carus et al. (2008): N-P-K: 40-40-40 in Pless (2001): N-P-K: 50-80-80 in van der Werf & Turunen (2008): N-P-K: 40-30-60

Phosphorus kg P2O5/ha*a 40 10

Potassium kg K2O/ha*a 80 10

Lime kg CaCO3/ha*a 60 15 in Salmon-Minotte & Franck (2005): 60–75 kg/ha in Dissanayake (2011): 666 kg/ha in van der Werf & Turunen (2008): 333 kg/ha

Pesticides in van der Werf & Turunen (2008): 2.6 kg/ha - active ingredient of pesticide in Pless (2001): 0.5 kg/ha unspecified pesticides

Insectizide - Trafo WG (active substance: Lambda-Cyhalothin)

kg Trafo WG/ha*a 0.15 Thüringer Lan-desanstlat für Landwirtschaft (2009)

Herbicide - Callisto litre Callisto/ha*a 2 0.5 Thüringer Landesanstlat für Landwirtschaft (2009): 1.5 litre/ha Vetter et al. (2002): 1.5 litre/ha

Herbicide - Roundup (active substance: Glyphosate)

litre Roundup/ha*a 4 0.5 Thüringer Landesanstlat für Landwirt-schaft (2009) - ripening-ac-celertation

Fuel use for field operations

Soil prepartion: pri-mary and secondary tillage (mouldbord ploughing)

litre/ha*a 20.1 2 based on Dissanayake (2011): mould-board plough: 15.1 litre/ha

Sowing: grain drill litre/ha*a 6.6 2.3 in Pless (2001) there’s a range from 1.3–5.9 litre/ha

Page 40: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

40 © 2015 nova-Institut GmbH, Version 2015-04

FLAX

Materials / Energy Units ValueRange (+/-)

Data source /Reference Comments

Pesticide-application (sprayer)

litre/ha*a 7.5 1.5 based on Pless (2001) 3 times sprayer: pre-sowing - Callisto, at pest infestation - Insecticide, for ripening-acceleration - Roundup

Fertilizer spreader (mineral fertilizer application)

litre/ha*a 4.5 0-5 adapted from hemp scenario: value-area based on an interview with M. Reinders (2014)

Cutting litre/ha*a 5.4 2.9 Pless (2001)

Turning (2-times) litre/ha*a 6 1 Pless (2001): 4–12.4 litre/ha per 2-times windrowing turning of hemp based on an interview with M. Reinders (2014): 2 litre/ha per one-time-turning

Swathing litre/ha*a 2 0.25 adapted from hemp scenario: value-area based on an interview with M. Reinders (2014) in Pless (2001): 2–6.2 litre/ha (windrow)

Baling (round bales) litre/ha*a 6.6 0.5 Pless (2001): 6.6 litre/ha

Bale moving litre/ha*a 3 1 adapted from hemp scenario: value based on an interwiev with M. Reinders (2014) in Pless (2001): 5.6 litre/ha (tractor with front-end loader)

Transport

Transport I: Transport of flax straw from the field to the processing-site

km (roundtrip) 60 20 assumption from nova based on hemp-scenario Type of transportation: lorry 16–32 t, EURO 5

Transport II: Transport of flax fibre to the harbour in Hamburg

km (one-way) - does not apply for this process, because flax is produced in Europe Type of transportation: transoceanic freight ship

Transport III: Transport of flax fibre on the road in Europe

km (roundtrip) 400 100 assumption from nova for all transportation within Europe on the road to the non-woven-producer Type of transportation: lorry 16–32 t, EURO 5

Fibre processing

Electricity use kWh/t fibre 279 Essel (2013)

Diesel fuel use litre/t fibre 1.67 Essel (2013)

Yields

Straw yield (only stems)

t retted straw/ha*a 6 Dissanayake (2011): 6 t/ha Carus et al. (2008): 5–6 t straw/ha

Yields can vary largely depending on pro-ducers, climatic conditions, region, soil characteristics, sowing and harvesting date, and the type of seed sown.

Page 41: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 41

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

FLAX

Materials / Energy Units ValueRange (+/-)

Data source /Reference Comments

Water content of straw

% 15 Carus et al. (2008)

Land requirement

Cultivated area ha*a/t fibre 0.8 Calculation based on straw yield, water content and fibre yield

Outputs

Flax-fibre % of retted and transported straw

24.5 based on Essel (2013): 25-50-25Flax-shives 51

Flax-dust 24.5

HEMP

Materials / Energy Units ValueRange (+/-)

Data source /Reference Comments

Inputs

Seeds (sowing rate) kg/ha*a 33 2 based on inter-views (2014)

35 kg/ha in NL (interview with M. Reinders-2014) 32–33 kg/ha in NL (interwiew tih A. Dun-2014) 30–40 kg/ha are mentioned in Carus et al. (2008)

Fertilizers

Nitrogen kg N/ha*a 100 25 interview with M. Reinders (2014): N-P-K: 120-80-120 in Carus et al. (2008): N-P-K: 100-75-80 in González-García et al. (2010a) and (2010b): N-P-K: 85-65-125 in Heyland et al. (2006): suggestion of: N-P-K: (60–150)-(40–140)-(75–200) in van der Werf (2004): N-P-K: 75-38-113

Phosphorus kg P2O5/ha*a 75 5

Potassium kg K2O/ha*a 100 20

Lime kg CaCO3/ha*a - - 5–6 years with a rate of 200 kg/ha depending on the pH of the soil (interview with A. Dun-2014)

Pig slurry m3 slurry/ha*a 22.5 2.5 value-area based on an interview with M. Reinders (2014)

23 m3/ha (interview with A. Dun-2014) in van der Werf (2004): 20,000 kg/ha

Transport of pig slurry from pig-farm to the field

km 200

TableB:LCIdataonhemp

Page 42: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

42 © 2015 nova-Institut GmbH, Version 2015-04

HEMP

Materials / Energy Units ValueRange (+/-)

Data source /Reference Comments

Pesticides Hemp crops are rarely threatened by dangerous pests. Only in some cases is glyphosate used prior to sowing.

Herbicide - Glypho-sate

kg Glyphosate/ha*a 2.57 2.57 based on inter-views (2014)

2 litre/ha in Rumania (interview with M. Reinders-2014) 3 litre/ha in NL (interview with A. Dun-2014) in Cherrettt et al. (2005): 2 litre/ha

Fuel use for field operations

Soil-preparation with a “spar-machine” (harrowing, drill and sowing in one machine)

litre/ha*a 32 2 value-area based on an interview with M. Reinders (2014)

Pesticide-application (boom sprayer)

litre/ha*a is not yet included in the calculation; in Pless (2001) a range of literature values from 0.4–1.6 litre/ha is mentioned

Fertilizer spreader (mineral fertilizer application)

litre/ha*a 4.5 0.5 value-area based on an interview with M. Reinders (2014)

Slurry tank with trac-tor (organic fertilizer application)

litre/ha*a 11 1.5 value-area based on an interview with M. Reinders (2014) 25,000 litre-slurry-tank; including loading

Cutting litre/ha*a 11 1 value-area based on an interview with M. Reinders (2014); Double-Cut-Combine; 4.5-meter-working-width; cutting the stems at pieces of 60 centimers

Turning (2-times) litre/ha*a 4 0.5 value-area based on an interview with M. Reinders (2014)

Swathing litre/ha*a 2 0.25 value-area based on an interview with M. Reinders (2014) in Pless (2001): 2–6.2 litre/ha (windrow)

Baling (square bales) litre/ha*a 7.5 0.5 in Pless (2001): 6.6 litre/ha interview with M. Reinders (2014): 8.3 litre/ha

Bale moving litre/ha*a 3 1 value based on an interwiev with M. Reinders (2014) in Pless (2001): 5.6 litre/ha (tractor with front-end loader)

Transport

Transport I: Transport of hemp straw from the field to the processing-site

km (roundtrip) 60 20 value-area based on an interview with M. Reinders (2014) Type of transportation: lorry 16–32 t, EURO 5

Transport II: Transport of hemp fibre to the harbour in Hamburg

km (one-way) - does not apply for this process, because hemp is produced in Europe Type of transportation: transoceanic freight ship

Page 43: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 43

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

HEMP

Materials / Energy Units ValueRange (+/-)

Data source /Reference Comments

Transport III: Transport of hemp fibre on the road in Europe

km (roundtrip) 400 100 assumption from nova for all transpor-tation within Europe on the road to the non-woven-producer Type of transportation: lorry 16–32 t, EURO 5

Fibre processing

Electricity use kWh/t fibre 310 10 Essel (2013)

Diesel fuel use litre/t fibre 1.67 0.06 Essel (2013)

Yields

Straw yield (only stems)

t retted straw/ha*a 8.5 Bocsa et al. (2000): 7–9 t retted stem/ha Carus et al. (2008): 6–8 t straw/ha in Germany

Yields can vary greatly depending on producers, climatic conditions, region, soil characteristics, sowing and harvesting date, and the type of seed sown.

Water content of straw

% 15 Carus et al. (2008)

Land requirement

Cultivated area ha*a/t fibre 0.5 Calculation based on straw yield, water content and fibre yield

Outputs

Hemp-fibre % of retted and transported straw

28 Carus et al. (2008)

Hemp-shives 55

Hemp-dust 17

Page 44: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

44 © 2015 nova-Institut GmbH, Version 2015-04

JUTE

Materials / Energy Units ValueRange (+/-)

Data source /Reference Comments

Inputs

Seeds (sowing rate) kg/ha*a 6 2 Mahapatra et al. (2009): olitorius and capsularis jute: 4 to 6 and 6 to 8 kg/ha

Rahman (2010): 5–5.5 kg/ha (broadcast methode) (general information) Islam & de Silva (2011): 10–12 kg/ha (Bangladesh)

Fertilizers

Nitrogen kg N/ha*a 40 20 Mahapatra et al. (2009): 60–20

Phosphorus kg P2O5/ha*a 10 10 Mahapatra et al. (2009): 0–13

Potassium kg K2O/ha*a 45 20 Mahapatra et al. (2009): 25–63.3

Lime kg CaCO3/ha*a 62 2 Sobhan et al. (2010): for tossa jute requirement: 128 kg CaO and white juste 120 kg CaO; Mahapatra et al. (2009): 0.5 LR (Lime Requirement)

Magnesium Oxide kg MgO/ha*a 16 6 Sobhan et al. (2010): for tossa jute: 22 kg/ha Mahapatra et al. (2009): 10 kg/ha

Pesticides

Pesticide Metolachlor kg Metolachlor/ha*a 1 1 Mahapatra et al. (2010): for olitorius jute + hand-weeding

Gosh (1983): Fluchloralin: 1 kg/ha for weed control; Üllenberg et al. (2011): unspecified pesticides: 0.5 kg/ha Islam (2014): weeds are generally cont-rolled by raking and niri (hand weeding)

Fuel use for field operations

Soil prepartion litre/ha*a 10 2 assumption based on Sobhan et al. (2010): where bullock- or tractor driven ploughs (3–5 times) used for the fine tilth), assumption small tractor and 3–5 times plough

Sowing: grain drill litre/ha*a 0 0 manpower based on Rahman (2010) and Islam & de Silva (2011): broadcast methode - sower is walking

Pesticide-application (sprayer)

litre/ha*a 1 0 assumption: manpower, but using production machinery as a tool

Fertilizer spreader (mineral fertilizer application)

litre/ha*a 1 0 assumption: manpower, but using production machinery as a tool

TableC:LCIdataonjute

Page 45: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 45

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

JUTE

Materials / Energy Units ValueRange (+/-)

Data source /Reference Comments

Cutting litre/ha*a 0 0 manpower based on Islam & de Silva (2011) and Sobhan et al. (2010): plants usually cut by hand.

Transport

Transport I: Transport of jute straw from the field to the processing-site

km (roundtrip) 60 20 assumption from nova based on hemp-scenario Type of transportation: lorry 16–32 t, EURO 3

Transport II: Transport of jute fibre to the harbour in Hamburg

km (one-way) 13.996 1.822 based on www.hafen-hamburg.de and www.searates.com: Port Chittagong (Bangladesh) - Port Hamburg: 14,986 km Port Mumbai (India) - Port Hamburg: 12,193 km (last accessed: 2014-11-01) Type of transportation: transoceanic freight ship (assumption from nova)

Transport III: Transport of jute fibre on the road in Europe

km (roundtrip) 400 100 assumption from nova Type of transportation: lorry 16–32 t, EURO 5

Fine fibre processing

Electricity use kWh/t fibre 200 20 assumption from nova

Diesel fuel use litre/t fibre 1.5 0.05 assumption from nova

Yields

Straw yield (only stems)

t retted straw/ha*a 3.9 based on Sobhan et al. (2010)

Water content of straw

% 20 based on Sobhan et al. (2010)

Land requirement

Cultivated area ha*a/t fibre 1.1 Calculation based on straw yield, water content and fibre yield

Outputs

Jute-fibre % of retted and transported straw

30 own assump-tions based on Gosh (1983)Jute-shives (stems) 60

Jute-dust 10

Page 46: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

www.bio-based.eu/ecology Carbon Footprint Natural Fibres

46 © 2015 nova-Institut GmbH, Version 2015-04

KENAF

Materials / Energy Units ValueRange (+/-)

Data source /Reference Comments

Inputs

Seeds (sowing rate) kg/ha*a 25 5 Behmel (2014): 25–30 kg/ha

http://andhrabank.in/download/mesta.pdf (last accessed: 2015-02-27) and Singh: 13–17 kg/ha

Fertilizers

Nitrogen kg N/ha*a 50 10 http://and-hrabank.in/download/mesta.pdf: 40-60 kg N/ha

Behmel (2014): no fertilizer data for India or Bangladesh

Phosphorus kg P2O5/ha*a 25 5 http://andhra-bank.in/down-load/mesta.pdf: 20–40 kg P2O5/ha

Potassium kg K2O/ha*a 25 5 http://andhra-bank.in/down-load/mesta.pdf: 20–40 kg K2O/ha

Lime kg CaCO3/ha*a 0 0 no lime according to literature

Magnesium Oxide kg MgO/ha*a 0 0 no lime according to literature

Pesticides Behmel (2014): herbicide extration via handweeding

Herbicide litre Glyphosate/ ha*a

2 0. 5 http://andhrabank.in/download/mesta.pdf: 2.2 litre/ha Fluchloralin; calculated with Glyphosate because in SimaPro no Fluchloralin found

Fuel use for field operations

Soil prepartion litre/ha*a 10 2 in assumption to jute -Sobhan et al. (2010): where bullock- or tractor driven ploughs (3–5 times) used for the fine tilth

Sowing: grain drill litre/ha*a 0 0 manpower

Pesticide-application (sprayer)

litre/ha*a 1 0.5 assumption: manpower, but using production machinery as a tool

Fertilizer spreader (mineral fertilizer application)

litre/ha*a 1 0.5 assumption: manpower, but using production machinery as a tool

Cutting litre/ha*a 0 0 manpower

Transport

Transport I: Transport of kenaf straw from the field to the processing-site

km (roundtrip) 60 20 assumption from nova based on hemp-scenario Type of transportation: lorry 16–32 t, EURO 3

TableD:LCIdataonkenaf

Page 47: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

© 2015 nova-Institut GmbH, Version 2015-04 47

Carbon Footprint Natural Fibres www.bio-based.eu/ecology

KENAF

Materials / Energy Units ValueRange (+/-)

Data source /Reference Comments

Transport II: Transport of kenaf fibre to the harbour in Hamburg

km (one-way) 13,996 1,822 based on www.hafen-hamburg.de and www.searates.com: Port Chittagong (Bangladesh) - Port Hamburg: 14,986 km Port Mumbai (India) - Port Hamburg: 12,193 km (last accessed: 2014-11-01)Type of transportation: transoceanic freight ship (assumption from nova)

Transport III: Transport of hemp fibre on the road in Europe

km (roundtrip) 400 100 assumption from nova Type of transportation: lorry 16–32 t, EURO 5

Fine fibre processing

Electricity use kWh/t fibre 200 20 assumption from nova

Diesel fuel use litre/t fibre 1.5 0.05 assumption from nova

Yields

Straw yield (only stems)

t retted straw/ha*a 7.6 based on Singh: 7.6 t dry raw ribbons and dry wood stem

Water content of straw

% 15 based on Singh

Land requirement

Cultivated area ha*a/t fibre 0.8 Calculation based on straw yield, water content and fibre yield

Outputs

Kenaf-fibre % of retted and transported straw

18 based on Singh: 18 % of dry raw ribbons and dry wood stems are processed to retted and dried fibre

Kenaf-shives (stems) 64

Kenaf-dust 17

Page 48: MultiHemp · Material - Study providing data for the automotive and insulation industry. This is an interim report of work package seven ... share of flaxand hemp insulation material

nova-Institute

Thenova-InstitutGmbHwasfoundedasaprivateandindependentinstitutein1994.ItislocatedintheChemicalParkKnapsackinHuerth,whichliesattheheartofthechemicalindustryaroundCologne(Germany).For the last twodecades, nova-Institute hasbeengloballyactiveinfeedstocksupply,techno-economicandenvironmentalevaluation,marketresearch,dissemination,projectmanagementandpolicyforasustainablebio-basedeconomy.

Key questions regarding nova activitiesWhat are themost promising concepts andapplications for Industrial biotechnology,

biorefineriesandbio-basedproducts?Whatarethechallengesforapostpetroleumage–theThirdIndustrialRevolution?

Multipurpose hemp for industrial bioproducts and biomassFP7-Projectnumber:311849|www.multihemp.eu

ThisprojecthasreceivedfundingfromtheEuropeanUnion’sSeventhFrameworkProgrammeforresearch,technologicaldevelopmentanddemonstrationundergrantagreementno311849.

Thisprojectbrings together leading researchgroups with a vibrant group of industrialparticipantsworkingfromthelevelofmoleculargeneticsthroughtoendproductdemonstration.Ourambitionistodevelopanintegratedhemp-basedbiorefineryinwhichimprovedfeedstockissubjecttoefficientandmodularprocessingstepstoprovidefibre,oil,constructionmaterials,finechemicalsandbiofuelsusingallcomponents

oftheharvestedbiomass,andgeneratingnewopportunitieswithinthedevelopingknowledgebasedbioeconomy.

MultiHemp

Download at: www.bio-based.eu/ecology

Bio-based EconomyBio-based Chemicals & Materials •

Biorefineries • Industrial BiotechnologyCarbon Capture & Utilization

Sustainability

Technology & Markets

Environmental Evaluation

Life Cycle Assessments (LCA)Life Cycle InventoriesMeta-Analyses of LCAs

Raw Material SupplyAvailability & Prices

Sustainability

Market ResearchVolumes & Trends

Competition AnalysisFeasibility and

Potential Studies

Techno-Economic Evaluation (TEE)

Process EconomicsTarget Costing Analysis

Dissemination & Marketing SupportB2B communication

Conferences & WorkshopsMarketing Strategies

Political Framework & Strategy

System AnalysisStrategic Consulting

nova-Institut GmbH

ChemieparkKnapsackIndustriestraße30050354Hürth,Germany

T+49(0) 22 33 / 48 14-40F+49(0) 22 33 / 48 14-50

[email protected]