21
Keizo Fujimoto 1 , Makoto Takamoto 2 1. Division of Theoretical Astronomy, NAOJ 2. Department of Earth and Planetary Science, Univ. Tokyo Multi-Scale Kinetic Simulation of Collisionless Magnetic Reconnection Ref. Fujimoto & Takamoto, Physics of Plasmas 23, 012903 (2016)

Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

Keizo Fujimoto1, Makoto Takamoto2

1. Division of Theoretical Astronomy, NAOJ2. Department of Earth and Planetary Science, Univ. Tokyo

Multi-Scale Kinetic Simulation of Collisionless Magnetic Reconnection

Ref. Fujimoto & Takamoto, Physics of Plasmas 23, 012903 (2016)

Page 2: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ 2

Outline

Motivation of the current study

Strategy of multi-scale simulation

Simulation results --- Multiscale dynamics of reconnection

Summary

Page 3: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ 3

Outline

Motivation of the current study

Strategy of multi-scale simulation

Simulation results --- Multiscale dynamics of reconnection

Summary

Page 4: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ

[NASA]

Magnetic Reconnection

Auroral Substorms

Solar Flares

Fusion Device

ω >> ωcollisionCollisionless plasma

4

Page 5: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ 5

10km

λDe

βi ~ 1

ρe, λe ρi, λi L Lc

∬Dissipation Hall effect Topology

Full PIC MHD

Coulomb mean free path

(Particle-In-Cell) (Magnetohydrodynamics)

103km 105km 1011km1km

Multi-Scale Nature of Reconnection

Multi-Scale PIC

Page 6: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ

MHD vs. Kinetic Reconnection(Petschek Model [Petschek, 1964])

Compact diffusion region

Acceleration at Slow Shock

MHD Reconnection Fast reconnection Compact diffusion region Acceleration at slow shock Reproduced in MHD simulation

[Ugai & Tsuda, 1977; …etc] Slow shocks were observed.

[Feldman et al., 1984; …etc]

Kinetic Reconnection Fast reconnection Ion/electron Speiser accel. Hall electric current Reproduced in PIC simulation

[Birn et al., 2001; …etc] Hall field was observed.

[Nagai et al., 2001; …etc]6

??

Page 7: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ

Purpose of This Study

Understanding of the MHD-scale dynamics of collisionlessreconnection, by means of large-scale PIC simulation.

Can the Petschek reconnection be achieved?

How does the kinetic process connect to the MHD processes?

7

Page 8: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ 8

Outline

Motivation of the current study

Strategy of multi-scale simulation

Simulation results --- Multiscale dynamics of reconnection

Summary

Page 9: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ

AMR-PIC Model [Fujimoto, JCP, 2011]

Electron-scale structure

Particles𝑑𝑑�⃗�𝑣𝑠𝑠𝑑𝑑𝑡𝑡

=𝑞𝑞𝑠𝑠𝑚𝑚𝑠𝑠

𝐸𝐸 + �⃗�𝑣𝑠𝑠 × 𝐵𝐵

𝑑𝑑�⃗�𝑥𝑠𝑠𝑑𝑑𝑡𝑡

= �⃗�𝑣𝑠𝑠

Electric and magnetic fields𝜕𝜕𝐵𝐵𝜕𝜕𝑡𝑡 = −𝛻𝛻 × 𝐸𝐸

𝜕𝜕𝐸𝐸𝜕𝜕𝑡𝑡 = 𝑐𝑐2𝛻𝛻 × 𝐸𝐸 −

1𝜀𝜀0𝐽𝐽

Current density

𝐽𝐽 = �𝑠𝑠

𝑞𝑞𝑠𝑠 � �⃗�𝑣𝑓𝑓𝑠𝑠 �⃗�𝑣 𝑑𝑑3𝑣𝑣

Particle splitting Saving 90% memory

(Adaptive Mesh Refinement – Particle-in-Cell)

9

Page 10: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

10SHH2015 @ NAOJ

AMR-PIC Simulations

X

Z

Y

Z

Page 11: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ 11

Performance of AMR-PIC Simulation

Strong scalingEffective parallelism 99.9990%

Massively parallelized for a reconnection problem.

Removing Poisson Eq.

Load balancing

Page 12: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ 12

Outline

Motivation of the current study

Strategy of multi-scale simulation

Simulation results --- Multiscale dynamics of reconnection

Summary

Page 13: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ

Simulation SetupWith an open boundary condition [Fujimoto, GRL, 2014]

660 c/ωpi

mi/me = 100Lx×Lz = 660λi×330λi

T = 140 ωci-1

Maximum resolution:32,768 × 16,384

# of particles: ~ 2×1010

Memory needed: ~ 2 TB

Bx = B0 tanh[z/L]L = λi

~600 c/ωpi

13

Page 14: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ

Time Evolution of Current SheetOut-of-plane J

Ion outflow speed

660 λi14

Page 15: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ

Out-of-Plane J

250 λi

Sweet-Parker??

Long current sheet

Reconnection rate

ER ≈ 0.1

Dissipation region is localized.

30 λi

Petschek??

15

Page 16: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

Inflow

Outflow

SHH2015 @ NAOJ

Slow Mode Shocks?Petschek??

R-H condition

Slow shock?

ZSlow shock acceleration?

16

Page 17: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ

Ion Acceleration

Trajectory A:1. ExB drift without

acceleration2. Speiser

acceleration in the current sheet

Trajectory B:1. Speiser

acceleration in the current sheet

2. Drifting along field line without acceleration

ExB Speiser Speiser

BA

17

Page 18: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ

Ion Acceleration

Speiser [1965]

No ion acceleration at slow shock-like structure.

Speiser-type acceleration in the current sheet.

⇒ Acceleration mechanism different from the Petschek’s.

Cold inflow

Hot outflow

κ2 = Rcurvature/ρgyro <1

18

Consistent with hybrid simulations (Lottermoseret al, 1998) and PIC simulations (Hoshino et al, 1998) around the x-line.

Page 19: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ

Ideal MHD Condition

19

Ideal MHD condition breaks down over broad area in the outflow exhaust.

Hall term is dominant in the generalized Ohm’s law.

Page 20: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

Hall Current

SHH2015 @ NAOJ 20

𝑑𝑑�⃗�𝑣𝑑𝑑𝑡𝑡

=𝜔𝜔𝑐𝑐𝐵𝐵

(𝐸𝐸 + �⃗�𝑣 × 𝐵𝐵)

Equations of motion

Electric force Lorentz force

𝑑𝑑2𝑣𝑣𝑧𝑧𝑑𝑑𝑡𝑡2

= −𝜔𝜔𝑐𝑐2 𝑣𝑣𝑧𝑧 +𝐸𝐸𝑦𝑦𝐵𝐵𝑥𝑥

+𝜔𝜔𝑐𝑐𝐵𝐵𝑥𝑥

𝑑𝑑𝐸𝐸𝑧𝑧𝑑𝑑𝑡𝑡

ExB drift velocity Time evolution of Ez along particle trajectory ≈ 𝑣𝑣𝑧𝑧 𝜕𝜕𝐸𝐸𝑧𝑧

𝜕𝜕𝑧𝑧𝑑𝑑2𝑣𝑣𝑧𝑧𝑑𝑑𝑡𝑡2

≈ −Ω𝑐𝑐2 𝑣𝑣𝑧𝑧 − 𝑉𝑉𝑑𝑑

𝑉𝑉𝑑𝑑 = −1

1 − 1𝜔𝜔𝑐𝑐

𝐸𝐸𝑧𝑧′𝐵𝐵𝑥𝑥

𝐸𝐸𝑦𝑦𝐵𝐵𝑥𝑥 𝐸𝐸𝑧𝑧′ =

𝜕𝜕𝐸𝐸𝑧𝑧𝜕𝜕𝜕𝜕

Modified ExB drift velocity

𝐸𝐸𝑦𝑦

𝐸𝐸𝑧𝑧

𝐵𝐵𝑥𝑥Uniform Ez

Non-uniform Ez

Y

Z

Y

Z

IonElectron

IonElectron

𝐸𝐸𝑦𝑦

𝐸𝐸𝑧𝑧

𝐵𝐵𝑥𝑥

No current

Hall current

Page 21: Multi-scale particle-in-cell simulation of collisionless magnetic …th.nao.ac.jp/MEMBER/keizo/presen/hie2015.pdf · 2016-02-06 · Keizo Fujimoto 1, Makoto Takamoto2. 1. Division

SHH2015 @ NAOJ

Summary

21

Collisionless Reconnection

MHD Reconnection (Petschek model)

Collisionless reconnection differs from MHD reconnection even in the region far downstream of the x-line.

Plasma acceleration at slow shock

Localized current layer around the x-line

No slow shock. Speiser–type acceleration of ions in the extended current layer

Hall electric current in broad area in the outflow exhaust.Hall current

Ref. Fujimoto & Takamoto, Physics of Plasmas 23, 012903 (2016)