92
Moving Frames and their Applications Peter J. Olver University of Minnesota http://www.math.umn.edu/ olver Technion, May, 2015

MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Moving Framesand their Applications

Peter J. Olver

University of Minnesota

http://www.math.umn.edu/! olver

Technion, May, 2015

Page 2: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

History of Moving Frames

Classical contributions:M. Bartels (!1800), J. Serret, J. Frenet, G. Darboux,

E. Cotton, Elie Cartan

Modern developments: (1970’s)

S.S. Chern, M. Green, P. Gri!ths, G. Jensen, . . .

The equivariant approach: (1997 – )PJO, M. Fels, G. Marı–Be"a, I. Kogan, J. Cheh,

J. Pohjanpelto, P. Kim, M. Boutin, D. Lewis, E. Mansfield,E. Hubert, O. Morozov, R. McLenaghan, R. Smirnov, J. Yue,A. Nikitin, J. Patera, F. Valiquette, R. Thompson, . . .

Page 3: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Moving Frame — Space Curves

t

n

b

tangent normal binormal

t =dz

dsn =

zss" zss "

b = t# n

s — arc length

z — point on the curve

Frenet–Serret equations

dt

ds= !n

dn

ds= $! t+ " b

db

ds= $ " n

! — curvature " — torsion

Page 4: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Moving Frame — Space Curves

t

n

b

z

tangent normal binormal

t =dz

dsn =

zss" zss "

b = t# n

s — arc length

z — point on the curve

Frenet–Serret equations

dt

ds= !n

dn

ds= $! t+ " b

db

ds= $ " n

! — curvature " — torsion

Page 5: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

“I did not quite understand how he [Cartan] does thisin general, though in the examples he gives theprocedure is clear.”

“Nevertheless, I must admit I found the book, likemost of Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and di"erential geometry”Bull. Amer. Math. Soc. 44 (1938) 598–601

Page 6: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Applications of Moving Frames

• Di"erential geometry

• Equivalence

• Symmetry groups and groupoids

• Di"erential invariants

• Rigidity

• Joint invariants and semi-di"erential invariants

• Invariant di"erential forms and tensors

• Identities and syzygies

• Classical invariant theory

Page 7: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

• Computer vision— object recognition & symmetry detection

• Invariant numerical methods

• Invariant variational problems

• Invariant submanifold flows

• Poisson geometry & solitons

• Killing tensors in relativity

• Invariants of Lie algebras in quantum mechanics

• Lie pseudo-groups

Page 8: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

The Basic Equivalence Problem

M — smooth m-dimensional manifold.

G — transformation group acting on M

• finite-dimensional Lie group

• infinite-dimensional Lie pseudo-group

Page 9: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Equivalence:Determine when two p-dimensional submanifolds

N and N % M

are congruent :

N = g ·N for g & G

Symmetry:Find all symmetries,

i.e., self-equivalences or self-congruences :

N = g ·N

Page 10: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Classical Geometry — F. Klein

• Euclidean group: G =

!"

#

SE(m) = SO(m)! Rm

E(m) = O(m)! Rm

z '$( A · z + b A & SO(m) or O(m), b & Rm, z & R

m

) isometries: rotations, translations , (reflections)

• Equi-a!ne group: G = SA(m) = SL(m)! Rm

A & SL(m) — volume-preserving

• A!ne group: G = A(m) = GL(m)! Rm

A & GL(m)

• Projective group: G = PSL(m+ 1)acting on Rm % RPm

=) Applications in computer vision

Page 11: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Tennis, Anyone?

Page 12: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Moving Frames

Definition.

A moving frame is a G-equivariant map

# : M $( G

Equivariance:

#(g · z) =$

g · #(z) left moving frame

#(z) · g!1 right moving frame

#left(z) = #right(z)!1

Page 13: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

The Main Result

Theorem. A moving frame exists ina neighborhood of a point z & M if andonly if G acts freely and regularly near z.

Page 14: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Isotropy & Freeness

Isotropy subgroup: Gz = { g | g · z = z } for z & M

free — the only group element g & G which fixes one pointz & M is the identity

=) Gz = {e} for all z & M

locally free — the orbits all have the same dimension as G=) Gz % G is discrete for all z & M

regular — the orbits form a regular foliation*+ irrational flow on the torus

e"ective — the only group element which fixes every point in Mis the identity: g · z = z for all z & M i" g = e:

G,M =

!

z"MGz = {e}

Page 15: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Geometric Construction

z

Oz

Normalization = choice of cross-section to the group orbits

Page 16: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Geometric Construction

z

Oz

K

k

Normalization = choice of cross-section to the group orbits

Page 17: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Geometric Construction

z

Oz

K

k

g = #left(z)

Normalization = choice of cross-section to the group orbits

Page 18: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Geometric Construction

z

Oz

K

k

g = #right(z)

Normalization = choice of cross-section to the group orbits

Page 19: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

K — cross-section to the group orbits

Oz — orbit through z & M

k & K -Oz — unique point in the intersection

• k is the canonical form of z

• the (nonconstant) coordinates of k are the fundamentalinvariants

g & G — unique group element mapping k to z=) freeness

Then #left(z) = g is a left moving frame: #left(h·z) = h·#left(z)

k = #left(z)!1 · z = #right(z) · z

Page 20: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Algebraic Construction

r = dimG . m = dimM

Coordinate cross-section

K = { z1 = c1, . . . , zr = cr }

left right

w(g, z) = g!1 · z w(g, z) = g · z

g = (g1, . . . , gr) — group parameters

z = (z1, . . . , zm) — coordinates on M

Page 21: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Choose r = dimG components to normalize:

w1(g, z)= c1 . . . wr(g, z)= cr (,)

Solve (,) for the group parameters g = (g1, . . . , gr)

=) Implicit Function Theorem

The solutiong = #(z)

is a (local) moving frame.

Page 22: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

The Fundamental Invariants

Substituting the moving frame formulae

g = #(z)

into the unnormalized components of w(g, z) producesthe fundamental invariants

I1(z) = wr+1(#(z), z) . . . Im!r(z) = wm(#(z), z)

=) These are the coordinates of the canonical formk & K.

Page 23: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Completeness of Invariants

Theorem. Every invariant I(z) can be (locally)uniquely written as a function of the fundamentalinvariants:

I(z) = H(I1(z), . . . , Im!r(z))

Page 24: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Invariantization

Definition. The invariantization of a functionF : M ( R with respect to a right moving frameg = #(z) is the the invariant function I = $(F )defined by

I(z) = F (#(z) · z).

$(z1) = c1, . . . $(zr) = cr, $(zr+1) = I1(z), . . . $(zm) = Im!r(z).

cross-section variables fundamental invariants“phantom invariants”

Invariantization respects all algebraic operations:

$ [F (z1, . . . , zm) ] = F (c1, . . . , cr, I1(z), . . . , Im!r(z))

Page 25: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Invariantization amounts to restricting F to the cross-section

I |K = F |Kand then requiring that I = $(F ) be constantalong the orbits.

In particular, if I(z) is an invariant, then $(I) = I.

Invariantization defines a canonical projection

$ : functions '$( invariants

Page 26: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

The Replacement Theorem

If I(z1, . . . , zm) is any invariant, then

$ [ I(z1, . . . , zm) ] = I(c1, . . . , cr, I1(z), . . . , Im!r(z))

This “Rewrite Rule” trivially proves that anyinvariant can be easily expressed (rewritten) in termsof the fundamental invariants!

Page 27: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

The Rotation Group

G = SO(2) acting on R2

z = (x, u) '$( g · z = ( x cos%$ u sin% , x sin%+ u cos% )

=) Free on M = R2 \ {0}

Left moving frame:

w(g, z) = g!1 · z = (y, v)

y = x cos%+ u sin% v = $x sin%+ u cos%

Cross-section:

K = {u = 0, x > 0 }

Page 28: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Normalization equation:

v = $x sin%+ u cos% = 0

Left moving frame:

% = tan!1 u

x=) % = #(x, u) & SO(2)

Fundamental invariant

r = $(x) =/x2 + u2

Invariantization

$[F (x, u) ] = F (r, 0)

Page 29: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Prolongation

• The moving frame construction requires freeness of the groupaction

• Most interesting group actions (Euclidean, a!ne, projective,etc.) are not free!

• Freeness typically fails because the dimension of the underlyingmanifold is not large enough, i.e., m < r = dimG.

• Thus, to make the action free, we must increase the dimen-sion of the space via some natural prolongation procedure.

An e"ective action can usually be made free by:

Page 30: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

• Prolonging to derivatives (jet space)

G(n) : Jn(M,p) $( Jn(M,p)

=) di"erential invariants

• Prolonging to Cartesian product actions

G#n : M # · · ·#M $( M # · · ·#M

=) joint invariants

• Prolonging to “multi-space”

G(n) : M (n) $( M (n)

=) joint or semi-di"erential invariants=) invariant numerical approximations

Page 31: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

• Prolonging to derivatives (jet space)

G(n) : Jn(M, p) $( Jn(M,p)

=) di"erential invariants

• Prolonging to Cartesian product actions

G#n : M # · · ·#M $( M # · · ·#M

=) joint invariants

• Prolonging to “multi-space”

G(n) : M (n) $( M (n)

=) joint or semi-di"erential invariants=) invariant numerical approximations

Page 32: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Euclidean Plane Curves

Special Euclidean group: G = SE(2) = SO(2)! R2

acts on M = R2 via rigid motions: w = Rz + b

To obtain the classical (left) moving frame we invert the grouptransformations:

y = cos% (x$ a) + sin% (u$ b)

v = $ sin% (x$ a) + cos% (u$ b)

%&

' w = R!1(z $ b)

Assume for simplicity the curve is (locally) a graph:

C = {u = f(x)}

=) extensions to parametrized curves are straightforward

Page 33: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Prolong the action to Jn via implicit di"erentiation:

y = cos% (x$ a) + sin% (u$ b)

v = $ sin% (x$ a) + cos% (u$ b)

vy =$ sin% + ux cos%

cos% + ux sin%

vyy =uxx

(cos% + ux sin% )3

vyyy =(cos% + ux sin% )uxxx $ 3u2

xx sin%

(cos% + ux sin% )5

...

Page 34: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Normalization: r = dimG = 3

y = cos% (x$ a) + sin% (u$ b) = 0

v = $ sin% (x$ a) + cos% (u$ b) = 0

vy =$ sin% + ux cos%

cos% + ux sin%= 0

vyy =uxx

(cos% + ux sin% )3

vyyy =(cos% + ux sin% )uxxx $ 3u2

xx sin%

(cos% + ux sin% )5

...

Page 35: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Solve for the group parameters:

y = cos% (x$ a) + sin% (u$ b) = 0

v = $ sin% (x$ a) + cos% (u$ b) = 0

vy =$ sin% + ux cos%

cos% + ux sin%= 0

=) Left moving frame # : J1 $( SE(2)

a = x b = u % = tan!1 ux

Page 36: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

a = x b = u % = tan!1 ux

Di"erential invariants — invariantization

vyy =uxx

(cos% + ux sin% )3'$( $(uxx) =

uxx

(1 + u2x)

3/2= !

vyyy = · · · '$( $(uxxx) =(1 + u2

x)uxxx $ 3uxu2xx

(1 + u2x)

3=

d!

ds

vyyyy = · · · '$( $(uxxxx) = · · · =d2!

ds2$ 3!3

=) recurrence formulae

Invariant one-form — arc length

dy = (cos%+ ux sin%) dx '$( $(dx) =(1 + u2

x dx = ds

Page 37: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Dual invariant di"erential operator— arc length derivative

d

dy=

1

cos%+ ux sin%

d

dx'$(

d

ds=

1(1 + u2

x

d

dx

Theorem. All di"erential invariants are functions of thederivatives of curvature with respect toarc length:

!,d!

ds,

d2!

ds2, · · ·

Page 38: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

The Classical Picture:

z

t

n

Moving frame # : (x, u, ux) '$( (R, a) & SE(2)

R =1

(1 + u2

x

)1 $ux

ux 1

*

= ( t, n ) a =

)xu

*

Page 39: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Frenet frame

t =dx

ds=

)xs

ys

*

, n = t$ =

)$ ysxs

*

.

Frenet equations = Pulled-back Maurer–Cartan forms:

dx

ds= t,

dt

ds= !n,

dn

ds= $! t.

Page 40: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Equi-a!ne Plane Curves G = SA(2)

z '$( Az + b A & SL(2), b & R2

Invert for left moving frame:

y = & (x$ a)$ ' (u$ b)

v = $ ( (x$ a) + ) (u$ b)

%&

' w = A!1(z $ b)

) & $ ' ( = 1

Prolong to J3 via implicit di"erentiation

dy = (& $ ' ux) dx Dy =1

& $ ' ux

Dx

Page 41: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Prolongation:

y = & (x$ a)$ ' (u$ b)

v = $ ( (x$ a) + ) (u$ b)

vy = $( $ ) ux

& $ ' ux

vyy = $uxx

(& $ ' ux)3

vyyy = $(& $ ' ux) uxxx + 3' u2

xx

(& $ ' ux)5

vyyyy = $uxxxx(& $ ' ux)

2 + 10' (& $ ' ux)uxx uxxx + 15'2 u3xx

(& $ ' ux)7

vyyyyy = . . .

Page 42: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Normalization: r = dimG = 5

y = & (x$ a)$ ' (u$ b) = 0

v = $ ( (x$ a) + ) (u$ b) = 0

vy = $( $ ) ux

& $ ' ux

= 0

vyy = $uxx

(& $ ' ux)3= 1

vyyy = $(& $ ' ux) uxxx + 3' u2

xx

(& $ ' ux)5

= 0

vyyyy = $uxxxx(& $ ' ux)

2 + 10' (& $ ' ux)uxx uxxx + 15'2 u3xx

(& $ ' ux)7

vyyyyy = . . .

Page 43: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Equi-a!ne Moving Frame

# : (x, u, ux, uxx, uxxx) '$( (A,b) & SA(2)

A =

)) '( &

*

=

)3

(uxx $ 1

3 u!5/3xx uxxx

ux3

(uxx u!1/3

xx $ 13 u

!5/3xx uxxx

*

b =

)ab

*

=

)xu

*

Nondegeneracy condition: uxx *= 0.

Page 44: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Equi-a!ne arc length

dy = (& $ ' ux) dx '$( ds = $(dx) = 3

(uxx dx

Equi-a!ne curvature

vyyyy '$( $(uxxxx) =5 uxxuxxxx $ 3u2

xxx

9u8/3xx

= !

vyyyyy '$( $(uxxxxx) = · · · =d!

ds

vyyyyyy '$( $(uxxxxxx) = · · · =d2!

ds2$ 5!2

Page 45: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

The Classical Picture:

z

t

n

A =

)3

(uxx $ 1

3 u!5/3xx uxxx

ux3

(uxx u!1/3

xx $ 13 u

!5/3xx uxxx

*

= ( t, n ) b =

)xu

*

Page 46: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Frenet frame

t =dz

ds, n =

d2z

ds2.

Frenet equations = Pulled-back Maurer–Cartan forms:

dz

ds= t,

dt

ds= n,

dn

ds= ! t.

Page 47: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

The Recurrence Formula

* While invariantization respects all algebraic operationsit does not commute with di"erentiation!

For any function or di"erential form #:

d $(#) = $(d#) +r+

k=1

+k 0 $ [vk(#)]

v1, . . . ,vr — basis for g — infinitesimal generators

+1, . . . , +r — dual invariantized Maurer–Cartan forms

* The +k are uniquely determined by the recurrenceformulae for the phantom di"erential invariants

Page 48: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

d $(#) = $(d#) +r+

k=1

+k 0 $ [vk(#)]

* * * All identities, commutation formulae, syzygies, etc.,among di"erential invariants and, more generally, theinvariant di"erential forms follow from this universalrecurrence formula by letting # range over the basicfunctions and di"erential forms!

* * * Therefore, the entire structure of the di"erential invari-ant algebra and invariant variational bicomplex can becompletely determined using only linear di"erential al-gebra; this does not require explicit formulas for themoving frame, the di"erential invariants, the invariantdi"erential forms, or the group transformations!

Page 49: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

The Basis Theorem

Theorem. The di"erential invariant algebraI(G) is generated by a finite number of di"erentialinvariants

I1, . . . , I!and p = dimN invariant di"erential operators

D1, . . . ,Dp

meaning that every di"erential invariant can be locallyexpressed as a function of the generating invariantsand their invariant derivatives:

DJI" = Dj1Dj2

· · · DjnI".

=) Lie, Tresse, Ovsiannikov, Kumpera

=) Moving frames provides a constructive proof.

Page 50: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

TheDi"erential Invariant Algebra

Thus, remarkably, the structure of I(G) can be determinedwithout knowing the explicit formulae for either the movingframe, or the di"erential invariants, or the invariant di"er-ential operators!

The only required ingredients are the specification of the cross-section, and the standard formulae for the prolongedinfinitesimal generators.

Theorem. If G acts transitively on M , or if the infinitesimalgenerator coe!cients depend rationally in the coordinates,then all recurrence formulae are rational in the basicdi"erential invariants and so I(G) is a rational, non-commutative di"erential algebra.

Page 51: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Curves

Theorem. Let G be an ordinary# Lie group acting on the m-

dimensional manifold M . Then, locally, there exist m $ 1

generating di"erential invariants !1, . . . ,!m!1. Every other

di"erential invariant can be written as a function of the

generating di"erential invariants and their derivatives with

respect to the G-invariant arc length element ds.

# ordinary = transitive + no pseudo-stabilization.

=) m = 3 — curvature ! & torsion "

Page 52: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Minimal Generating Invariants

A set of di"erential invariants is a generating system if allother di"erential invariants can be written in terms of them andtheir invariant derivatives.

Euclidean space curves C % R3:• curvature ! and torsion "

Equi–a!ne space curves C % R3:• a!ne curvature ! and torsion "

Euclidean surfaces S % R3:• mean curvature H

* Gauss curvature K = $(D(4)H).

Equi–a!ne surfaces S % R3:• Pick invariant P .

Page 53: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Curves

Theorem. Let G be an ordinary# Lie group acting on the m-

dimensional manifold M . Then, locally, there exist m $ 1

generating di"erential invariants !1, . . . ,!m!1. Every other

di"erential invariant can be written as a function of the

generating di"erential invariants and their derivatives with

respect to the G-invariant arc length element ds.

# ordinary = transitive + no pseudo-stabilization.

=) m = 3 — curvature ! & torsion "

Page 54: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Euclidean Surfaces

Theorem.

The algebra of Euclidean di"erential invariants fora non-degenerate surface is generated by themean curvature through invariant di"erentiation.

K = $(H,D1H,D2H, . . . )

Page 55: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Euclidean Surfaces

Theorem.

The algebra of Euclidean di"erential invariants fora non-degenerate surface is generated by themean curvature through invariant di"erentiation.

K = $(H,D1H,D2H, . . . )

Page 56: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Euclidean ProofCommutation relation:

[D1,D2 ] = D1D2 $D2D1 = Z2D1 $ Z1D2,

Commutator invariants:

Z1 =D1!2

!1 $ !2

Z2 =D2!1

!2 $ !1

Codazzi relation:

K = !1!2 = $ (D1 + Z1)Z1 $ (D2 + Z2)Z2

=) Gauss’ Theorema Egregium

=) (Guggenheimer)

Page 57: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Euclidean ProofCommutation relation:

[D1,D2 ] = D1D2 $D2D1 = Z2D1 $ Z1D2,

Commutator invariants:

Z1 =D1!2

!1 $ !2

Z2 =D2!1

!2 $ !1

Codazzi relation:

K = !1!2 = $ (D1 + Z1)Z1 $ (D2 + Z2)Z2

=) Gauss’ Theorema Egregium

(Guggenheimer)

Page 58: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Euclidean ProofCommutation relation:

[D1,D2 ] = D1D2 $D2D1 = Z2D1 $ Z1D2,

Commutator invariants:

Z1 =D1!2

!1 $ !2

Z2 =D2!1

!2 $ !1

Codazzi relation:

K = !1!2 = $ (D1 + Z1)Z1 $ (D2 + Z2)Z2

=) Gauss’ Theorema Egregium

(Guggenheimer)

Page 59: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

To determine the commutator invariants:

D1D2H $D2D1H = Z2D1H $ Z1D2H

D1D2DJH $D2D1DJH = Z2D1DJH $ Z1D2DJH(,)

Nondegenerate surface:

det

)D1H D2H

D1DJH D2DJH

*

*= 0,

Solve (,) for Z1, Z2 in terms of derivatives of H.

Q.E.D.

* A surface is mean curvature degenerate ifDjH = Fj(H) for j = 1, 2.

Totally umbilic and constant mean curvature surfaces,including minimal surfaces are degenerate. Geometry?

Page 60: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

• Prolonging to derivatives (jet space)

G(n) : Jn(M, p) $( Jn(M,p)

=) di"erential invariants

• Prolonging to Cartesian product actions

G#n : M # · · ·#M $( M # · · ·#M

=) joint invariants

• Prolonging to “multi-space”

G(n) : M (n) $( M (n)

=) joint or semi-di"erential invariants=) invariant numerical approximations

Page 61: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Joint Invariants

A joint invariant is an invariant of the k-foldCartesian product action of G on M # · · ·#M :

I(g · z1, . . . , g · zk) = I(z1, . . . , zk)

A joint di"erential invariant or semi-di"erentialinvariant is an invariant depending on the derivativesat several points z1, . . . , zk & N on the submanifold:

I(g · z(n)1 , . . . , g · z(n)k ) = I(z(n)1 , . . . , z(n)k )

Page 62: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is afunction of the interpoint distances

d(zi, zj) = " zi $ zj "

zi

zj

Page 63: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Joint Equi–A!ne Invariants

Theorem. Every planar joint equi–a!ne invariant isa function of the triangular areas

[ i j k ] = 12 (zi $ zj) 0 (zi $ zk)

zi

zj

zk

Page 64: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Joint Projective Invariants

Theorem. Every planar joint projective invariant isa function of the planar cross-ratios

[ zi, zj, zk, zl, zm ] =AB

C D

A B

C

D

Page 65: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Projective joint di"erential invariant:— tangent triangle ratio

z0 z1

z2

A

B C

z0 z1

z2

D

E

F

ABC

DE F

Page 66: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

• Prolonging to derivatives (jet space)

G(n) : Jn(M,p) $( Jn(M,p)

=) di"erential invariants

• Prolonging to Cartesian product actions

G#n : M # · · ·#M $( M # · · ·#M

=) joint invariants

• Prolonging to “multi-space”

G(n) : M (n) $( M (n)

=) joint or semi-di"erential invariants=) invariant numerical approximations

Page 67: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Symmetry–Preserving Numerical Methods

• Invariant numerical approximations to di"erentialinvariants.

• Invariantization of numerical integration methods.

=) Structure-preserving algorithms

Page 68: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Numerical approximation to curvature

ab

cA

B

C

Heron’s formula

,!(A,B,C) = 4%

abc= 4

(s(s$ a)(s$ b)(s$ c)

abc

s =a+ b+ c

2— semi-perimeter

Page 69: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Invariantization of Numerical Schemes

=) Pilwon Kim

Suppose we are given a numerical scheme for integratinga di"erential equation, e.g., a Runge–Kutta Method for ordi-nary di"erential equations, or the Crank–Nicolson method forparabolic partial di"erential equations.

If G is a symmetry group of the di"erential equation,then one can use an appropriately chosen moving frame toinvariantize the numerical scheme, leading to an invariant nu-merical scheme that preserves the symmetry group. In challeng-ing regimes, the resulting invariantized numerical scheme can,with an inspired choice of moving frame, perform significantlybetter than its progenitor.

Page 70: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

! " # $ % &

!'

!(

!)

!&

!%

!$

*

+,-"!./011/2

3,4567

78894!

:894!

7894!

Invariant Runge–Kutta schemes

uxx + xux $ (x+ 1)u = sinx, u(0) = ux(0) = 1.

Page 71: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

! " # $ % &!'

!(

!)

!&

!%

!$

!#

!"

!

*

+,-"!./011/2

34534346,76389:;8960<7

Comparison of symmetry reduction and invariantization for

uxx + xux $ (x+ 1)u = sinx, u(0) = ux(0) = 1.

Page 72: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Invariantization of Crank–Nicolsonfor Burgers’ Equation

ut = ,uxx + uux

! !"# $!$"#

!$

!!"#

!

!"#

$

! !"# $!$"#

!$

!!"#

!

!"#

$

! !"# $!$"#

!$

!!"#

!

!"#

$

! !"# $!$"#

!$

!!"#

!

!"#

$

! !"# $!$"#

!$

!!"#

!

!"#

$

! !"# $!$"#

!$

!!"#

!

!"#

$

Page 73: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

The Calculus of Variations

I[u ] =-L(x, u(n)) dx — variational problem

L(x, u(n)) — Lagrangian

To construct the Euler-Lagrange equations: E(L) = 0

• Take the first variation:

&(Ldx) =+

$,J

-L

-u$J

&u$J dx

• Integrate by parts:

&(Ldx) =+

$,J

-L

-u$J

DJ(&u$) dx

1+

$,J

($D)J-L

-u$J

&u$ dx =q+

$=1

E$(L) &u$ dx

Page 74: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Invariant Variational Problems

According to Lie, any G–invariant variational problem canbe written in terms of the di"erential invariants:

I[u ] =-L(x, u(n)) dx =

-P ( . . . DKI$ . . . ) !

I1, . . . , I! — fundamental di"erential invariants

D1, . . . ,Dp — invariant di"erential operators

DKI$ — di"erentiated invariants

! = .1 0 · · · 0 .p — invariant volume form

Page 75: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

If the variational problem is G-invariant, so

I[u ] =-L(x, u(n)) dx =

-P ( . . . DKI$ . . . ) !

then its Euler–Lagrange equations admit G as a symmetrygroup, and hence can also be expressed in terms of the di"er-ential invariants:

E(L) 2 F ( . . . DKI$ . . . ) = 0

Main Problem:

Construct F directly from P .

(P. Gri!ths, I. Anderson )

Page 76: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Planar Euclidean group G = SE(2)

! =uxx

(1 + u2x)

3/2— curvature (di"erential invariant)

ds =(1 + u2

x dx — arc length

D =d

ds=

1(1 + u2

x

d

dx— arc length derivative

Euclidean–invariant variational problem

I[u ] =-L(x, u(n)) dx =

-P (!,!s,!ss, . . . ) ds

Euler-Lagrange equations

E(L) 2 F (!,!s,!ss, . . . ) = 0

Page 77: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Euclidean Curve Examples

Minimal curves (geodesics):

I[u ] =-

ds =- (

1 + u2x dx

E(L) = $! = 0=) straight lines

The Elastica (Euler):

I[u ] =-

12 !

2 ds =- u2

xx dx

(1 + u2x)

5/2

E(L) = !ss +12 !

3 = 0=) elliptic functions

Page 78: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

General Euclidean–invariant variational problem

I[u ] =-L(x, u(n)) dx =

-P (!,!s,!ss, . . . ) ds

To construct the invariant Euler-Lagrange equations:

Take the first variation:

&(P ds) =+

j

-P

-!j

&!j ds+ P &(ds)

Invariant variation of curvature:

&! = A"(&u) A" = D2 + !2

Invariant variation of arc length:

&(ds) = B(&u) ds B = $!

=) moving frame recurrence formulae

Page 79: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Integrate by parts:

&(P ds) 1 [ E(P )A(&u)$H(P )B(&u) ] ds1 [A,E(P )$ B,H(P ) ] &u ds = E(L) &u ds

Invariantized Euler–Lagrange expression

E(P ) =%+

n=0

($D)n-P

-!n

D =d

ds

Invariantized Hamiltonian

H(P ) =+

i>j

!i!j ($D)j-P

-!i

$ P

Euclidean–invariant Euler-Lagrange formula

E(L) = A,E(P )$ B,H(P ) = (D2 + !2) E(P ) + !H(P ) = 0.

Page 80: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

The Elastica:

I[u ] =-

12 !

2 ds P = 12 !

2

E(P ) = ! H(P ) = $P = $ 12 !

2

E(L) = (D2 + !2) !+ ! ($ 12 !

2 ) = !ss +12 !

3 = 0

Page 81: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations
Page 82: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations
Page 83: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Evolution of Invariants and Signatures

G — Lie group acting on R2

C(t) — parametrized family of plane curves

G–invariant curve flow:

dC

dt= V = I t+ J n

• I, J — di"erential invariants

• t — “unit tangent”

• n — “unit normal”

• The tangential component I t only a"ects the underlyingparametrization of the curve. Thus, we can set I to beanything we like without a"ecting the curve evolution.

Page 84: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Normal Curve Flows

Ct = J n

Examples — Euclidean–invariant curve flows

• Ct = n — geometric optics or grassfire flow;

• Ct = !n — curve shortening flow;

• Ct = !1/3 n — equi-a!ne invariant curve shortening flow:Ct = nequi!a!ne ;

• Ct = !s n — modified Korteweg–deVries flow;

• Ct = !ss n — thermal grooving of metals.

Page 85: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Intrinsic Curve Flows

Theorem. The curve flow generated by

v = I t+ J n

preserves arc length if and only if

B(J) +D I = 0.

D — invariant arc length derivative

B — invariant arc length variation

&(ds) = B(&u) ds

Page 86: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Normal Evolution of Di"erential Invariants

Theorem. Under a normal flow Ct = J n,

-!

-t= A"(J),

-!s

-t= A"s

(J).

Invariant variations:

&! = A"(&u), &!s = A"s

(&u).

A" = A — invariant variation of curvature;

A"s

= DA+ !!s — invariant variation of !s.

Page 87: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Euclidean–invariant Curve Evolution

Normal flow: Ct = J n

-!

-t= A"(J) = (D2 + !2) J,

-!s

-t= A"s

(J) = (D3 + !2D + 3!!s)J.

Warning : For non-intrinsic flows, -t and -s do not commute!

Theorem. Under the curve shortening flow Ct = $!n,the signature curve !s = H(t,!) evolves according to theparabolic equation

-H

-t= H2H"" $ !3H" + 4!2H

Page 88: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Smoothed Ventricle Signature

10 20 30 40 50 60

20

30

40

50

60

10 20 30 40 50 60

20

30

40

50

60

10 20 30 40 50 60

20

30

40

50

60

-0.15 -0.1 -0.05 0.05 0.1 0.15 0.2

-0.06

-0.04

-0.02

0.02

0.04

0.06

-0.15 -0.1 -0.05 0.05 0.1 0.15 0.2

-0.06

-0.04

-0.02

0.02

0.04

0.06

-0.15 -0.1 -0.05 0.05 0.1 0.15 0.2

-0.06

-0.04

-0.02

0.02

0.04

0.06

Page 89: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Intrinsic Evolution of Di"erential Invariants

Theorem.

Under an arc-length preserving flow,

!t = R(J) where R = A$ !sD!1B (,)

In surprisingly many situations, (*) is a well-known integrableevolution equation, and R is its recursion operator!

=) Hasimoto

=) Langer, Singer, Perline

=) Marı–Be"a, Sanders, Wang

=) Qu, Chou, Anco, and many more ...

Page 90: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Euclidean plane curves

G = SE(2) = SO(2)! R2

A = D2 + !2 B = $!

R = A$ !sD!1B = D2 + !2 + !sD

!1 · !

!t = R(!s) = !sss +32 !

2!s

=) modified Korteweg-deVries equation

Page 91: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Equi-a!ne plane curves

G = SA(2) = SL(2)! R2

A = D4 + 53 !D

2 + 53 !sD + 1

3 !ss +49 !

2

B = 13 D

2 $ 29 !

R = A$ !sD!1B

= D4 + 53 !D

2 + 43 !sD + 1

3 !ss +49 !

2 + 29 !sD

!1 · !

!t = R(!s) = !5s +53 !!sss +

53 !s!ss +

59 !

2!s

=) Sawada–Kotera equation

Recursion operator: .R = R · (D2 + 13 !+ 1

3 !sD!1)

Page 92: MovingFrames andtheirApplicationsolver/t_/mfh.pdfn b tangent normal binormal t = dz ds n = z ss "z ss " b = t×n s — arc length z — point on the curve Fr´enet–Serret equations

Euclidean space curves

G = SE(3) = SO(3)! R3

A =

/

00001

D2s + (!2 $ "2)

2"

!D2

s +3!"s $ 2!s"

!2Ds +

!"ss $ !s"s + 2!3"

!2

$2"Ds $ "s

1

!D3

s $!s

!2D2

s +!2 $ "2

!Ds +

!s"2 $ 2!""s!2

2

33334

B = (! 0 )

R = A$)!s

"s

*

D!1B)!t

"t

*

= R)!s

"s

*

=) vortex filament flow (Hasimoto)