54
Mechanical Failure How do flaws in a material initiate failure? • How is fracture res istance quantified; how do different  • How do we estimate the s tress to fracture? How do loading rate, loading history , and temper ature affect the failure stress? Cyclic loading from waves: Ship Cyclic thermal loading: Computer chip Cyclic l oading due to walking: Hip implant. Callister’s Materials Science and Engineering, Adapted Version.

MT-201B Fractrure Fatigue and Creep

Embed Size (px)

Citation preview

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 1/54

Mechanical Failure

• How do flaws in a material initiate failure?

• How is fracture resistance quantified; how do different 

• How do we estimate the stress to fracture?

• How do loading rate, loading history, and temperature

affect the failure stress?

Cyclic loading

from waves: Ship

Cyclic thermal loading:

Computer chip

Cyclic loading due to

walking: Hip implant.

Callister’s Materials Science andEngineering, Adapted Version.

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 2/54

Fracture mechanisms

• Ductile fracture

 – Occurs with plastic deformation

 – Little or no plastic deformation

 – a as rop c

2

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 3/54

Ductile vs Brittle Failure

Very ModeratelyFracture• Classification:

uc e uc ebehavior:

 Adapted from Fig. 8.1,

.

Large Moderate% AR or %EL Small• Ductile

fracture is usually

Ductile:

warning before

fracture

Brittle:

No

warnin

3

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 4/54

Exam le: Failure of a Pi e

• Ductile failure:--one piece

--large deformation

• Brittle failure:--man ieces

--small deformation

4V.J. Colangelo and F.A. Heiser, Analysis

of Metallurgical Failures (2nd ed.),

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 5/54

Moderatel Ductile Failure• Evolution to failure:

neckingvoid void growth shearing

fracture

σ 

• Resulting 50 mm50 mm

surfaces

steel

particles

serve as voidFrom V.J. Colangelo and F.A. Heiser,

 Analysis of Metallurgical Failures (2nd

100 mm

Fracture surface of tire cord wire

loaded in tension. Courtesy of F.

5

nucleation

sites.

. , . . , . ,

Sons, Inc., 1987. (Orig. source: P.

Thornton, J. Mater. Sci., Vol. 6, 1971, pp.

347-56.)

, , ,

OH. Used with permission.

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 6/54

Ductile vs. Brittle Failure

cup-and-cone fracture brittle fracture

6

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 7/54

Brittle Failure

failure

7

From Fig. 11.5(a)Callister’s Materials Science and Engineering, Adapted Version.

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 8/54

Brittle Fracture Surfaces• Inter granular (between grains)

• Intragranular (within grains)

  . ee

(metal)

304 S. Steel

(metal))

 Al OxidePolypropylene

4mm

ceram cpo ymer .

81mm(Orig. source: K. Friedrick, Fracture 1977, Vol.

3, ICF4, Waterloo, CA, 1977, p. 1119.)

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 9/54

Stress-Strain Curves

Brittle solids:

Ceramics andDuctile materials:

Metals and Polymers (above

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 10/54

Ductile and brittle fracture

--fracture in Alfracture in Al

••CeramicsCeramics alonalon withwith somesome ol mersol mers andand metalsmetals(steels(steels atat lowlow temperature)temperature) showshow littlelittle ductilityductility– – failurefailureinin anan unun predictablepredictable brittlebrittle manner manner under under tensiletensile

loadingloading

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 11/54

Fracture and Flow

propagation of crack: dislocation motion:

lastic flow

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 12/54

Why metals are tough?

When stress ahead of a crack tip exceeds the metal’s yield

blunts the crack tip, and leads to toughness.

σ

y e strengt

x

app e

crack 

 

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 13/54

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 14/54

Why ceramics are brittle??

Ionic bonding (dislocation movement restricted only to specificplanes due to charge neutrality conditions)

Covalent bonding (high energy required to distort highly

directional bonds)

Dislocation core width is narrower than that in metals

-

Less than five independent and active slip systems

(failure of Von Mises criterion!)

Difficult for a ceramic grain to change its shape by

rotation : strain incompatibilities at grain boundaries

lead to high localised stresses and brittle fracture!!

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 15/54

Ideal vs Real Materials

• Stress-strain behavior (Room T):

TS << TSengineering

materials

perfect

materials

σE/10 perfect mat’l-no flaws

carefull roduced lass fiber 

E/100

 

typical ceramic typical strengthened metal

ε0.1

 

• Reprinted w/...-- the longer the wire, the

smaller the load for failure.

permission from R.W.

Hertzberg,

"Deformation and

Fracture Mechanics

of En ineerin

• Reasons:

-- flaws cause premature failure.

--

Materials", (4th ed.)

Fig. 7.4. John Wiley

and Sons, Inc., 1996.

15

 

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 16/54

Flaws are Stress Concentrators!

Results from crack propagation

• Griffith Crack

/ 21

ot

t

om Ka

σ=⎟⎟⎜⎜ ρσ=σ 2

where

ρt = radius of curvature

σo = applied stressσm = stress at crack tip

16

From Fig. 11.8(a)

Callister’s Materials Science and Engineering, Adapted Version.

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 17/54

Concentration of Stress at Crack Ti

17

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 18/54

En ineerin Fracture Desi n

•  Avoid sharp corners!

Stress Conc. Factor, K tmax

σo

=

w.

r , h

max

increasing w/h2.0filletradius

1.5 Adapted from Fig.

8.2W(c), Callister 6e.

(Fig. 8.2W(c) is from G.H.

r /h0 0.5 1.0

1.0, . .

(NY), Vol. 14, pp. 82-87

1943.)

18

 

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 19/54

Crack Pro a ation

Cracks propagate due to sharpness of crack tip

• A plastic material deforms at the tip, “blunting” the

crack.deformed

region

 

• Elastic strain energy-

• ener stored in material as it is elasticall deformed

• this energy is released when the crack propagates

• creation of new surfaces requires energy

19

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 20/54

Griffith Theory of Brittle Fractureσ Energy criterion

•Increase in surface ener associated

with crack : Us = 4cγs

2c 

energy: Uel =  σ 2π c2 /2E 

σ

Overall system energy U= Us- Uel

For the spontaneous crack extension above a critical crack length22

 ⎞⎛    cd dU    π σ 

2=

 ⎠⎝ −=

 E dcdc  s

2/1

 ⎠⎝ = c

s

 f π σ 

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 21/54

When Does a Crack Pro a ate?

Crack propagates if above critical stress

2/1

2   ⎞⎛    E  sγ  i.e., σm > σc

 ⎠⎝    cc

π or  Kt > Kc

 – E = modulus of elasticity

 – =s  

 – c = one half length of internal crack

 – Kc = σc/σ0

For ductile => replace γs by γs + γp

21

whereγp

is plastic deformation energy

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 22/54

Crack opening in different mode of loading geometries

Cracks in engineering components loaded in one of three ways (or a

combination of all three):

Mode I is the most dan erous since the K-factor is much

mode I mode II mode III

 larger in mode-I than in other modes of crack opening as

the tensile stress tries to open up the crack more severely.

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 23/54

Measurement of K

Long crack fracture toughness measurement :

SENB

 

Short crack fracture toughness measurement :

Indentation tests

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 24/54

Single Edge Notched Beam test (SENB)

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 25/54

Indentation Microfracture method

KIc

= 0.016 (E/H)1/2P/c3/2 (Anstis’s formula)

  . . ,(K

Ic) can be computed from the expression given by Niihara et al.:

( K ϕ /H a1/2)*(H/Eϕ)2/5 = 0.035(l/a)-1/2ϕ ϕ

Where ϕ = 3 and l= Plamqvist crack length =c-a

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 26/54

Indentation Microfracture method

For median cracks (c/a ≥2.5), the corresponding expression is

ϕ ϕ -Icϕ ϕ = .

Shett at el.163 modified the e uation of Niihara et al.

KIc = 0.025(E/H)0.4

(HW)1/2

where W= P/4a (P the indentation load, 2a the Vickers diagonal).

I d i h i B di

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 27/54

Indentation strength in Bending

K = η(E/H)1/8(σP1/3)3/4

Chantikul’s formula

where η= 0.59

and   σ the failure

.

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 28/54

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 29/54

Fracture Tou hnessGraphite/Ceramics/Semicond

Metals/ Alloys

Composites/fibers

Polymers

100

Ti alloys

Steels- ers

40

506070

Based on data in Table B5,Callister’s Materials Science and

Engineering, Adapted Version.   0 .   5   ) Mg alloys

 

20

30

 Al/Al oxide(sf) 2

Composite reinforcement geometry is: f

= fibers; sf = short fibers; w = whiskers;p = particles. Addition data as noted

(vol. fraction of reinforcement):1. (55vol%) ASM Handbook, Vol. 21, ASM Int.,

  a  ·10

Diamond7

C/C( fibers) 1 Al oxid/SiC(w) 3

 Al oxid/ZrO 2(p)4

Si nitr/SiC(w) 5

Y2O3/ZrO 2(p)4

Materials Park, OH (2001) p. 606.

2. (55 vol%) Courtesy J. Cornie, MMC, Inc.,

Waltham, MA.

3. (30 vol%) P.F. Becher et al., Fracture

Mechanics of Ceramics, Vol. 7, Plenum Press

5

      I     c   (   M

 car e

4

3PVC

PP

PET Al oxideSi nitride

Glass/SiC(w)

. . - .

4. Courtesy CoorsTek, Golden, CO.

5. (30 vol%) S.T. Buljan et al., "Development of

Ceramic Matrix Composites for Application in

Technology for Advanced Engines Program",

ORNL/Sub/85-22011/2, ORNL, 1992.

PC2

29

6. (20vol%) F.D. Gace et al., Ceram. Eng. Sci.

Proc., Vol. 7 (1986) pp. 978-82.Si crystal

Glass -sodaConcrete

Glass

0.50.7

<111>

Polyester 

PS

0.6

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 30/54

Desi n A ainst Crack Growth

• Crack growth condition:

• Largest, most stressed cracks grow first!

  c = aπσ

--Result 1: Max. flaw size

dictates design stress.

--Result 2: Design stress

dictates max. flaw size.

cdesign

aYKπ

2

1⎟⎟ ⎞⎜⎜⎛ 

σπ<

desi n

cmax

YKa

σ amax

no

fracture

no

fracture

30

max

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 31/54

Desi n Exam le: Aircraft Win

• Material has Kc = 26 MPa-m0.5

  ...

Design A

--largest flaw is 9 mm

Design B

--use same material--failure stress = 112 MPa --largest flaw is 4 mm

--failure stress = ?

• Use...cK

• Key point: Y and Kc are the same in both designs.max

aY   π

σ a   = σ a

9 mm112 MPa 4 mm-- esu :

 Answer: MPa168)( B =σc

   A B

31

• Reducing flaw size pays off!

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 32/54

Loadin Rate

• Increased loadin rate... • Wh ?  An increased rate

-- increases σy and TS

-- decreases %EL

gives less time for

dislocations to move pasto s ac es.

σ

σy larger 

TSsmaller 

ε

ε

σy

32

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 33/54

Im act Testin

• Impact loading: (Charpy)

 

-- makes material more brittle

-- decreases toughness

 Adapted from Fig. 11.12(b),

Callister’s Materials Science and

Engineering, Adapted Version.

(Fig. 11.12(b) is adapted fromH.W. Hayden, W.G. Moffatt, and

J. Wulff, The Structure and

Pro erties of Materials, Vol. III,

Mechanical Behavior , John Wiley

and Sons, Inc. (1965) p. 13.)

final height initial height

33

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 34/54

Tem erature

• Increasing temperature...--increases %EL and K

• Ductile-to-Brittle Transition Temperature (DBTT)...

°  y

FCC metals (e.g., Cu, Ni)

  . .,

   t   E  n  e

  r

polymers

More DuctileBrittle

   I  m  p  a

High strength materials (σy > E/150)

Temperature

Ductile-to-brittle

. .Callister’s Materials Science

and Engineering,

 Adapted Version.

34

rans on empera ure

D i St t

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 35/54

Design Strategy:

 • re- : e an c • : er y s ps

Reprinted w/ permission from R.W. Hertzberg,

"Deformation and Fracture Mechanics of Engineering

Materials", (4th ed.) Fig. 7.1(a), p. 262, John Wiley and

Sons, Inc., 1996. (Orig. source: Dr. Robert D. Ballard,

Reprinted w/ permission from R.W. Hertzberg,

"Deformation and Fracture Mechanics of Engineering

Materials", (4th ed.) Fig. 7.1(b), p. 262, John Wiley and

Sons, Inc., 1996. (Orig. source: Earl R. Parker,The Discovery of the Titanic.) "Behavior of Engineering Structures", Nat. Acad. Sci.,

Nat. Res. Council, John Wiley and Sons, Inc., NY,

1957.)

35

  .

F ti

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 36/54

Fatigue

• Fatigue = failure under cyclic stress.Ex: Rotating shafts, connecting rods, aircraft wings and leaf

spr ngs e c.   . . ,

Callister’s Materials

Science and Engineering,

 Adapted Version.

compression on top

motor 

specimen

g. . s rom

Materials Science in

Engineering, 4/E by Carl.

 A. Keyser, Pearson

Education, Inc., U ertension on bottom

flex coupling

ear ng ear ng

• tress var es w t t me.-- key parameters are S, σm, and σmax

σmS

Saddle River, NJ.)

σmin time

• Key points: Fatigue...--can cause part failure, even though σmax < σc.

-- ~

36

  .

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 37/54

Fati ue

• Fatigue = failure under cyclic stress.

  . . ,

Callister’s Materials

Science and Engineering,

 Adapted Version.

compression on top

counter motor 

specimen

bearing bearingg. . s rom

Materials Science in

Engineering, 4/E by Carl.

 A. Keyser, Pearson

Education, Inc., U er

tension on bottom

flex coupling

• tress var es w t t me.-- key parameters are S, σm, and σmax

σmS

Saddle River, NJ.)

σmin time

• Key points: Fatigue...--can cause part failure, even though σmax < σc.

-- ~

37

  .

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 38/54

Fati ue Desi n Parameters

• Fatigue limit, Sfat: case forS = stress amplitude

-- fat

Sfat

s ee yp.unsa e

From Fig. 11.19(a),

Callister’s MSE

 Adapted Version.10

310

510

710

9

 

• Sometimes, theS = stress am litude 

 Al (typ.)unsafe

From Fig. 11.19(b),

Callister’s MSE

 Adapted Version.

safe

38N = Cycles to failure

10 10 10 10

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 39/54

Fati ue Mechanism

• Crack grows incrementally

.

a~   σΔ

( )mK

dN

daΔ=

increase in crack length per loading cycle

crack ori in• a e ro a ng s a

--crack grew even though

 

--crack grows faster as• σ increases From Fig. 11.21,

’• crac ge s onger 

• loading freq. increases.

 Science and

Engineering, Adapted

Version.

(Fig. 11.21 is from D.J.

39

u p , n ers an ng

How Components Fail,

 American Society forMetals, Materials Park,

OH, 1985.)

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 40/54

Im rovin Fati ue Life

1. Impose a compressive S = stress amplitudeFrom Fig. 11.24,

Callister’s Materials

Science and

(to suppress surface

cracks from growing) moderate tensile   σm

near zero or compressive σmIncreasing

σm

ng neer ng, ap e

Version.

N = Cycles to failure

 

-- e o : s o peen ng

putsurface

shot

-- e o : car ur z ng

C-rich gas

intocompression

2. Remove stress

concentrators. From Fig. 11.25,

bad better 

40

a s er s a er a s

Science and

Engineering, AdaptedVersion.

bad better 

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 41/54

Cree

Sample deformation at a constant stress (σ) vs. time

σ

,

0 t

  s g emp. e orma on . m; (Tm is MP in K)

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 42/54

Cree

• Occurs at elevated temperature, T > 0.4 Tm

tertiary

elastic

secondary

rom gs. . ,

Callister’s Materials

Science and Engineering, Adapted Version.

C

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 43/54

Creep

Primary Creep: slope (creep rate) decreases with time.Secondary Creep: steady-state i.e., constant slope.

  , . . .

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 44/54

Secondar Cree

• Strain rate is constant at a given T, σ-- strain hardening is balanced by recovery

stress exponent (material parameter)

strain rateactivation energy for creep(material parameter)⎟ ⎠⎜⎝ −σ=ε RT

QK

cn

s exp2&

applied stressmaterial const.

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 45/54

• ,

100

 427°C

538°C

20

40

649°C

10-2 10-1 1Steady state creep rate (%/1000hr) 

From Fig. 11.31, Callister’s Materials Science and Engineering, Adapted Version.

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 46/54

C F il

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 47/54

Cree Failure• Failure:

along grain boundaries.

g.b. cavities

stress

From V.J. Colangelo and F.A. Heiser, Analysis ofMetallurgical Failures (2nd ed.), Fig. 4.32, p. 87, John

Wiley and Sons, Inc., 1987. (Orig. source: Pergamon

LtT   =+ lo20

• Time to rupture, tr 

Press, Inc.)

function of 

a lied stresstemperature

time to failure (rupture)

C F il

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 48/54

Cree Failure

• Estimate rupture timeS-590 Iron, T = 800°C, σ = 20 ksi

From Fig. 11.32,

Callister’s Materials

Science and

En ineerin Ada ted   i

100

Version.

(Fig. 11.32 is from F.R.

Larson and J. Miller,   t  r  e  s  s ,

   k  s

10

20

. , ,

(1952).)

112 20 24 2816

data for

S-590 Iron

LtT   =+ lo20

24x103 K-log hr L(103K-log hr)

1073K

ns: tr  = r 

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 49/54

Dr. Anandh, IITK 

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 50/54

Dr. Anandh, IITK 

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 51/54

Dr. Anandh, IITK 

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 52/54

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 53/54

Dr. Anandh, IITK 

8/12/2019 MT-201B Fractrure Fatigue and Creep

http://slidepdf.com/reader/full/mt-201b-fractrure-fatigue-and-creep 54/54

• Engineering materials don't reach theoretical strength.

• Flaws produce stress concentrations that cause

premature failure.

• arp corners pro uce arge s ress concen ra ons

and premature failure.

- for noncyclic σ and T < 0.4Tm, failure stress decreases with:

- increased maximum flaw size 

- decreased T,

- increased rate of loading.

-- cycles to fail decreases as Δσ increases.

- for higher T (T > 0.4Tm):

- time to fail decreases as σ or T increases.