129
A massive S-matrix from massless amplitudes Michael Kiermaier Princeton University INT Workshop: Advances in QCD, Sep 27, 2011 a a based on: N. Craig, H. Elvang, MK, T. Slatyer 1104.2050 MK 1105.5385 H. Elvang, D.Z. Freedman, MK to appear Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 1 / 30

€¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A massive S-matrix from massless amplitudes

Michael Kiermaier

Princeton University

INT Workshop: Advances in QCD, Sep 27, 2011aa

based on:

N. Craig, H. Elvang, MK, T. Slatyer 1104.2050

MK 1105.5385

H. Elvang, D.Z. Freedman, MK to appear

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 1 / 30

Page 2: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Motivation

On-shell methods: Successes

Tremendous conceptual progress in

massless

planar

maximally supersymmetric Yang-Mills theory.

Challenges

draw lessons for less “special” theories from massless N = 4 SYM

Even better:Recycle results in massless N = 4 SYM for other theories?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 2 / 30

Page 3: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Motivation

On-shell methods: Successes

Tremendous conceptual progress in

massless

planar

maximally supersymmetric Yang-Mills theory.

Challenges

draw lessons for less “special” theories from massless N = 4 SYM

Even better:Recycle results in massless N = 4 SYM for other theories?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 2 / 30

Page 4: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Motivation

On-shell methods: Successes

Tremendous conceptual progress in

massless

planar

maximally supersymmetric Yang-Mills theory.

Challenges

draw lessons for less “special” theories from massless N = 4 SYM

Even better:Recycle results in massless N = 4 SYM for other theories?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 2 / 30

Page 5: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Motivation

Level of Difficulty [L. Dixon, 1105.0771]

massivemassless

sYMN=4 sYM

planar N=4 sYM

Can we somehow cheat:Compute massive amplitudes from massless on-shell amplitudes?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 3 / 30

Page 6: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Motivation

Level of Difficulty [L. Dixon, 1105.0771]

massivemassless

sYMN=4 sYM

planar N=4 sYM

Can we somehow cheat:Compute massive amplitudes from massless on-shell amplitudes?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 3 / 30

Page 7: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Motivation

QFT phenomena studied using on-shell methods

on-shell amplitudes

light-like Wilson loops

light-like correlation functions

gauge theory=(gravity)2 at tree and loop-level [KLT, BCJ]

form factors

β functions from bubble coefficients

What about spontaneous symmetry breaking?Specifically: Can we compute amplitudes in the spontaneously brokentheory from on-shell amplitudes in the unbroken theory?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 4 / 30

Page 8: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Motivation

QFT phenomena studied using on-shell methods

on-shell amplitudes

light-like Wilson loops

light-like correlation functions

gauge theory=(gravity)2 at tree and loop-level [KLT, BCJ]

form factors

β functions from bubble coefficients

What about spontaneous symmetry breaking?Specifically: Can we compute amplitudes in the spontaneously brokentheory from on-shell amplitudes in the unbroken theory?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 4 / 30

Page 9: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Motivation

QFT phenomena studied using on-shell methods

on-shell amplitudes

light-like Wilson loops

light-like correlation functions

gauge theory=(gravity)2 at tree and loop-level [KLT, BCJ]

form factors

β functions from bubble coefficients

What about spontaneous symmetry breaking?Specifically: Can we compute amplitudes in the spontaneously brokentheory from on-shell amplitudes in the unbroken theory?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 4 / 30

Page 10: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Motivation

QFT phenomena studied using on-shell methods

on-shell amplitudes

light-like Wilson loops

light-like correlation functions

gauge theory=(gravity)2 at tree and loop-level [KLT, BCJ]

form factors

β functions from bubble coefficients

What about spontaneous symmetry breaking?

Specifically: Can we compute amplitudes in the spontaneously brokentheory from on-shell amplitudes in the unbroken theory?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 4 / 30

Page 11: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Motivation

QFT phenomena studied using on-shell methods

on-shell amplitudes

light-like Wilson loops

light-like correlation functions

gauge theory=(gravity)2 at tree and loop-level [KLT, BCJ]

form factors

β functions from bubble coefficients

What about spontaneous symmetry breaking?Specifically: Can we compute amplitudes in the spontaneously brokentheory from on-shell amplitudes in the unbroken theory?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 4 / 30

Page 12: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

1 Review: The Coulomb-branch of N = 4 SYM

2 Coulomb-branch S-matrix from massless amplitudes

3 Tests of Proposal

4 A CSW-like expansion on the Coulomb branch

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 5 / 30

Page 13: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

1 Review: The Coulomb-branch of N = 4 SYM

2 Coulomb-branch S-matrix from massless amplitudes

3 Tests of Proposal

4 A CSW-like expansion on the Coulomb branch

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 6 / 30

Page 14: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Spontaneous symmetry breaking in N = 4 SYM

The origin of moduli space

gauge group U(M + N), R-symmetry group SU(4)R

Coulomb branch: the simplest case

scalar vevs:⟨(φ12)A

B⟩

=⟨(φ34)A

B⟩

= m δAB for 1 ≤ A,B ≤ M .

brane picture:M

N

spontaneously breaks gauge and R-symmetry group:

U(M+N) → U(M)× U(N) , SU(4)R → Sp(4) ⊃ SU(2)× SU(2) .

states decompose as: Aµ =

((Aµ)N×N (Wµ)N×M

(W µ)M×N (Aµ)M×M

).

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 7 / 30

Page 15: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Spontaneous symmetry breaking in N = 4 SYM

The origin of moduli space

gauge group U(M + N), R-symmetry group SU(4)R

Coulomb branch: the simplest case

scalar vevs:⟨(φ12)A

B⟩

=⟨(φ34)A

B⟩

= m δAB for 1 ≤ A,B ≤ M .

brane picture:M

N

spontaneously breaks gauge and R-symmetry group:

U(M+N) → U(M)× U(N) , SU(4)R → Sp(4) ⊃ SU(2)× SU(2) .

states decompose as: Aµ =

((Aµ)N×N (Wµ)N×M

(W µ)M×N (Aµ)M×M

).

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 7 / 30

Page 16: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Spontaneous symmetry breaking in N = 4 SYM

The origin of moduli space

gauge group U(M + N), R-symmetry group SU(4)R

Coulomb branch: the simplest case

scalar vevs:⟨(φ12)A

B⟩

=⟨(φ34)A

B⟩

= m δAB for 1 ≤ A,B ≤ M .

brane picture:M

N

spontaneously breaks gauge and R-symmetry group:

U(M+N) → U(M)× U(N) , SU(4)R → Sp(4) ⊃ SU(2)× SU(2) .

states decompose as: Aµ =

((Aµ)N×N (Wµ)N×M

(W µ)M×N (Aµ)M×M

).

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 7 / 30

Page 17: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Spontaneous symmetry breaking in N = 4 SYM

Recent interest in Coulomb branch amplitudes

as a regulator of IR divergences in the massless theory[Alday, Henn, Naculich, Plefka, Schnitzer, Schuster]

Coulomb-branch inspired regularization of SUSY Wilson loop?[Mason, Skinner; Carot-Huot]

as the 4d reduction of 6d massless SYM [Bern, Carrasco, Dennen,

Huang, Ita; Brandhuber, Korres, Koschade, Travaglini]

interesting in their own right, as the simplest massive theory[Boels; Craig, Elvang, MK, Slatyer]

Crucial simple properties

massive and massless phase connected on moduli space of vacua

masses of any amplitude sum to zero:∑

i mi = 0 .

(obvious from 6d momentum conservation)

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 8 / 30

Page 18: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Spontaneous symmetry breaking in N = 4 SYM

Recent interest in Coulomb branch amplitudes

as a regulator of IR divergences in the massless theory[Alday, Henn, Naculich, Plefka, Schnitzer, Schuster]

Coulomb-branch inspired regularization of SUSY Wilson loop?[Mason, Skinner; Carot-Huot]

as the 4d reduction of 6d massless SYM [Bern, Carrasco, Dennen,

Huang, Ita; Brandhuber, Korres, Koschade, Travaglini]

interesting in their own right, as the simplest massive theory[Boels; Craig, Elvang, MK, Slatyer]

Crucial simple properties

massive and massless phase connected on moduli space of vacua

masses of any amplitude sum to zero:∑

i mi = 0 .

(obvious from 6d momentum conservation)

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 8 / 30

Page 19: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Spontaneous symmetry breaking in N = 4 SYM

Recent interest in Coulomb branch amplitudes

as a regulator of IR divergences in the massless theory[Alday, Henn, Naculich, Plefka, Schnitzer, Schuster]

Coulomb-branch inspired regularization of SUSY Wilson loop?[Mason, Skinner; Carot-Huot]

as the 4d reduction of 6d massless SYM [Bern, Carrasco, Dennen,

Huang, Ita; Brandhuber, Korres, Koschade, Travaglini]

interesting in their own right, as the simplest massive theory[Boels; Craig, Elvang, MK, Slatyer]

Crucial simple properties

massive and massless phase connected on moduli space of vacua

masses of any amplitude sum to zero:∑

i mi = 0 .

(obvious from 6d momentum conservation)

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 8 / 30

Page 20: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Spontaneous symmetry breaking in N = 4 SYM

Recent interest in Coulomb branch amplitudes

as a regulator of IR divergences in the massless theory[Alday, Henn, Naculich, Plefka, Schnitzer, Schuster]

Coulomb-branch inspired regularization of SUSY Wilson loop?[Mason, Skinner; Carot-Huot]

as the 4d reduction of 6d massless SYM [Bern, Carrasco, Dennen,

Huang, Ita; Brandhuber, Korres, Koschade, Travaglini]

interesting in their own right, as the simplest massive theory[Boels; Craig, Elvang, MK, Slatyer]

Crucial simple properties

massive and massless phase connected on moduli space of vacua

masses of any amplitude sum to zero:∑

i mi = 0 .

(obvious from 6d momentum conservation)

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 8 / 30

Page 21: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Spontaneous symmetry breaking in N = 4 SYM

Recent interest in Coulomb branch amplitudes

as a regulator of IR divergences in the massless theory[Alday, Henn, Naculich, Plefka, Schnitzer, Schuster]

Coulomb-branch inspired regularization of SUSY Wilson loop?[Mason, Skinner; Carot-Huot]

as the 4d reduction of 6d massless SYM [Bern, Carrasco, Dennen,

Huang, Ita; Brandhuber, Korres, Koschade, Travaglini]

interesting in their own right, as the simplest massive theory[Boels; Craig, Elvang, MK, Slatyer]

Crucial simple properties

massive and massless phase connected on moduli space of vacua

masses of any amplitude sum to zero:∑

i mi = 0 .

(obvious from 6d momentum conservation)

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 8 / 30

Page 22: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Explicit amplitudes

Convenient variables to express Coulomb-branch amplitudes?

Review: Massless spinor helicity formalism

pi ↔ |i〉[i | ⇒ e.g.⟨g−1 g−2 g+

3 · · · g+n

⟩=

〈12〉4

〈12〉〈23〉 · · · 〈n1〉.

Massive spinor helicity formalism [Kleiss, Stirling; Dittmaier]

Pick arbitrary massless reference vector q, then decompose:

pi ↔ |i⊥〉[i⊥| −m2

2 pi ·q|q〉[q| ,

ε+ =

√2|q〉[i⊥|〈i⊥q〉

, ε− =

√2|i⊥〉[q|[i⊥q]

, . . .

Reference vector q

introduced as a technical tool, defines a basis of “helicity amplitudes”

BUT: has no direct physical significance or interpretation!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 9 / 30

Page 23: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Explicit amplitudes

Convenient variables to express Coulomb-branch amplitudes?

Review: Massless spinor helicity formalism

pi ↔ |i〉[i | ⇒ e.g.⟨g−1 g−2 g+

3 · · · g+n

⟩=

〈12〉4

〈12〉〈23〉 · · · 〈n1〉.

Massive spinor helicity formalism [Kleiss, Stirling; Dittmaier]

Pick arbitrary massless reference vector q, then decompose:

pi ↔ |i⊥〉[i⊥| −m2

2 pi ·q|q〉[q| ,

ε+ =

√2|q〉[i⊥|〈i⊥q〉

, ε− =

√2|i⊥〉[q|[i⊥q]

, . . .

Reference vector q

introduced as a technical tool, defines a basis of “helicity amplitudes”

BUT: has no direct physical significance or interpretation!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 9 / 30

Page 24: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Explicit amplitudes

Convenient variables to express Coulomb-branch amplitudes?

Review: Massless spinor helicity formalism

pi ↔ |i〉[i | ⇒ e.g.⟨g−1 g−2 g+

3 · · · g+n

⟩=

〈12〉4

〈12〉〈23〉 · · · 〈n1〉.

Massive spinor helicity formalism [Kleiss, Stirling; Dittmaier]

Pick arbitrary massless reference vector q

, then decompose:

pi ↔ |i⊥〉[i⊥| −m2

2 pi ·q|q〉[q| ,

ε+ =

√2|q〉[i⊥|〈i⊥q〉

, ε− =

√2|i⊥〉[q|[i⊥q]

, . . .

Reference vector q

introduced as a technical tool, defines a basis of “helicity amplitudes”

BUT: has no direct physical significance or interpretation!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 9 / 30

Page 25: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Explicit amplitudes

Convenient variables to express Coulomb-branch amplitudes?

Review: Massless spinor helicity formalism

pi ↔ |i〉[i | ⇒ e.g.⟨g−1 g−2 g+

3 · · · g+n

⟩=

〈12〉4

〈12〉〈23〉 · · · 〈n1〉.

Massive spinor helicity formalism [Kleiss, Stirling; Dittmaier]

Pick arbitrary massless reference vector q, then decompose:

pi ↔ |i⊥〉[i⊥| −m2

2 pi ·q|q〉[q| ,

ε+ =

√2|q〉[i⊥|〈i⊥q〉

, ε− =

√2|i⊥〉[q|[i⊥q]

, . . .

Reference vector q

introduced as a technical tool, defines a basis of “helicity amplitudes”

BUT: has no direct physical significance or interpretation!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 9 / 30

Page 26: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Explicit amplitudes

Convenient variables to express Coulomb-branch amplitudes?

Review: Massless spinor helicity formalism

pi ↔ |i〉[i | ⇒ e.g.⟨g−1 g−2 g+

3 · · · g+n

⟩=

〈12〉4

〈12〉〈23〉 · · · 〈n1〉.

Massive spinor helicity formalism [Kleiss, Stirling; Dittmaier]

Pick arbitrary massless reference vector q, then decompose:

pi ↔ |i⊥〉[i⊥| −m2

2 pi ·q|q〉[q| , ε+ =

√2|q〉[i⊥|〈i⊥q〉

, ε− =

√2|i⊥〉[q|[i⊥q]

, . . .

Reference vector q

introduced as a technical tool, defines a basis of “helicity amplitudes”

BUT: has no direct physical significance or interpretation!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 9 / 30

Page 27: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Explicit amplitudes

Convenient variables to express Coulomb-branch amplitudes?

Review: Massless spinor helicity formalism

pi ↔ |i〉[i | ⇒ e.g.⟨g−1 g−2 g+

3 · · · g+n

⟩=

〈12〉4

〈12〉〈23〉 · · · 〈n1〉.

Massive spinor helicity formalism [Kleiss, Stirling; Dittmaier]

Pick arbitrary massless reference vector q, then decompose:

pi ↔ |i⊥〉[i⊥| −m2

2 pi ·q|q〉[q| , ε+ =

√2|q〉[i⊥|〈i⊥q〉

, ε− =

√2|i⊥〉[q|[i⊥q]

, . . .

Reference vector q

introduced as a technical tool, defines a basis of “helicity amplitudes”

BUT: has no direct physical significance or interpretation!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 9 / 30

Page 28: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Explicit amplitudes

Example: Ultra-helicity violating (UHV) amplitudes

4-point amplitude:⟨W−1 W

+

2 g+3 g+

4

⟩= − m2〈q1⊥〉2[34]

〈q2⊥〉2〈34〉(P223 + m2)

.

n-point amplitude: [see also: Forde, Kosower; Ferrario et al]⟨W−1 W

+2 g+

3 . . . g+n

⟩= − m2〈q 1⊥〉2

〈q 2⊥〉2 〈34〉〈45〉 · · · 〈n−1, n〉(P2n1+m2)

×[3∣∣ n−2∏j=3

[1 +

P2...j |j+1〉[j+1|P22...j+m2

]∣∣n] .Example: Maximally SU(4)-violating amplitudes

4-point amplitude: 〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

.

n-point amplitude:⟨W−1 W

+

2 φ343 . . . φ34n

⟩=

−mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)(P2

234 + m2) · · · (P223...n-1 + m2)

.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 10 / 30

Page 29: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Explicit amplitudes

Example: Ultra-helicity violating (UHV) amplitudes

4-point amplitude:⟨W−1 W

+

2 g+3 g+

4

⟩= − m2〈q1⊥〉2[34]

〈q2⊥〉2〈34〉(P223 + m2)

.

n-point amplitude: [see also: Forde, Kosower; Ferrario et al]⟨W−1 W

+2 g+

3 . . . g+n

⟩= − m2〈q 1⊥〉2

〈q 2⊥〉2 〈34〉〈45〉 · · · 〈n−1, n〉(P2n1+m2)

×[3∣∣ n−2∏j=3

[1 +

P2...j |j+1〉[j+1|P22...j+m2

]∣∣n] .

Example: Maximally SU(4)-violating amplitudes

4-point amplitude: 〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

.

n-point amplitude:⟨W−1 W

+

2 φ343 . . . φ34n

⟩=

−mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)(P2

234 + m2) · · · (P223...n-1 + m2)

.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 10 / 30

Page 30: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Explicit amplitudes

Example: Ultra-helicity violating (UHV) amplitudes

4-point amplitude:⟨W−1 W

+

2 g+3 g+

4

⟩= − m2〈q1⊥〉2[34]

〈q2⊥〉2〈34〉(P223 + m2)

.

n-point amplitude: [see also: Forde, Kosower; Ferrario et al]⟨W−1 W

+2 g+

3 . . . g+n

⟩= − m2〈q 1⊥〉2

〈q 2⊥〉2 〈34〉〈45〉 · · · 〈n−1, n〉(P2n1+m2)

×[3∣∣ n−2∏j=3

[1 +

P2...j |j+1〉[j+1|P22...j+m2

]∣∣n] .Example: Maximally SU(4)-violating amplitudes

4-point amplitude: 〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

.

n-point amplitude:⟨W−1 W

+

2 φ343 . . . φ34n

⟩=

−mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)(P2

234 + m2) · · · (P223...n-1 + m2)

.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 10 / 30

Page 31: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Explicit amplitudes

Example: Ultra-helicity violating (UHV) amplitudes

4-point amplitude:⟨W−1 W

+

2 g+3 g+

4

⟩= − m2〈q1⊥〉2[34]

〈q2⊥〉2〈34〉(P223 + m2)

.

n-point amplitude: [see also: Forde, Kosower; Ferrario et al]⟨W−1 W

+2 g+

3 . . . g+n

⟩= − m2〈q 1⊥〉2

〈q 2⊥〉2 〈34〉〈45〉 · · · 〈n−1, n〉(P2n1+m2)

×[3∣∣ n−2∏j=3

[1 +

P2...j |j+1〉[j+1|P22...j+m2

]∣∣n] .Example: Maximally SU(4)-violating amplitudes

4-point amplitude: 〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

.

n-point amplitude:⟨W−1 W

+

2 φ343 . . . φ34n

⟩=

−mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)(P2

234 + m2) · · · (P223...n-1 + m2)

.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 10 / 30

Page 32: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

1 Review: The Coulomb-branch of N = 4 SYM

2 Coulomb-branch S-matrix from massless amplitudes

3 Tests of Proposal

4 A CSW-like expansion on the Coulomb branch

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 11 / 30

Page 33: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Idea

Probe the moduli space through scalar soft limits!

Compare: Adler zeros, Soft-pion theorems

Goldstone bosons: soft-limits probe vacuum manifold

BUT: Goldstone bosons ⇔ global symmetry ⇔ all vacua equivalent

soft scalar limits vanish: limε→0

⟨φεq . . .

⟩= 0 .

old theorem with modern applications:finiteness of N = 8 supergravity for L < 7 loops!

N = 4 SYM: scalars not GSB⇒ vacua not equivalent ⇒ non-vanishing soft limits!Should teach us about the new vacuum!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 12 / 30

Page 34: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Idea

Probe the moduli space through scalar soft limits!

Compare: Adler zeros, Soft-pion theorems

Goldstone bosons: soft-limits probe vacuum manifold

BUT: Goldstone bosons ⇔ global symmetry ⇔ all vacua equivalent

soft scalar limits vanish: limε→0

⟨φεq . . .

⟩= 0 .

old theorem with modern applications:finiteness of N = 8 supergravity for L < 7 loops!

N = 4 SYM: scalars not GSB⇒ vacua not equivalent ⇒ non-vanishing soft limits!Should teach us about the new vacuum!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 12 / 30

Page 35: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Idea

Probe the moduli space through scalar soft limits!

Compare: Adler zeros, Soft-pion theorems

Goldstone bosons: soft-limits probe vacuum manifold

BUT: Goldstone bosons ⇔ global symmetry ⇔ all vacua equivalent

soft scalar limits vanish: limε→0

⟨φεq . . .

⟩= 0 .

old theorem with modern applications:finiteness of N = 8 supergravity for L < 7 loops!

N = 4 SYM: scalars not GSB⇒ vacua not equivalent ⇒ non-vanishing soft limits!Should teach us about the new vacuum!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 12 / 30

Page 36: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Idea

Probe the moduli space through scalar soft limits!

Compare: Adler zeros, Soft-pion theorems

Goldstone bosons: soft-limits probe vacuum manifold

BUT: Goldstone bosons ⇔ global symmetry ⇔ all vacua equivalent

soft scalar limits vanish: limε→0

⟨φεq . . .

⟩= 0 .

old theorem with modern applications:finiteness of N = 8 supergravity for L < 7 loops!

N = 4 SYM: scalars not GSB⇒ vacua not equivalent ⇒ non-vanishing soft limits!Should teach us about the new vacuum!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 12 / 30

Page 37: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Idea

Probe the moduli space through scalar soft limits!

Compare: Adler zeros, Soft-pion theorems

Goldstone bosons: soft-limits probe vacuum manifold

BUT: Goldstone bosons ⇔ global symmetry ⇔ all vacua equivalent

soft scalar limits vanish: limε→0

⟨φεq . . .

⟩= 0 .

old theorem with modern applications:finiteness of N = 8 supergravity for L < 7 loops!

N = 4 SYM: scalars not GSB⇒ vacua not equivalent ⇒ non-vanishing soft limits!Should teach us about the new vacuum!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 12 / 30

Page 38: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Naive ansatz:

⟨W1W 2 . . .

⟩ ?=

⟨g1 g2 . . .

⟩+ O(m) .

Puzzles

1 massive and massless amplitude are on-shell, p2W = −m2, but p2g = 0!How are momenta related?

2 soft-limit qi dependent! How to choose qi?

3 massive “helicity” frame-dependent! How to choose W -polarizations?

4 RHS generically ill-defined due to soft divergences!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 13 / 30

Page 39: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Naive ansatz:⟨W1W 2 . . .

⟩ ?=

⟨g1 g2 . . .

⟩+

limε→0

⟨g1φ

vev

ε

q g2 . . .⟩

+ O(m2).

Puzzles

1 massive and massless amplitude are on-shell, p2W = −m2, but p2g = 0!How are momenta related?

2 soft-limit qi dependent! How to choose qi?

3 massive “helicity” frame-dependent! How to choose W -polarizations?

4 RHS generically ill-defined due to soft divergences!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 13 / 30

Page 40: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Naive ansatz:⟨W1W 2 . . .

⟩ ?=

⟨g1 g2 . . .

⟩+ lim

ε→0

⟨g1φ

vevεq g2 . . .

⟩+ O(m2).

Puzzles

1 massive and massless amplitude are on-shell, p2W = −m2, but p2g = 0!How are momenta related?

2 soft-limit qi dependent! How to choose qi?

3 massive “helicity” frame-dependent! How to choose W -polarizations?

4 RHS generically ill-defined due to soft divergences!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 13 / 30

Page 41: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Naive ansatz:⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzles

1 massive and massless amplitude are on-shell, p2W = −m2, but p2g = 0!How are momenta related?

2 soft-limit qi dependent! How to choose qi?

3 massive “helicity” frame-dependent! How to choose W -polarizations?

4 RHS generically ill-defined due to soft divergences!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 13 / 30

Page 42: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Naive ansatz:⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzles

1 massive and massless amplitude are on-shell, p2W = −m2, but p2g = 0!How are momenta related?

2 soft-limit qi dependent! How to choose qi?

3 massive “helicity” frame-dependent! How to choose W -polarizations?

4 RHS generically ill-defined due to soft divergences!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 13 / 30

Page 43: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Naive ansatz:⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzles

1 massive and massless amplitude are on-shell, p2W = −m2, but p2g = 0!How are momenta related?

2 soft-limit qi dependent! How to choose qi?

3 massive “helicity” frame-dependent! How to choose W -polarizations?

4 RHS generically ill-defined due to soft divergences!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 13 / 30

Page 44: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Naive ansatz:⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzles

1 massive and massless amplitude are on-shell, p2W = −m2, but p2g = 0!How are momenta related?

2 soft-limit qi dependent! How to choose qi?

3 massive “helicity” frame-dependent! How to choose W -polarizations?

4 RHS generically ill-defined due to soft divergences!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 13 / 30

Page 45: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Naive ansatz:⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzles

1 massive and massless amplitude are on-shell, p2W = −m2, but p2g = 0!How are momenta related?

2 soft-limit qi dependent! How to choose qi?

3 massive “helicity” frame-dependent! How to choose W -polarizations?

4 RHS generically ill-defined due to soft divergences!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 13 / 30

Page 46: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Goal

Coulomb branch S-matrix =∑

massless on-shell amplitudes

Naive ansatz:⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzles

1 massive and massless amplitude are on-shell, p2W = −m2, but p2g = 0!How are momenta related?

2 soft-limit qi dependent! How to choose qi?

3 massive “helicity” frame-dependent! How to choose W -polarizations?

4 RHS generically ill-defined due to soft divergences!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 13 / 30

Page 47: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzle 1: How are momenta related?

decompose massive W momenta as: pi = p⊥i −m2

i2 q·pi q .

choose p⊥i as massless gluon momentum on RHS!

Puzzle 2: How to map W -polarizations to massless states?

massive W polarizations ε+ =√2|q〉[i⊥|〈i⊥q〉 , ε− =

√2|i⊥〉[q|[i⊥q]

⇔ massless ±-helicity gluons.

longitudinal W boson with polarization /εL = 1mi

(/p⊥i +

m2i

2q·pi /q)

⇔ massless scalar 1√2

(φ12+φ34) .

LHS now depends on one arbitrary massless reference spinor q ⇔ RHS?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 14 / 30

Page 48: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzle 1: How are momenta related?

decompose massive W momenta as: pi = p⊥i −m2

i2 q·pi q .

choose p⊥i as massless gluon momentum on RHS!

Puzzle 2: How to map W -polarizations to massless states?

massive W polarizations ε+ =√2|q〉[i⊥|〈i⊥q〉 , ε− =

√2|i⊥〉[q|[i⊥q]

⇔ massless ±-helicity gluons.

longitudinal W boson with polarization /εL = 1mi

(/p⊥i +

m2i

2q·pi /q)

⇔ massless scalar 1√2

(φ12+φ34) .

LHS now depends on one arbitrary massless reference spinor q ⇔ RHS?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 14 / 30

Page 49: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzle 1: How are momenta related?

decompose massive W momenta as: pi = p⊥i −m2

i2 q·pi q .

choose p⊥i as massless gluon momentum on RHS!

Puzzle 2: How to map W -polarizations to massless states?

massive W polarizations ε+ =√2|q〉[i⊥|〈i⊥q〉 , ε− =

√2|i⊥〉[q|[i⊥q]

⇔ massless ±-helicity gluons.

longitudinal W boson with polarization /εL = 1mi

(/p⊥i +

m2i

2q·pi /q)

⇔ massless scalar 1√2

(φ12+φ34) .

LHS now depends on one arbitrary massless reference spinor q ⇔ RHS?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 14 / 30

Page 50: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzle 1: How are momenta related?

decompose massive W momenta as: pi = p⊥i −m2

i2 q·pi q .

choose p⊥i as massless gluon momentum on RHS!

Puzzle 2: How to map W -polarizations to massless states?

massive W polarizations ε+ =√2|q〉[i⊥|〈i⊥q〉 , ε− =

√2|i⊥〉[q|[i⊥q]

⇔ massless ±-helicity gluons.

longitudinal W boson with polarization /εL = 1mi

(/p⊥i +

m2i

2q·pi /q)

⇔ massless scalar 1√2

(φ12+φ34) .

LHS now depends on one arbitrary massless reference spinor q ⇔ RHS?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 14 / 30

Page 51: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzle 1: How are momenta related?

decompose massive W momenta as: pi = p⊥i −m2

i2 q·pi q .

choose p⊥i as massless gluon momentum on RHS!

Puzzle 2: How to map W -polarizations to massless states?

massive W polarizations ε+ =√2|q〉[i⊥|〈i⊥q〉 , ε− =

√2|i⊥〉[q|[i⊥q]

⇔ massless ±-helicity gluons.

longitudinal W boson with polarization /εL = 1mi

(/p⊥i +

m2i

2q·pi /q)

⇔ massless scalar 1√2

(φ12+φ34) .

LHS now depends on one arbitrary massless reference spinor q ⇔ RHS?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 14 / 30

Page 52: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

⟩.

Puzzle 1: How are momenta related?

decompose massive W momenta as: pi = p⊥i −m2

i2 q·pi q .

choose p⊥i as massless gluon momentum on RHS!

Puzzle 2: How to map W -polarizations to massless states?

massive W polarizations ε+ =√2|q〉[i⊥|〈i⊥q〉 , ε− =

√2|i⊥〉[q|[i⊥q]

⇔ massless ±-helicity gluons.

longitudinal W boson with polarization /εL = 1mi

(/p⊥i +

m2i

2q·pi /q)

⇔ massless scalar 1√2

(φ12+φ34) .

LHS now depends on one arbitrary massless reference spinor q ⇔ RHS?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 14 / 30

Page 53: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

sym

.

Puzzle 3: How to choose soft-scalar momenta qi?

LHS depends only on one reference null momentum q⇒ need to set all qi = q to match parameters!

New Puzzle: collinear divergences as qi → q!

collinear divergences are anti-symmetric in momenta.

Resolution: Symmetrize in qi before taking the limit qi → q.

Makes sense, because vev scalars should not be color-ordered!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 15 / 30

Page 54: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

sym

.

Puzzle 3: How to choose soft-scalar momenta qi?

LHS depends only on one reference null momentum q

⇒ need to set all qi = q to match parameters!

New Puzzle: collinear divergences as qi → q!

collinear divergences are anti-symmetric in momenta.

Resolution: Symmetrize in qi before taking the limit qi → q.

Makes sense, because vev scalars should not be color-ordered!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 15 / 30

Page 55: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

sym

.

Puzzle 3: How to choose soft-scalar momenta qi?

LHS depends only on one reference null momentum q⇒ need to set all qi = q to match parameters!

New Puzzle: collinear divergences as qi → q!

collinear divergences are anti-symmetric in momenta.

Resolution: Symmetrize in qi before taking the limit qi → q.

Makes sense, because vev scalars should not be color-ordered!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 15 / 30

Page 56: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

sym

.

Puzzle 3: How to choose soft-scalar momenta qi?

LHS depends only on one reference null momentum q⇒ need to set all qi = q to match parameters!

New Puzzle: collinear divergences as qi → q!

collinear divergences are anti-symmetric in momenta.

Resolution: Symmetrize in qi before taking the limit qi → q.

Makes sense, because vev scalars should not be color-ordered!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 15 / 30

Page 57: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq1φ

vevεq2 . . φ

vevεqs g2 . . .

sym

.

Puzzle 3: How to choose soft-scalar momenta qi?

LHS depends only on one reference null momentum q⇒ need to set all qi = q to match parameters!

New Puzzle: collinear divergences as qi → q!

collinear divergences are anti-symmetric in momenta.

Resolution: Symmetrize in qi before taking the limit qi → q.

Makes sense, because vev scalars should not be color-ordered!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 15 / 30

Page 58: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Puzzle 3: How to choose soft-scalar momenta qi?

LHS depends only on one reference null momentum q⇒ need to set all qi = q to match parameters!

New Puzzle: collinear divergences as qi → q!

collinear divergences are anti-symmetric in momenta.

Resolution: Symmetrize in qi before taking the limit qi → q.

Makes sense, because vev scalars should not be color-ordered!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 15 / 30

Page 59: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Puzzle 4: soft-divergences in the limit ε→ 0

Finite soft limits at leading non-vanishing order!

O(m2) term in 〈W−W+φ34φ34〉:⟨

g−1 φvevεq φ

vevεq g+

2 φ343 φ

344

⟩sym

= − m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

+O(ε1) . (correct!) .

Divergent soft limits at subleading orders!

O(m4) term in 〈W−W+φ34φ34〉:⟨

g−1 φvevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ

344

⟩sym

=1

ε× m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

(m2

4 q ·p1+

m2

4 q ·p2

)+O(ε0) .

Related problem: O(m2) violation of momentum conservation on RHS∑i

p⊥i =∑i

(pi +

m2i

2 q ·piq)

=

[ n∑i=1

m2i

2 q ·pi

]q 6= 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 16 / 30

Page 60: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Puzzle 4: soft-divergences in the limit ε→ 0

Finite soft limits at leading non-vanishing order!

O(m2) term in 〈W−W+φ34φ34〉:⟨

g−1 φvevεq φ

vevεq g+

2 φ343 φ

344

⟩sym

= − m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

+O(ε1) . (correct!) .

Divergent soft limits at subleading orders!

O(m4) term in 〈W−W+φ34φ34〉:⟨

g−1 φvevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ

344

⟩sym

=1

ε× m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

(m2

4 q ·p1+

m2

4 q ·p2

)+O(ε0) .

Related problem: O(m2) violation of momentum conservation on RHS∑i

p⊥i =∑i

(pi +

m2i

2 q ·piq)

=

[ n∑i=1

m2i

2 q ·pi

]q 6= 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 16 / 30

Page 61: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Puzzle 4: soft-divergences in the limit ε→ 0

Finite soft limits at leading non-vanishing order!

O(m2) term in 〈W−W+φ34φ34〉:⟨

g−1 φvevεq φ

vevεq g+

2 φ343 φ

344

⟩sym

= − m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

+O(ε1) . (correct!) .

Divergent soft limits at subleading orders!

O(m4) term in 〈W−W+φ34φ34〉:⟨

g−1 φvevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ

344

⟩sym

=1

ε× m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

(m2

4 q ·p1+

m2

4 q ·p2

)+O(ε0) .

Related problem: O(m2) violation of momentum conservation on RHS∑i

p⊥i =∑i

(pi +

m2i

2 q ·piq)

=

[ n∑i=1

m2i

2 q ·pi

]q 6= 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 16 / 30

Page 62: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Puzzle 4: soft-divergences in the limit ε→ 0

Finite soft limits at leading non-vanishing order!

O(m2) term in 〈W−W+φ34φ34〉:⟨

g−1 φvevεq φ

vevεq g+

2 φ343 φ

344

⟩sym

= − m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

+O(ε1) . (correct!) .

Divergent soft limits at subleading orders!

O(m4) term in 〈W−W+φ34φ34〉:⟨

g−1 φvevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ

344

⟩sym

=1

ε× m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

(m2

4 q ·p1+

m2

4 q ·p2

)+O(ε0) .

Related problem: O(m2) violation of momentum conservation on RHS∑i

p⊥i =∑i

(pi +

m2i

2 q ·piq)

=

[ n∑i=1

m2i

2 q ·pi

]q 6= 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 16 / 30

Page 63: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Puzzle 4: soft-divergences in the limit ε→ 0

Finite soft limits at leading non-vanishing order!

O(m2) term in 〈W−W+φ34φ34〉:⟨

g−1 φvevεq φ

vevεq g+

2 φ343 φ

344

⟩sym

= − m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

+O(ε1) . (correct!) .

Divergent soft limits at subleading orders!

O(m4) term in 〈W−W+φ34φ34〉:⟨

g−1 φvevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ

344

⟩sym

=1

ε× m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

(m2

4 q ·p1+

m2

4 q ·p2

)+O(ε0) .

Related problem: O(m2) violation of momentum conservation on RHS∑i

p⊥i =∑i

(pi +

m2i

2 q ·piq)

=

[ n∑i=1

m2i

2 q ·pi

]q 6= 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 16 / 30

Page 64: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Special choice of q

We must imposen∑

i=1

m2i

2 q ·pi= 0

to

prevent 1/ε divergence at first subleading order on RHS .

guarantees momentum conservation on RHS:∑

i p⊥i = 0

only constrains choice of helicity basis!any Coulomb-branch amplitude expressible in any q-helicity basis!

Special choice of q for two massive lines

Simple orthogonality relation: q · (p1 + p2) = 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 17 / 30

Page 65: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Special choice of q

We must imposen∑

i=1

m2i

2 q ·pi= 0

to

prevent 1/ε divergence at first subleading order on RHS .

guarantees momentum conservation on RHS:∑

i p⊥i = 0

only constrains choice of helicity basis!any Coulomb-branch amplitude expressible in any q-helicity basis!

Special choice of q for two massive lines

Simple orthogonality relation: q · (p1 + p2) = 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 17 / 30

Page 66: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Special choice of q

We must imposen∑

i=1

m2i

2 q ·pi= 0

to

prevent 1/ε divergence at first subleading order on RHS .

guarantees momentum conservation on RHS:∑

i p⊥i = 0

only constrains choice of helicity basis!any Coulomb-branch amplitude expressible in any q-helicity basis!

Special choice of q for two massive lines

Simple orthogonality relation: q · (p1 + p2) = 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 17 / 30

Page 67: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

⟨W1W 2 . . .

⟩ ?= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Special choice of q

We must imposen∑

i=1

m2i

2 q ·pi= 0

to

prevent 1/ε divergence at first subleading order on RHS .

guarantees momentum conservation on RHS:∑

i p⊥i = 0

only constrains choice of helicity basis!any Coulomb-branch amplitude expressible in any q-helicity basis!

Special choice of q for two massive lines

Simple orthogonality relation: q · (p1 + p2) = 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 17 / 30

Page 68: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Summary: Refined proposal⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

W-boson, pol ε±q ±-helicity gluon

W-boson, pol εLq ⇐⇒ scalar 1√2

(φ12+φ34)

pi p⊥i ≡ pi +m2

i2 q·pi q

Special choice of q:∑n

i=1m2

i2 q·pi = 0 .

Open questions:

show that proposal is free of soft divergences to all orders

verify proposal for explicit Coulomb-branch amplitudes

BUT: Infinite sum, vev-scalar symmetrization... daunting task in practice?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 18 / 30

Page 69: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Summary: Refined proposal⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

W-boson, pol ε±q ±-helicity gluon

W-boson, pol εLq ⇐⇒ scalar 1√2

(φ12+φ34)

pi p⊥i ≡ pi +m2

i2 q·pi q

Special choice of q:∑n

i=1m2

i2 q·pi = 0 .

Open questions:

show that proposal is free of soft divergences to all orders

verify proposal for explicit Coulomb-branch amplitudes

BUT: Infinite sum, vev-scalar symmetrization... daunting task in practice?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 18 / 30

Page 70: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Summary: Refined proposal⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

W-boson, pol ε±q ±-helicity gluon

W-boson, pol εLq ⇐⇒ scalar 1√2

(φ12+φ34)

pi p⊥i ≡ pi +m2

i2 q·pi q

Special choice of q:∑n

i=1m2

i2 q·pi = 0 .

Open questions:

show that proposal is free of soft divergences to all orders

verify proposal for explicit Coulomb-branch amplitudes

BUT: Infinite sum, vev-scalar symmetrization... daunting task in practice?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 18 / 30

Page 71: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Summary: Refined proposal⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

W-boson, pol ε±q ±-helicity gluon

W-boson, pol εLq ⇐⇒ scalar 1√2

(φ12+φ34)

pi p⊥i ≡ pi +m2

i2 q·pi q

Special choice of q:∑n

i=1m2

i2 q·pi = 0 .

Open questions:

show that proposal is free of soft divergences to all orders

verify proposal for explicit Coulomb-branch amplitudes

BUT: Infinite sum, vev-scalar symmetrization... daunting task in practice?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 18 / 30

Page 72: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Massive amplitudes from massless amplitudes

Summary: Refined proposal⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

W-boson, pol ε±q ±-helicity gluon

W-boson, pol εLq ⇐⇒ scalar 1√2

(φ12+φ34)

pi p⊥i ≡ pi +m2

i2 q·pi q

Special choice of q:∑n

i=1m2

i2 q·pi = 0 .

Open questions:

show that proposal is free of soft divergences to all orders

verify proposal for explicit Coulomb-branch amplitudes

BUT: Infinite sum, vev-scalar symmetrization... daunting task in practice?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 18 / 30

Page 73: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

1 Review: The Coulomb-branch of N = 4 SYM

2 Coulomb-branch S-matrix from massless amplitudes

3 Tests of Proposal

4 A CSW-like expansion on the Coulomb branch

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 19 / 30

Page 74: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

need a convenient representation for massless amplitudes

proposal introduces reference vector q ⇒ CSW expansion natural!

The CSW expansion for massless amplitudes

MHV vertices, connected by scalar propagators:

n

1 2

3 _ _

+ +

〈1⊥2⊥〉4

〈1⊥2⊥〉 · · · 〈n⊥1⊥〉1

(P⊥I )2, P⊥I ≡

∑i∈I

p⊥i

holomorphic in |i⊥〉, CSW prescription |P⊥I 〉 ≡ P⊥I |q] for internal P⊥I

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 20 / 30

Page 75: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

need a convenient representation for massless amplitudes

proposal introduces reference vector q ⇒ CSW expansion natural!

The CSW expansion for massless amplitudes

MHV vertices, connected by scalar propagators:

n

1 2

3 _ _

+ +

〈1⊥2⊥〉4

〈1⊥2⊥〉 · · · 〈n⊥1⊥〉1

(P⊥I )2, P⊥I ≡

∑i∈I

p⊥i

holomorphic in |i⊥〉, CSW prescription |P⊥I 〉 ≡ P⊥I |q] for internal P⊥I

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 20 / 30

Page 76: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

need a convenient representation for massless amplitudes

proposal introduces reference vector q ⇒ CSW expansion natural!

The CSW expansion for massless amplitudes

MHV vertices, connected by scalar propagators:

n

1 2

3 _ _

+ +

〈1⊥2⊥〉4

〈1⊥2⊥〉 · · · 〈n⊥1⊥〉1

(P⊥I )2, P⊥I ≡

∑i∈I

p⊥i

holomorphic in |i⊥〉, CSW prescription |P⊥I 〉 ≡ P⊥I |q] for internal P⊥I

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 20 / 30

Page 77: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

need a convenient representation for massless amplitudes

proposal introduces reference vector q ⇒ CSW expansion natural!

The CSW expansion for massless amplitudes

MHV vertices, connected by scalar propagators:

n

1 2

3 _ _

+ +

〈1⊥2⊥〉4

〈1⊥2⊥〉 · · · 〈n⊥1⊥〉

1

(P⊥I )2, P⊥I ≡

∑i∈I

p⊥i

holomorphic in |i⊥〉, CSW prescription |P⊥I 〉 ≡ P⊥I |q] for internal P⊥I

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 20 / 30

Page 78: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

need a convenient representation for massless amplitudes

proposal introduces reference vector q ⇒ CSW expansion natural!

The CSW expansion for massless amplitudes

MHV vertices, connected by scalar propagators:

n

1 2

3 _ _

+ +

〈1⊥2⊥〉4

〈1⊥2⊥〉 · · · 〈n⊥1⊥〉1

(P⊥I )2, P⊥I ≡

∑i∈I

p⊥i

holomorphic in |i⊥〉, CSW prescription |P⊥I 〉 ≡ P⊥I |q] for internal P⊥I

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 20 / 30

Page 79: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

need a convenient representation for massless amplitudes

proposal introduces reference vector q ⇒ CSW expansion natural!

The CSW expansion for massless amplitudes

MHV vertices, connected by scalar propagators:

n

1 2

3 _ _

+ +

〈1⊥2⊥〉4

〈1⊥2⊥〉 · · · 〈n⊥1⊥〉1

(P⊥I )2, P⊥I ≡

∑i∈I

p⊥i

holomorphic in |i⊥〉, CSW prescription |P⊥I 〉 ≡ P⊥I |q] for internal P⊥I

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 20 / 30

Page 80: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Simplification through vev-scalar symmetrization

Vanishing vertices

ε q

P

ε q 21 sym

∝ 1

〈Pq1〉〈q1q2〉〈q2P〉+

1

〈Pq2〉〈q2q1〉〈q1P〉= 0

(obvious from antisymmetry of 3-point ampliutde)

ε q

P

ε q 21 sym

= 0 , ε q

P

ε q

ε q 3

2

1

sym

= 0 , ε q P

ε q ε q 3

ε q

2

1 4

sym

= 0 .

(obvious from U(1)-decoupling identity)vanishing vertices with more non-vev lines:

ε q

P = 0 ,sym

= 0 ,sym

= 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 21 / 30

Page 81: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Simplification through vev-scalar symmetrization

Vanishing vertices

ε q

P

ε q 21 sym

∝ 1

〈Pq1〉〈q1q2〉〈q2P〉+

1

〈Pq2〉〈q2q1〉〈q1P〉= 0

(obvious from antisymmetry of 3-point ampliutde)

ε q

P

ε q 21 sym

= 0 , ε q

P

ε q

ε q 3

2

1

sym

= 0 , ε q P

ε q ε q 3

ε q

2

1 4

sym

= 0 .

(obvious from U(1)-decoupling identity)

vanishing vertices with more non-vev lines:

ε q

P = 0 ,sym

= 0 ,sym

= 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 21 / 30

Page 82: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Simplification through vev-scalar symmetrization

Vanishing vertices

ε q

P

ε q 21 sym

∝ 1

〈Pq1〉〈q1q2〉〈q2P〉+

1

〈Pq2〉〈q2q1〉〈q1P〉= 0

(obvious from antisymmetry of 3-point ampliutde)

ε q

P

ε q 21 sym

= 0 , ε q

P

ε q

ε q 3

2

1

sym

= 0 , ε q P

ε q ε q 3

ε q

2

1 4

sym

= 0 .

(obvious from U(1)-decoupling identity)vanishing vertices with more non-vev lines:

ε q

P = 0 ,sym

= 0 ,sym

= 0 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 21 / 30

Page 83: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 84: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

leading order

Only one diagram contributes to the massless NMHV amplitude:

limε→0

⟨g−1 φvevεq φ

vevεq g+

2 φ343 φ344⟩sym

=

φ 343 φ 34

4 _g 1

+2 g = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P⊥23)2.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 85: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

leading order

Only one diagram contributes to the massless NMHV amplitude:

limε→0

⟨g−1 φvevεq φ

vevεq g+

2 φ343 φ344⟩sym

=

φ 343 φ 34

4 _g 1

+2 g = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P⊥23)2.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 86: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

Subleading order:⟨g−1 φ

vevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ34

4

⟩sym

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 87: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

Subleading order:⟨g−1 φ

vevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ34

4

⟩sym

φ 343 φ 34

4 _g 1

+2 g +

φ 343 φ 34

4 _g 1

+2 g +

φ 343 φ 34

4_g 1

+2 g .

crucial vertex:ε q

P

ε q sym

= −1

2〈φab〉〈φab〉 = −m2.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 88: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

Subleading order:⟨g−1 φ

vevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ34

4

⟩sym

φ 343 φ 34

4 _g 1

+2 g +

φ 343 φ 34

4 _g 1

+2 g +

φ 343 φ 34

4_g 1

+2 g .

crucial vertex:ε q

P

ε q sym

= −1

2〈φab〉〈φab〉 = −m2.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 89: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

Subleading order:⟨g−1 φ

vevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ34

4

⟩sym

limε→0

φ 343 φ 34

4 _g 1

+2 g =

m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P⊥23)2× m2

(P⊥23)2.

Finite contribution, builds up ’+m2’ in propagator!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 90: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

Subleading order:⟨g−1 φ

vevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ34

4

⟩sym

limε→0

φ 343 φ 34

4 _g 1

+2 g =

m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P⊥23)2× m2

(P⊥23)2.

Finite contribution, builds up ’+m2’ in propagator!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 91: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

Subleading order:⟨g−1 φ

vevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ34

4

⟩sym

φ 343 φ 34

4 _g 1

+2 g +

φ 343 φ 34

4_g 1

+2 g

=m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

×[1

ε

(m2

4 q ·p1+

m2

4 q ·p2

)− m2 q ·P23

(P⊥23)2 q ·p2

+ O(ε)

].

Finite sum of divergent diagrams, builds up p⊥2 → p2 in propagator!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 92: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

Subleading order:⟨g−1 φ

vevεq φ

vevεq φ

vevεq φ

vevεq g+

2 φ343 φ34

4

⟩sym

φ 343 φ 34

4 _g 1

+2 g +

φ 343 φ 34

4_g 1

+2 g

=m2〈1⊥|q|2⊥]〈2⊥|q|1⊥](P⊥23)2

×[1

ε

(m2

4 q ·p1+

m2

4 q ·p2

)− m2 q ·P23

(P⊥23)2 q ·p2

+ O(ε)

].

Finite sum of divergent diagrams, builds up p⊥2 → p2 in propagator!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 93: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

All orders in m

Internal 4-point vertices build up ’+m2’ in propagator

External 4-point vertices build up ’p⊥2 → p2’ in propagator

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 94: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

A four-point tree-level example

The 4-point amplitude 〈W−W+φ34φ34〉

〈W−W+φ34φ34〉 = − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2)

= − m2〈1⊥|q|2⊥]

〈2⊥|q|1⊥][(P⊥23)2−m2 q·P23

q·p2 +m2]

All orders in m

Internal 4-point vertices build up ’+m2’ in propagator

External 4-point vertices build up ’p⊥2 → p2’ in propagator

∑ φ 343 φ 34

4 _g 1

+2 g =

φ 343 φ 34

4 _g 1

+2 g .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 22 / 30

Page 95: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Checks and Generalizations of the proposal

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Non-trivial Checks

An all-n amplitude, to all orders in m:

〈W−1 W

+2 φ

343 . . . φ34n 〉 =

∑ 34φ n φ φ 3 34 344

_g 1

+2 g

=

34φ n φ φ 3 34 344

_g 1

+2 g

=−mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2) · · · (P2

23...n-1 + m2).

Proof of finite soft limit, to all orders in m, for any amplitude!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 23 / 30

Page 96: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Checks and Generalizations of the proposal

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Non-trivial Checks

An all-n amplitude, to all orders in m:

〈W−1 W

+2 φ

343 . . . φ34n 〉 =

∑ 34φ n φ φ 3 34 344

_g 1

+2 g

=

34φ n φ φ 3 34 344

_g 1

+2 g

=−mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2) · · · (P2

23...n-1 + m2).

Proof of finite soft limit, to all orders in m, for any amplitude!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 23 / 30

Page 97: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Checks and Generalizations of the proposal

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Non-trivial Checks

An all-n amplitude, to all orders in m:

〈W−1 W

+2 φ

343 . . . φ34n 〉 =

∑ 34φ n φ φ 3 34 344

_g 1

+2 g

=

34φ n φ φ 3 34 344

_g 1

+2 g

=−mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2) · · · (P2

23...n-1 + m2).

Proof of finite soft limit, to all orders in m, for any amplitude!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 23 / 30

Page 98: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Checks and Generalizations of the proposal

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Non-trivial Checks

An all-n amplitude, to all orders in m:

〈W−1 W

+2 φ

343 . . . φ34n 〉 =

∑ 34φ n φ φ 3 34 344

_g 1

+2 g

=

34φ n φ φ 3 34 344

_g 1

+2 g

=−mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2) · · · (P2

23...n-1 + m2).

Proof of finite soft limit, to all orders in m, for any amplitude!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 23 / 30

Page 99: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Checks and Generalizations of the proposal

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Non-trivial Checks

An all-n amplitude, to all orders in m:

〈W−1 W

+2 φ

343 . . . φ34n 〉 =

∑ 34φ n φ φ 3 34 344

_g 1

+2 g

=

34φ n φ φ 3 34 344

_g 1

+2 g

=−mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223 + m2) · · · (P2

23...n-1 + m2).

Proof of finite soft limit, to all orders in m, for any amplitude!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 23 / 30

Page 100: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Checks and Generalizations of the proposal

Generalizations of proposal

natural proposal for CB amplitudes with arbitrary masses.

breaking U(N)→∏

k U(Mk) ⇒ 〈φ〉 ∼ vk ⇒ mX = vk1 − vk2

with particle X in bifundamental of U(Mk1)× U(Mk2).

Double-line notation useful:

1 2

n k

k k 1 2 n

⟨X1X2 . . . Xn

⟩= limε→0

∞∑s=0

∑s1+...+sn=s

⟨Y1 φ

vevεq . . φ

vevεq︸ ︷︷ ︸

s1 times

Y2 φvevεq . . φ

vevεq︸ ︷︷ ︸

s2 times

Y3 . . . Yn φvevεq . . φ

vevεq︸ ︷︷ ︸

sn times

⟩sym

.

similar proposal for loop integrand (SUSY important!)

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 24 / 30

Page 101: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Checks and Generalizations of the proposal

Generalizations of proposal

natural proposal for CB amplitudes with arbitrary masses.

breaking U(N)→∏

k U(Mk) ⇒ 〈φ〉 ∼ vk ⇒ mX = vk1 − vk2

with particle X in bifundamental of U(Mk1)× U(Mk2).

Double-line notation useful:

1 2

n k

k k 1 2 n

⟨X1X2 . . . Xn

⟩= limε→0

∞∑s=0

∑s1+...+sn=s

⟨Y1 φ

vevεq . . φ

vevεq︸ ︷︷ ︸

s1 times

Y2 φvevεq . . φ

vevεq︸ ︷︷ ︸

s2 times

Y3 . . . Yn φvevεq . . φ

vevεq︸ ︷︷ ︸

sn times

⟩sym

.

similar proposal for loop integrand (SUSY important!)

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 24 / 30

Page 102: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Checks and Generalizations of the proposal

Generalizations of proposal

natural proposal for CB amplitudes with arbitrary masses.

breaking U(N)→∏

k U(Mk) ⇒ 〈φ〉 ∼ vk ⇒ mX = vk1 − vk2

with particle X in bifundamental of U(Mk1)× U(Mk2).

Double-line notation useful:

1 2

n k

k k 1 2 n

⟨X1X2 . . . Xn

⟩= limε→0

∞∑s=0

∑s1+...+sn=s

⟨Y1 φ

vevεq . . φ

vevεq︸ ︷︷ ︸

s1 times

Y2 φvevεq . . φ

vevεq︸ ︷︷ ︸

s2 times

Y3 . . . Yn φvevεq . . φ

vevεq︸ ︷︷ ︸

sn times

⟩sym

.

similar proposal for loop integrand (SUSY important!)

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 24 / 30

Page 103: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Checks and Generalizations of the proposal

Generalizations of proposal

natural proposal for CB amplitudes with arbitrary masses.

breaking U(N)→∏

k U(Mk) ⇒ 〈φ〉 ∼ vk ⇒ mX = vk1 − vk2

with particle X in bifundamental of U(Mk1)× U(Mk2).

Double-line notation useful:

1 2

n k

k k 1 2 n

⟨X1X2 . . . Xn

⟩= limε→0

∞∑s=0

∑s1+...+sn=s

⟨Y1 φ

vevεq . . φ

vevεq︸ ︷︷ ︸

s1 times

Y2 φvevεq . . φ

vevεq︸ ︷︷ ︸

s2 times

Y3 . . . Yn φvevεq . . φ

vevεq︸ ︷︷ ︸

sn times

⟩sym

.

similar proposal for loop integrand (SUSY important!)

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 24 / 30

Page 104: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

1 Review: The Coulomb-branch of N = 4 SYM

2 Coulomb-branch S-matrix from massless amplitudes

3 Tests of Proposal

4 A CSW-like expansion on the Coulomb branch

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 25 / 30

Page 105: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

infinite sum over massless amplitudes, complicated symmetrization

in simple examples:infinite sum ⇒ single diagram with massive propagators:

〈W−1 W

+2 φ

343 . . . φ34n 〉 =

34φ n φ φ 3 34 344

_g 1

+2 g

is this always possible? what are the massive Feynman rules?⇒ on-shell derivation of Feynman rules in the broken phase?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 26 / 30

Page 106: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

infinite sum over massless amplitudes, complicated symmetrization

in simple examples:infinite sum ⇒ single diagram with massive propagators:

〈W−1 W

+2 φ

343 . . . φ34n 〉 =

34φ n φ φ 3 34 344

_g 1

+2 g

is this always possible? what are the massive Feynman rules?

⇒ on-shell derivation of Feynman rules in the broken phase?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 26 / 30

Page 107: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

infinite sum over massless amplitudes, complicated symmetrization

in simple examples:infinite sum ⇒ single diagram with massive propagators:

〈W−1 W

+2 φ

343 . . . φ34n 〉 =

34φ n φ φ 3 34 344

_g 1

+2 g

is this always possible? what are the massive Feynman rules?⇒ on-shell derivation of Feynman rules in the broken phase?

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 26 / 30

Page 108: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Resummation ⇒ Massive CSW-like rules:

massive scalar propagators: = 1P2I +m2

I, mI =

∑i∈I mi .

MHV vertex:n _

1 W _

2 W

+3 W

+W

= 〈1⊥2⊥〉4〈1⊥2⊥〉···〈n⊥1⊥〉 .

UHV vertex:2 W

+3 W

+W

+_1 W

n = K 2 〈q⊥1⊥〉4

〈1⊥2⊥〉···〈n⊥1⊥〉 , K =∑

imi 〈1⊥i⊥〉〈1⊥q〉〈i⊥q〉 .

UHV×MHV vertex: _1 W

+3 W

w

+W n

342

= K 〈q⊥1⊥〉2〈1⊥2⊥〉2〈1⊥2⊥〉···〈n⊥1⊥〉 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 26 / 30

Page 109: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Resummation ⇒ Massive CSW-like rules:

massive scalar propagators: = 1P2I +m2

I, mI =

∑i∈I mi .

MHV vertex:n _

1 W _

2 W

+3 W

+W

= 〈1⊥2⊥〉4〈1⊥2⊥〉···〈n⊥1⊥〉 .

UHV vertex:2 W

+3 W

+W

+_1 W

n = K 2 〈q⊥1⊥〉4

〈1⊥2⊥〉···〈n⊥1⊥〉 , K =∑

imi 〈1⊥i⊥〉〈1⊥q〉〈i⊥q〉 .

UHV×MHV vertex: _1 W

+3 W

w

+W n

342

= K 〈q⊥1⊥〉2〈1⊥2⊥〉2〈1⊥2⊥〉···〈n⊥1⊥〉 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 26 / 30

Page 110: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Convenient representation for massless amplitudes

⟨W1W 2 . . .

⟩= lim

ε→0

∞∑s=0

⟨g1 φ

vevεq φ

vevεq . . φvevεq g2 . . .

⟩sym

.

Resummation ⇒ Massive CSW-like rules:

massive scalar propagators: = 1P2I +m2

I, mI =

∑i∈I mi .

MHV vertex:n _

1 W _

2 W

+3 W

+W

= 〈1⊥2⊥〉4〈1⊥2⊥〉···〈n⊥1⊥〉 .

UHV vertex:2 W

+3 W

+W

+_1 W

n = K 2 〈q⊥1⊥〉4

〈1⊥2⊥〉···〈n⊥1⊥〉 , K =∑

imi 〈1⊥i⊥〉〈1⊥q〉〈i⊥q〉 .

UHV×MHV vertex: _1 W

+3 W

w

+W n

342

= K 〈q⊥1⊥〉2〈1⊥2⊥〉2〈1⊥2⊥〉···〈n⊥1⊥〉 .

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 26 / 30

Page 111: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

All-n amplitudes from the CSW-like expansion

A simple example: 〈W−1 W

+

2 φ343 . . . φ34

n 〉

34φ n φ φ 3 34 34

_ +4

W W 1 2 =−mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223+m2) · · · (P2

23...n-1+m2).

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 27 / 30

Page 112: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

All-n amplitudes from the CSW-like expansion

A simple example: 〈W−1 W

+

2 φ343 . . . φ34

n 〉34φ n φ φ 3

34 34

_ +4

W W 1 2 =−mn−2〈1⊥|q|2⊥]

〈2⊥|q|1⊥](P223+m2) · · · (P2

23...n-1+m2).

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 27 / 30

Page 113: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

All-n amplitudes from the CSW-like expansion

A non-trivial example: 〈W−W+g+ . . . g+〉

_ +W W 1 2

g +g + 3n

+n−1∑i=3

_ +W W 1 2

g +g +n g g 3 j j ++

+1

P J

+ . . . .

discouraging at first sight: many diagrams!

BUT: sum of diagrams can be factorized into one simple term:

− m2〈q1⊥〉2

〈q2⊥〉2〈2⊥3〉〈34〉 · · · 〈n1⊥〉×⟨2⊥∣∣ n−1∏j=3

[1− m2|PJ〉〈j , j+1〉〈PJ |

(P2J + m2)〈PJ , j〉〈j+1,PJ〉

]∣∣1⊥⟩ .should be compared to BCFW form of same amplitude:

− m2〈q 1⊥〉2

〈q 2⊥〉2 〈34〉〈45〉 · · · 〈n−1, n〉(P2n1 + m2)

×[3∣∣ n−2∏j=3

[1 +

PJ |j+1〉[j+1|P2J + m2

]∣∣n] .similar complexity, but no recursion to solve!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 27 / 30

Page 114: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

All-n amplitudes from the CSW-like expansion

A non-trivial example: 〈W−W+g+ . . . g+〉

_ +W W 1 2

g +g + 3n

+n−1∑i=3

_ +W W 1 2

g +g +n g g 3 j j ++

+1

P J

+ . . . .

discouraging at first sight: many diagrams!

BUT: sum of diagrams can be factorized into one simple term:

− m2〈q1⊥〉2

〈q2⊥〉2〈2⊥3〉〈34〉 · · · 〈n1⊥〉×⟨2⊥∣∣ n−1∏j=3

[1− m2|PJ〉〈j , j+1〉〈PJ |

(P2J + m2)〈PJ , j〉〈j+1,PJ〉

]∣∣1⊥⟩ .

should be compared to BCFW form of same amplitude:

− m2〈q 1⊥〉2

〈q 2⊥〉2 〈34〉〈45〉 · · · 〈n−1, n〉(P2n1 + m2)

×[3∣∣ n−2∏j=3

[1 +

PJ |j+1〉[j+1|P2J + m2

]∣∣n] .similar complexity, but no recursion to solve!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 27 / 30

Page 115: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

All-n amplitudes from the CSW-like expansion

A non-trivial example: 〈W−W+g+ . . . g+〉

_ +W W 1 2

g +g + 3n

+n−1∑i=3

_ +W W 1 2

g +g +n g g 3 j j ++

+1

P J

+ . . . .

discouraging at first sight: many diagrams!

BUT: sum of diagrams can be factorized into one simple term:

− m2〈q1⊥〉2

〈q2⊥〉2〈2⊥3〉〈34〉 · · · 〈n1⊥〉×⟨2⊥∣∣ n−1∏j=3

[1− m2|PJ〉〈j , j+1〉〈PJ |

(P2J + m2)〈PJ , j〉〈j+1,PJ〉

]∣∣1⊥⟩ .should be compared to BCFW form of same amplitude:

− m2〈q 1⊥〉2

〈q 2⊥〉2 〈34〉〈45〉 · · · 〈n−1, n〉(P2n1 + m2)

×[3∣∣ n−2∏j=3

[1 +

PJ |j+1〉[j+1|P2J + m2

]∣∣n] .similar complexity, but no recursion to solve!

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 27 / 30

Page 116: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Application: Integrands of rational terms in QCD

Simple truncation: Massive scalar coupled to massless gluons [Boels]

1 g

g

n g ++

j g i

_ _ g i

_

1 2 φ φ

g +n g +3

1 2 φ φ

g g 3 n ++

〈ij〉4

〈12〉〈23〉 · · · 〈n1〉〈1i〉2〈2i〉2

〈12〉〈23〉 · · · 〈n1〉µ2〈12〉

〈23〉 · · · 〈n1〉.

massive scalar loops give certain rational terms in QCD [Badger] .

Can we resum vertices into a simple factorized expression?

Teaser: All-plus n-point integrand

I++···+CSW =

∑ g +g +j +1 j g

j `

=Tr′∏n

j=1

[1− µ2|`j〉〈j,j+1〉〈`j |

(`2j +µ2)〈`j ,j〉〈j+1,`j〉

]〈12〉 · · · 〈n1〉

.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 28 / 30

Page 117: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Application: Integrands of rational terms in QCD

Simple truncation: Massive scalar coupled to massless gluons [Boels]

1 g

g

n g ++

j g i

_ _ g i

_

1 2 φ φ

g +n g +3

1 2 φ φ

g g 3 n ++

〈ij〉4

〈12〉〈23〉 · · · 〈n1〉〈1i〉2〈2i〉2

〈12〉〈23〉 · · · 〈n1〉µ2〈12〉

〈23〉 · · · 〈n1〉.

massive scalar loops give certain rational terms in QCD [Badger] .

Can we resum vertices into a simple factorized expression?

Teaser: All-plus n-point integrand

I++···+CSW =

∑ g +g +j +1 j g

j `

=Tr′∏n

j=1

[1− µ2|`j〉〈j,j+1〉〈`j |

(`2j +µ2)〈`j ,j〉〈j+1,`j〉

]〈12〉 · · · 〈n1〉

.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 28 / 30

Page 118: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Application: Integrands of rational terms in QCD

Simple truncation: Massive scalar coupled to massless gluons [Boels]

1 g

g

n g ++

j g i

_ _ g i

_

1 2 φ φ

g +n g +3

1 2 φ φ

g g 3 n ++

〈ij〉4

〈12〉〈23〉 · · · 〈n1〉〈1i〉2〈2i〉2

〈12〉〈23〉 · · · 〈n1〉µ2〈12〉

〈23〉 · · · 〈n1〉.

massive scalar loops give certain rational terms in QCD [Badger] .

Can we resum vertices into a simple factorized expression?

Teaser: All-plus n-point integrand

I++···+CSW =

∑ g +g +j +1 j g

j `

=Tr′∏n

j=1

[1− µ2|`j〉〈j,j+1〉〈`j |

(`2j +µ2)〈`j ,j〉〈j+1,`j〉

]〈12〉 · · · 〈n1〉

.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 28 / 30

Page 119: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Application: Integrands of rational terms in QCD

Simple truncation: Massive scalar coupled to massless gluons [Boels]

1 g

g

n g ++

j g i

_ _ g i

_

1 2 φ φ

g +n g +3

1 2 φ φ

g g 3 n ++

〈ij〉4

〈12〉〈23〉 · · · 〈n1〉〈1i〉2〈2i〉2

〈12〉〈23〉 · · · 〈n1〉µ2〈12〉

〈23〉 · · · 〈n1〉.

massive scalar loops give certain rational terms in QCD [Badger] .

Can we resum vertices into a simple factorized expression?

Teaser: All-plus n-point integrand

I++···+CSW =

∑ g +g +j +1 j g

j `

=Tr′∏n

j=1

[1− µ2|`j〉〈j,j+1〉〈`j |

(`2j +µ2)〈`j ,j〉〈j+1,`j〉

]〈12〉 · · · 〈n1〉

.

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 28 / 30

Page 120: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Summary and Outlook

Summary

precise proposal for

massive on-shell amplitude =∑

massless on-shell amplitudes .

on-shell description of spontaneous symmetry breaking

checked in examples

cancelation of soft-divergences proven in general

at tree-level: specific symmetry-breaking pattern and SUSY irrelevant

with SUSY ⇒ proposal for loop integrand

infinte sum over diagrams can be resummed⇒ CSW-like expansion for Coulomb-branch amplitudes

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 29 / 30

Page 121: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Summary and Outlook

Summary

precise proposal for

massive on-shell amplitude =∑

massless on-shell amplitudes .

on-shell description of spontaneous symmetry breaking

checked in examples

cancelation of soft-divergences proven in general

at tree-level: specific symmetry-breaking pattern and SUSY irrelevant

with SUSY ⇒ proposal for loop integrand

infinte sum over diagrams can be resummed⇒ CSW-like expansion for Coulomb-branch amplitudes

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 29 / 30

Page 122: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Summary and Outlook

Summary

precise proposal for

massive on-shell amplitude =∑

massless on-shell amplitudes .

on-shell description of spontaneous symmetry breaking

checked in examples

cancelation of soft-divergences proven in general

at tree-level: specific symmetry-breaking pattern and SUSY irrelevant

with SUSY ⇒ proposal for loop integrand

infinte sum over diagrams can be resummed⇒ CSW-like expansion for Coulomb-branch amplitudes

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 29 / 30

Page 123: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Summary and Outlook

Summary

precise proposal for

massive on-shell amplitude =∑

massless on-shell amplitudes .

on-shell description of spontaneous symmetry breaking

checked in examples

cancelation of soft-divergences proven in general

at tree-level: specific symmetry-breaking pattern and SUSY irrelevant

with SUSY ⇒ proposal for loop integrand

infinte sum over diagrams can be resummed⇒ CSW-like expansion for Coulomb-branch amplitudes

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 29 / 30

Page 124: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Summary and Outlook

Summary

precise proposal for

massive on-shell amplitude =∑

massless on-shell amplitudes .

on-shell description of spontaneous symmetry breaking

checked in examples

cancelation of soft-divergences proven in general

at tree-level: specific symmetry-breaking pattern and SUSY irrelevant

with SUSY ⇒ proposal for loop integrand

infinte sum over diagrams can be resummed⇒ CSW-like expansion for Coulomb-branch amplitudes

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 29 / 30

Page 125: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Summary and Outlook

Summary

precise proposal for

massive on-shell amplitude =∑

massless on-shell amplitudes .

on-shell description of spontaneous symmetry breaking

checked in examples

cancelation of soft-divergences proven in general

at tree-level: specific symmetry-breaking pattern and SUSY irrelevant

with SUSY ⇒ proposal for loop integrand

infinte sum over diagrams can be resummed⇒ CSW-like expansion for Coulomb-branch amplitudes

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 29 / 30

Page 126: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Summary and Outlook

Open problems

prove proposal!

applied proposal to particular massless amplitude representation:

massless CSW −→ proposalresum−→ massive CSW-like expansion .

Use proposal to get other convenient expressions for CB amplitudes?

other massless representations −→ proposalresum?−→ ??? .

For example, to make 6d dual conformal invariance manifest?

apply CSW-like expansion at tree and loop level

massive amplitudes useful for rational terms in QCD [Badger, Boels]

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 30 / 30

Page 127: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Summary and Outlook

Open problems

prove proposal!

applied proposal to particular massless amplitude representation:

massless CSW −→ proposalresum−→ massive CSW-like expansion .

Use proposal to get other convenient expressions for CB amplitudes?

other massless representations −→ proposalresum?−→ ??? .

For example, to make 6d dual conformal invariance manifest?

apply CSW-like expansion at tree and loop level

massive amplitudes useful for rational terms in QCD [Badger, Boels]

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 30 / 30

Page 128: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Summary and Outlook

Open problems

prove proposal!

applied proposal to particular massless amplitude representation:

massless CSW −→ proposalresum−→ massive CSW-like expansion .

Use proposal to get other convenient expressions for CB amplitudes?

other massless representations −→ proposalresum?−→ ??? .

For example, to make 6d dual conformal invariance manifest?

apply CSW-like expansion at tree and loop level

massive amplitudes useful for rational terms in QCD [Badger, Boels]

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 30 / 30

Page 129: €¦ · Motivation QFT phenomena studied using on-shell methods on-shell amplitudes light-likeWilson loops light-likecorrelation functions gauge theory=(gravity)2 at tree and loop-level

Summary and Outlook

Open problems

prove proposal!

applied proposal to particular massless amplitude representation:

massless CSW −→ proposalresum−→ massive CSW-like expansion .

Use proposal to get other convenient expressions for CB amplitudes?

other massless representations −→ proposalresum?−→ ??? .

For example, to make 6d dual conformal invariance manifest?

apply CSW-like expansion at tree and loop level

massive amplitudes useful for rational terms in QCD [Badger, Boels]

Michael Kiermaier (Princeton University) A massive S-matrix from massless amplitudes INT Sep 27, 2011 30 / 30