62
July 2011 MOS Model, level 40 © NXP 1992-2011 1 TOC Index Quit file t t t t 1 MOS Model, level 40

MOS Model, level 40 - NXP Semiconductors · 2015. 11. 2. · For both TOX and TBOX less than or equal to zero, the pinch off voltage Vp = 0. When VP ≤0 only equations 1.24, 1.41,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • July 2011 MOS Model, level 40

    1 MOS Model, level 40

    © NXP 1992-2011 1TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    1.1 Introduction

    The Silicon On Isolator (SOI) Field-Effect Transistor (FET) is a semiconductor device whoseoperation is achieved by modulation of the resistance of a thin silicon layer (channel). Themodulation of the resistance is controlled by the gate voltage and handle wafer (box) voltage.These devices are often used as a load in high voltage MOS devices. This long channel SOIFET model is special developed to describe the drift region of LDMOS and EPMOS devices.When the n-channel FET transistor equations are used for p-channel FET transistors, the signof the terminal potentials, terminal currents and terminal charges must be changed.

    1.1.1 Survey of modeled effects

    • Accumulation/depletion at the surface

    • Accumulation/depletion at the box

    • Pinch off mode

    • Velocity saturation in the channel

    • Gate charge model

    • Self-heating

    • Box charge model

    • Different temperature scaling for RON and VSAT

    • Include temperature scaling for RSAT.

    Not included in the model

    • Short channel effects

    • Subthreshold currents

    • Inversion at the surface at high negative gate voltages

    • Inversion at the box at high negative box voltages

    • Noise model.

    2 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    © NXP 1992-2011 3TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    1.2 Parameters and constants

    1.2.1 Parameters and clipping

    Parameter list

    The parameters are listed below.

    Parameter Units Description

    LEVEL - Model level, must be set to 40

    PARAMCHK - Level of clip warning info *)

    RON Ω Ohmic resistance at zero biasRSAT Ω Space charge resistance at zero biasVSAT V Critical drain-source voltage for hot carriers

    PSAT − Velocity saturation coefficientVP V Pinch off voltage at zero gate and handle wafer voltages

    VP ≤ 0 no depletion and/or accumulation in the channelTOX m Gate oxide thickness

    TOX > 0 SOI FET deviceTOX ≤ 0 No depletion/accumulation at the gate

    DCH m-3 Doping level channel

    TBOX mBox oxide thickness

    No depletion/accumulation at the box

    CGATE F Gate capacitance at zero bias

    CBOX F Handle wafer capacitance at zero bias

    TAUSC s Space charge transit time of the channel

    ACH − Temperature coefficient restivity of the channelACHMOD − Parameter to switch to extended temperature scalingACHRON − Temperature coefficient of ohmic resistance at zero biasACHVSAT − Temperature coefficient of critical drain-source voltage

    for hot carriers

    ACHRSAT − Temperature coefficient of space charge resistance atzero bias

    TREF °C Reference temperature

    TBOX 0≤

    4 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    *) See Appendix D for the definition of PARAMCHK.

    The additional parameters for the model including self-heating are listed below.

    Parameter MULTThis parameter may be used to put several devices in parallel. The following parameters aremultiplied by MULT :

    Divided by MULT are:

    Default and clipping values

    The default values and clipping values as used for the MOS level 40 model are listed below.

    DTA °C Temperature offset to the ambient temperatureMULT − Multiplication factorPRINT-SCALED

    − Flag to add scaled parameters to the OP output

    Parameter Units Description

    RTH oC/W Thermal resistance

    CTH J/oC Thermal capacitance

    ATH − Thermal coefficient of the thermal resistance

    CGATE CBOX CTH

    RON RSAT RTH

    Parametername Units Default Clip low Clip high

    LEVEL - 40 - -

    PARAMCHK - 0 - -

    RON Ω 1.00 1e-2 -RSAT Ω 1.00 1e-2 -

    VSAT V 10.00 1.00 ×10-6 -PSAT − 1.00 0.1 -

    Parameter Units Description

    © NXP 1992-2011 5TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    The default values and clipping values of the additional parameters for the model includingself-heating (see section 1.4) are listed below.

    1.2.2 Model constants

    VP V -1.00 -1.0 -

    TOX m -1.00 -1.0 0.0001

    DCH m-3 1.00 ×1021 1.00 ×1011 1.00 ×1029

    TBOX m -1.00 -1.00 0.0001

    CGATE F 0.00 0.0 -

    CBOX F 0.00 0.0 -

    TAUSC s 0.00 0.0 -

    ACH − 0.00 - -ACHMOD − 0.00 0 1ACHRON − 0.00 - -ACHVSAT − 0.00 - -ACHRSAT − 0.00 - -TREF °C 25 -273.0 -DTA °C 0.00 - -MULT − 1.00 0.0 -PRINT-SCALED − 0 - -

    ParameterName

    Units Default Clip low Clip high

    RTH oC/W 300.0 0.000 -

    CTH J/oC 3.0×10−9 0.000 -

    ATH − 0.0 - -

    Parametername Units Default Clip low Clip high

    q 1.6021918 10 19– C⋅=

    6 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    The default reference temperature TREF for parameter determination is 25 °C.

    εsi 1.036 1010–

    C V⁄ m⋅⋅=

    εox 3.453 1011–

    C V⁄ m⋅⋅=

    kq---

    0.86171 10 4– V K⁄×=

    δv 108–

    =

    δq 102–

    =

    V 0 103–

    =

    © NXP 1992-2011 7TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    1.3 Model equations

    1.3.1 Equivalent circuit and equations

    A full description of the long channel SOI FET model is given below.

    Figure 1: Equivalent Circuit of an SOI FET

    1.3.2 Temperature effects

    The actual simulation temperature is denoted by TEMP (in oC). The temperature at which the

    parameters are determined is TREF (in oC).

    • Conversions to Kelvins

    Gate

    Qgd

    Drain

    Qbd

    Ids

    Qds

    Qbs

    Source

    Qgs

    Substrate

    8 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    (1.1)

    (1.2)

    (1.3)

    (1.4)

    • Thermal Voltage

    (1.5)

    • On resistance and saturation voltage

    (1.6)

    (1.7)

    (1.8)

    • Thermal resistance

    (1.9)

    T K TEMP DTA 273.15 V dT+ + +=

    T amb TEMP DTA 273.15+ +=

    T RK TREF 273.15+=

    T NT K

    T RK----------=

    V Tkq---

    T K⋅=

    RON T RON TACHRON⋅=

    VSAT T VSAT TACHVSAT⋅=

    RSAT T RSAT TACHRSAT⋅=

    RTH T RTHT ambT RK------------

    ATH⋅=

    © NXP 1992-2011 9TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    1.3.3 Model preprocessing

    • Parameter dependent constants DC part

    For both TOX and TBOX less than or equal to zero, the pinch off voltage Vp = 0.

    When VP ≤ 0 only equations 1.24, 1.41, 1.43, 1.54, 1.55, 1.107 and 1.108 are used. In thiscase the charges Qb and Qg are equal zero.

    if :

    if :

    if & :

    : (1.10)

    :

    : (1.11)

    :

    (1.12)

    (1.13)

    (1.14)

    (1.15)

    (1.16)

    TBOX 0≤ CBOX 0=

    TOX 0≤ CGATE 0=

    TOX 0≤ TBOX 0≤ VP 0=

    TBOX 0> kb 2 εsi q DCH⋅ ⋅ ⋅=

    TBOX 0≤ kb 0=

    TOX 0> kg 2 εsi q DCH⋅ ⋅ ⋅=

    TOX 0≤ kg 0=

    kox 2 εsi q DCH⋅ ⋅ ⋅=

    V boxεsi q DCH⋅ ⋅

    2-------------------------------- TBOX

    εox----------------

    2⋅=

    V oxεsi q DCH⋅ ⋅

    2-------------------------------- TOX

    εox------------

    2⋅=

    Qbpkb VP⋅

    VP V box+ V box+----------------------------------------------------=

    Qgpkg VP⋅

    VP V ox+ V ox+-----------------------------------------------=

    10 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    (1.17)

    : (1.18)

    :

    : (1.19)

    :

    (1.20)

    (1.21)

    (1.22)

    (1.23)

    (1.24)

    Qsoi Qbp Qgp+=

    TOX 0> Coxεox

    TOX------------=

    TOX 0≤ Cox 0=

    TBOX 0> Cboxεox

    TBOX----------------=

    TBOX 0≤ Cbox 0=

    Csoiεsi q DCH⋅ ⋅

    Qsoi--------------------------------=

    V m VP V box+ VP V ox++( )2

    =

    V gswQsoikox----------

    Qsoikox---------- 2 V box⋅+

    ⋅=

    V bswQsoikox----------

    Qsoikox---------- 2 V ox⋅+

    ⋅=

    VRsat VSAT TRSAT TRON T------------------⋅=

    © NXP 1992-2011 11TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    1.3.4 Model evaluation

    Drain and source voltage

    • Pinch-off voltage

    :

    :

    : (1.25)

    : (1.26)

    , (1.27)

    & :

    :

    (1.28)

    (1.29)

    V d V s≥ sign 1=

    V d1 V d=

    V s1 V s=

    V d V s< sign 1–=

    V d1 V s=

    V s1 V d=

    TBOX 0≤ V p VP V g+=

    TOX 0≤ V p VP V b+=

    TBOX 0≤ TOX 0≤ VP 0=

    TOX 0> TBOX 0>

    • V g V b– V gSW>

    agCox

    2 Cbox⋅------------------

    2=

    bg 1CoxCbox-----------

    CoxCsoi---------- ag

    2 V g⋅V box--------------⋅+ + +

    =

    12 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    (1.30)

    (1.31)

    :

    (1.32)

    (1.33)

    (1.34)

    (1.35)

    & :

    (1.36)

    (1.37)

    (1.38)

    cg2 Cbox⋅

    Csoi------------------

    CboxCsoi-----------

    2 CoxCbox-----------

    CoxCsoi----------+

    V gV box-----------+⋅+ +=

    Cox2 Cbox⋅------------------

    V gV box-----------⋅

    2 V bV box-----------+

    V p V box2 cg⋅

    bg bg2 4 ag cg⋅ ⋅–+

    ---------------------------------------------------⋅=

    • V g V b– V– bSW<

    abCbox

    2 Cox⋅----------------

    2=

    bb 1CboxCox-----------

    CboxCsoi----------- ab

    2 V b⋅V ox

    --------------⋅+ + + =

    cb2 Cox⋅

    Csoi----------------

    CoxCsoi----------

    2 CboxCox-----------

    CboxCsoi-----------+

    V bV ox---------+⋅+ +=

    Cbox2 Cox⋅----------------

    V bV ox---------⋅

    2 V gV ox---------+

    V p V ox2 cb⋅

    bb bb2 4 ab cb⋅ ⋅–+

    --------------------------------------------------⋅=

    • V g V b– V bsw–≥ V g V b– V gsw≤

    V bb V b V box–=

    V gg V g V ox–=

    V pV gg V bb–( )

    2 2 V m V gg V bb+( )⋅ ⋅ V m2

    + +

    4 V m⋅------------------------------------------------------------------------------------------------------=

    © NXP 1992-2011 13TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    • Source and drain voltage including pinch-off and velocity saturation

    • Integration boundary voltages

    if & : (1.39)

    if & : (1.40)

    : (1.41)

    : (1.42)

    : (1.43)

    (1.44)

    : :

    :

    :

    : :

    :

    V P 0> V p 0≤ V sp12--- V s1 V p V s1 V p–( )

    2 δv+–+

    ⋅=

    V P 0> V p 0> V sp12---

    4 V s1 V p δv–⋅ ⋅

    V s1 V p V s1 V p–( )2 δv++ +

    ------------------------------------------------------------------------

    ⋅=

    V P 0≤ V sp V s1=

    V P 0> V c VSAT T V p V sp– VSAT T2

    V p V sp–( )2

    +–+=

    V P 0≤ V c VSAT T=

    V dp V spV d1 V s1–( ) V c⋅

    V d1 V s1–( )PSAT V c

    PSAT+PSAT----------------------------------------------------------------------------+=

    V sp V b< V dp V b< V ab V dp=

    V dp V b≥ V ab V b=

    V sp V b≥ V ab V sp=

    V sp V g< V dp V g< V ag V dp=

    V dp V g≥ V ag V g=

    14 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    • Current increase due to accumulation at the handle wafer

    • Current reduction due to depletion at the handle wafer

    • Current increase due to accumulation at the gate

    :

    :

    (1.45)

    :

    : (1.46)

    (1.47)

    (1.48)

    :

    : (1.49)

    :

    V sp V g≥ V ag V sp=

    V sp V b<I b1

    12--- V b V sp–( )

    2V b V ab–( )

    2–{ }

    CboxQsoi RON T⋅-------------------------------⋅=

    V sp V b≥ I b1 0=

    V dp V b≥ Y dpbV dp V b–( ) V box⁄

    1 1 V dp V b–( ) V box⁄++-----------------------------------------------------------------=

    Y abbV ab V b–( ) V box⁄

    1 1 V ab V b–( ) V box⁄++-----------------------------------------------------------------=

    I b22– kb V box

    3 2⁄⋅ ⋅Qsoi RON T⋅--------------------------------

    Y dpb2

    Y abb2

    2-----------------------------

    Y dpb3

    Y abb3

    3-----------------------------+

    ⋅=

    V dp V b< I b2 0=

    V sp V g< I g112--- V g V sp–( )

    2V g V ag–( )

    2–{ }

    CboxQsoi RON T⋅-------------------------------⋅=

    V sp V g≥ I g1 0=

    © NXP 1992-2011 15TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    • Current reduction due to depletion at the gate

    • Total ohmic current

    • Total current including velocity saturation

    (1.55)

    : (1.50)

    (1.51)

    (1.52)

    :

    : (1.53)

    : (1.54)

    V dp V g≥ Y dpgV dp V g–( ) V ox⁄

    1 1 V dp V g–( ) V ox⁄++---------------------------------------------------------------=

    Y aggV ag V g–( ) V ox⁄

    1 1 V ag V g–( ) V ox⁄++---------------------------------------------------------------=

    I g22– kg V ox

    3 2⁄⋅ ⋅Qsoi RON T⋅--------------------------------

    Y dpg2

    Y agg2

    2-----------------------------

    Y dpg3

    Y agg3

    3-----------------------------+

    ⋅=

    V dp V g< I g2 0=

    VP 0> I ohmV dp V sp–

    RON T------------------------ I b1 I b2 I g1 I g2+ + + +=

    VP 0≤ I ohmV dp V sp–

    RON T------------------------=

    I ds sign I ohm 1V d1 V dp–

    VRsat------------------------+

    ⋅ ⋅=

    16 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    1.3.5 Substrate charge model

    If then

    :

    :

    :

    :

    :

    :

    :

    accumulation part

    depletion part

    accumulation part

    depletion part

    accumulation part times accumulation part

    depletion part times accumulation part

    depletion part times depletion part

    (1.56)

    : (1.57)

    (1.58)

    :

    : (1.59)

    (1.60)

    TBOX 0≤ V b1 V b2 V b3 V b4 V b5 V b6 V b7 0= = = = = = =

    V b1V b2V b3V b4V b5V b6V b7

    qbqb

    qb2

    qb2

    qb qgqb qgqb qg

    FcV p V sp–( )

    4

    V p V sp–( )4

    VP 100⁄( )4+---------------------------------------------------------------

    V dp V sp–

    V 0 V dp V sp–+-------------------------------------⋅=

    V sp V b< V b11

    I ohm RON T⋅-------------------------------- 1

    2--- V b V sp–( )

    2V b V ab–( )

    2–{ }⋅=

    V b3C– box

    3 Qsoi I ohm RON T⋅ ⋅ ⋅------------------------------------------------------ V b V ab–( )

    3V b V sp–( )

    3–{ }⋅=

    V sp V b≥ V b1 0;= V b3 0=

    V dp V b≥ V b22– kb T box V box

    3 2⁄⋅ ⋅ ⋅εox I ohm RON T⋅ ⋅

    ------------------------------------------------Y dpb

    2Y abb

    2–

    2-----------------------------

    Y dpb3

    Y abb3

    3-----------------------------+

    ⋅=

    V b42 kb

    2T box V box

    2⋅ ⋅ ⋅Qsoi εox I ohm RON T⋅ ⋅ ⋅-----------------------------------------------------------

    Y dpb3

    Y abb3

    3-----------------------------

    Y dpb4

    Y abb4

    4-----------------------------+

    ⋅=

    © NXP 1992-2011 17TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    :

    & > :

    (1.61)

    or :

    & & :

    (1.62)

    (1.63)

    & & :

    (1.64)

    V dp V b< V b2 0=

    V b4 0=

    V g V b V sp V g V b:< V ai V ag=

    V g V b:≥ V ai V ab=

    V b5C– ox

    Qsoi I ohm RON T⋅ ⋅-----------------------------------------------

    V g V b–( )V b V ai–( )

    2V b V sp–( )

    2–

    2---------------------------------------------------------------⋅ +

    V b V ai–( )3

    V b V sp–( )3

    3---------------------------------------------------------------

    ⋅=

    V g V b V≤ sp V b5 0=

    V dp V b≥ V sp V< g V b V< g

    Y agbV ag V b–( ) V box⁄

    1 1 V ag V b–( ) V box⁄++-----------------------------------------------------------------=

    V b62– kb Cox T box V box

    5 2⁄⋅ ⋅ ⋅ ⋅Qsoi εox I ohm RON T⋅ ⋅ ⋅-------------------------------------------------------------

    V g V b–

    V box-------------------

    Y agb2

    Y abb2

    2-----------------------------

    Y agb3

    Y abb3

    3-----------------------------+

    ⋅ –

    ⋅=

    2Y agb

    3Y abb

    3–

    3-----------------------------⋅ 3

    Y agb4

    Y abb4

    4-----------------------------⋅

    Y agb5

    Y abb5

    5-----------------------------+ +

    V dp V g≥ V sp V< b V g V< b

    Y abgV ab V g–( ) V ox⁄

    1 1 V ab V g–( ) V ox⁄++---------------------------------------------------------------=

    18 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    (1.65)

    & or & :

    & < :

    (1.66)

    (1.67)

    (1.68)

    V b62 kg V ox

    5 2⁄⋅ ⋅Qsoi I ohm RON T⋅ ⋅-----------------------------------------------

    V b V g–

    V ox-------------------

    Y agg2

    Y abg2

    2-----------------------------

    Y agg3

    Y abg3

    3-----------------------------+

    ⋅ –

    ⋅=

    2Y agg

    3Y abg

    3–

    3-----------------------------⋅ 3

    Y agg4

    Y abg4

    4-----------------------------⋅

    Y agg5

    Y abg5

    5-----------------------------+ +

    V g V b V< sp V g V b V dp> V b6 0=

    V g V b V dp V g V b> V ad V ag=

    V g V b≤ V ad V ab=

    Y adbV ad V b–( ) V box⁄

    1 1 V ad V b–( ) V box⁄++-----------------------------------------------------------------=

    Y adgV ad V g–( ) V ox⁄

    1 1 V ad V g–( ) V ox⁄++---------------------------------------------------------------=

    Z0V g V b– V ox– V box+

    2----------------------------------------------------=

    © NXP 1992-2011 19TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    (1.69)

    (1.70)

    Vb7exact

    kg kb T box⋅ ⋅Qsoi RON T Cbox I ohm⋅ ⋅ ⋅---------------------------------------------------------------- ⋅

    14--- V box V ox⋅⋅

    V ox V box–( ) Y dpb Y dpg–( ) Y adb Y adg–( )– ][⋅

    V box Y dpb Y dpb 1 Y dpb+( )⋅ Y dpg 3 3 Y dpb⋅ Y dpb2

    + +( )⋅+[ ]⋅ ⋅+

    V box Y adb Y adb 1 Y adb+( )⋅ Y adg 3 3 Y adb⋅ Y adb2

    + +( )⋅+[ ]⋅ ⋅–

    V ox Y dpg Y dpg 1 Y dpg+( )⋅ Y dpb 3 3 Y dpg⋅ Y dpg2

    + +( )⋅+[ ]⋅ ⋅+

    V ox Y adg Y adg 1 Y adg+( )⋅ Y adb 3 3 Y adg⋅ Y adg2

    + +( )⋅+[ ]⋅ ⋅–

    z02

    lnV box 1 Y dpb+( )⋅ V ox 1 Y dpg+( )⋅+

    V box 1 Y adb+( )⋅ V ox 1 Y adg+( )⋅+-------------------------------------------------------------------------------------------------⋅–

    2 V box3 2⁄

    V oxY dpb

    2Y adb

    2–

    2-----------------------------

    Y dpb3

    Y adb3

    3-----------------------------+

    ⋅ ⋅ ⋅–

    2 V ox3 2⁄

    V boxY dpg

    2Y adg

    2–

    2------------------------------

    Y dpg3

    Y adg3

    3------------------------------+

    ⋅ ⋅ ⋅–

    =

    Vb7appro

    kg kb T box⋅ ⋅εox Qsoi RON T I ohm⋅ ⋅ ⋅------------------------------------------------------------ ⋅

    1

    4 V box V ox⋅⋅------------------------------------- V dp V ad–( ) V b V g⋅[ ]⋅

    V dp2

    V ad2

    2------------------------- V g V b+[ ]⋅–

    V dp3

    V ad3

    3-------------------------+

    ⋅ +

    1

    16 V box V ox⋅( )3 2⁄⋅

    -------------------------------------------------

    V dp V ad–( ) V b V g V g V box⋅ V b V ox⋅+( )⋅ ⋅[ ]⋅ –

    V dp2

    V ad2

    2------------------------- V g

    2V box⋅ V b

    2V ox⋅ 2 V b V g V box V ox+( )⋅ ⋅ ⋅+ +[ ]⋅ +

    V dp3

    V ad3

    3------------------------- V g 2 V box⋅ V ox+( )⋅ V b V box 2 V ox⋅+( )⋅+[ ]⋅ –

    V dp4

    V ad4

    4------------------------- V box V ox+[ ]⋅

    =

    20 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    (1.71)

    (1.72)

    (1.79)

    : (1.73)

    : (1.74)

    & : (1.75)

    or :

    (1.76)

    : (1.77)

    :

    (1.78)

    Y swV box Y dpb

    2Y adb

    2+( )⋅ V ox Y dpg

    2Y adg

    2+( )⋅+

    V 02

    V box V ox+( )⋅--------------------------------------------------------------------------------------------------------=

    Sw1 2 V o⋅+( ) Y sw

    2⋅

    1 Y sw2

    +------------------------------------------ V o–=

    Sw 1> V b7 Vb7exact

    =

    Sw 0< V b7 Vb7appr

    =

    Sw 0≥ Sw 1≤ Vb7 Sw Vb7exact⋅ 1 Sw–( ) Vb7

    appr⋅+=

    V g V b V dp≥ Vb7 0=

    Qbx CBOX V b1 V b2 V b3 V b4 V b5 V b6 V b7+ + + + + +( )⋅=

    TBO X 0:≤ Qby 0=

    TBO X 0>

    V• bV sp V dp+

    2------------------------

    ≥ Qby CBOX V bV sp V dp+

    2------------------------

    – ⋅=

    V• bV sp V dp+

    2------------------------

    < QbyCBOX– kb⋅

    Cbox------------------------------

    V sp V dp+

    2------------------------ V b–

    V sp V dp+

    2------------------------ V b– V box+ V box+

    ----------------------------------------------------------------------------------⋅=

    Cb fix 0.01 CBOX⋅ MULT 1017–⋅+=

    © NXP 1992-2011 21TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    (1.80)

    If or then (1.81)

    else if then (1.82)

    else if then (1.83)

    (1.84)

    (1.85)

    1.3.6 gate charge model

    If then

    If and :

    : (1.86)

    (1.87)

    Qb 0.99 Qbz⋅ Cb fix V b V d V s+( ) 2⁄–{ }⋅+=

    Fc 0≤ V dp V sp–( ) 1.0e 4–≤ Qbz Qby=

    Fc 1≥ Qbz Qbx=

    Fc 1< Qbz Qby= Fc Qbx Qby–( )+

    Qbs 0.5 Qb⋅=

    Qbd 0.5 Qb⋅=

    TOX 0≤ V g1 V g2 V g3 V g4 V g5 V g6 V g7 0= = = = = = =

    V dp V sp–( ) 1.0e 4–> Fc 0>

    V sp V g< V g1V g V sp–( )

    2V g V ag–( )

    2–

    2 I ohm RON T⋅ ⋅-----------------------------------------------------------------=

    V g3Cox

    Qsoi I ohm RON T⋅ ⋅-----------------------------------------------

    V g V sp–( )3

    V g V ag–( )3

    3-----------------------------------------------------------------⋅=

    22 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    (1.91)

    :

    : (1.88)

    (1.89)

    :

    If and

    otherwise (1.90)

    V sp V g≥( )m

    V g1 0=

    V g3 0=

    V dp V g≥ V g22– kg T ox V ox

    3 2⁄⋅ ⋅ ⋅εox I ohm RON T⋅ ⋅----------------------------------------------

    Y dpg2

    Y agg2

    2-----------------------------

    Y dpg3

    Y agg3

    3-----------------------------+

    ⋅=

    V g4V ox

    2 2 kg2

    T ox⋅ ⋅ ⋅Qsoi εox I ohm RON T⋅ ⋅ ⋅-----------------------------------------------------------

    Y dpg3

    Y agg3

    3-----------------------------

    Y dpg4

    Y agg4

    4-----------------------------+

    ⋅=

    V dp V g< V g2 0=

    V g4 0=

    Cbox 0>( Cox 0> )

    V g5CboxCox----------- V b5 V b6 V b7+ +( )=

    V g5 0=

    Qgx CGATE V g1 V g2 V g3 V g4 V g5+ + + +( )⋅=

    T O X 0:≤ Qgy 0=

    © NXP 1992-2011 23TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    :

    : (1.92)

    :

    (1.93)

    (1.94)

    (1.95)

    If or then (1.96)

    else if then (1.97)

    else if then (1.98)

    (1.99)

    (1.100)

    TO X 0>

    V• gV sp V dp+

    2------------------------

    ≥ Qg y CGATE–V sp V dp+

    2------------------------ V g–

    ⋅=

    V g•V sp V dp+

    2------------------------

    < Qg yCGATE– kg⋅

    Cox---------------------------------

    V sp V dp+

    2------------------------ V g–

    V sp V dp+

    2------------------------ V g– V ox+ V ox+

    -----------------------------------------------------------------------------⋅=

    Cg fix 0.01 CGATE MULT 1017–⋅+⋅=

    Qg 0.99 Qgz Cg fix V g V d V s+( ) 2⁄–{ }⋅+⋅=

    Fc 0≤ V dp V sp–( ) 1.0e 4–≤ Qgz Qg y=

    Fc 1≥ Qgz Q= gx

    Fc 1< Qgz Qg y= Fc Qgx Qg y–( )+

    Qgs 0.5 Qg⋅=

    24 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    1.3.7 Space charge in the channel

    • Critical current for hot-carriers

    :

    : (1.101)

    : (1.102)

    : (1.103)

    : (1.104)

    (1.105)

    (1.106)

    :

    (1.107)

    Qgd 0.5 Qg⋅=( )m

    VP 0>

    V g V sp≥ Qgs Cox V g V sp–( )⋅=

    V g V sp< Qgs k– gV sp V g–

    V sp V g– V ox+ V ox+-------------------------------------------------------------⋅=

    V b V sp≥ Qbs Cbox V b V sp–( )⋅=

    V b V sp< Qbs k– bV sp V b–

    V sp V b– V box+ V box+------------------------------------------------------------------⋅=

    Qspx 1 Qgs Qbs+( ) Qsoi⁄+=

    I hcVSAT TRON T------------------

    Qspx Qspx2 δq++

    2--------------------------------------------⋅=

    VP 0≤

    I hc VSAT T RON T⁄=

    © NXP 1992-2011 25TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    (1.108)

    (1.109)

    (1.110)

    Qds sign TAUSC I hc 1I dsI hc----------

    2 PSAT⋅+

    1 2 PSAT⋅( )⁄

    1–⋅ ⋅=

    Qd12--- Qb Qg+( ) Qds+–=

    Qs12--- Qb Qg+( ) Qds––=

    26 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    Numerical Adaptations

    To implement SOI FET Model, level 40 in a circuit simulator, care must be taken of thenumerical stability of the simulation program. The functions as well as their derivativesshould be continuous at any bias condition that may occur during the iteration cycle.

    Numerical Problems and Solutions

    Fc must be set to zero when Iohm gets close to zero or even negative. This prevents divisionsby zero in the substrate charge model.

    1.3.8 Numerical Adaptation

    To implement the model in a circuit simulator, care must be taken of the numerical stabilityof the simulation program. A non-existent conductance, Gmin, is connected between the

    nodes DS. The value of the conductance is 10-15 [1/Ω].

    © NXP 1992-2011 27TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    1.4 Self-heating

    1.4.1 Equivalent circuit

    Self-heating is part of the model. It is defined in the usual way by adding a self-heating net-work (see figure 2) containing a current source describing the dissipated power and both athermal resistance RTH and a thermal capacitance CTH.

    Figure 2: On the left, the self-heating network, where the node voltage VdT is used in thetemperature scaling relations. Note that for increased flexibility the node dT isavailable to the user. On the right are parameter values that can be used for Ath.

    The resistance and capacitance are both connected between ground and the temperature nodedT. The value of the voltage VdT at the temperature node gives the increase in local tempera-ture, which is included in the calculation of the temperature scaling relation (1.1), see section1.3.2 on page 8.

    For the value of Ath we recommend using values from literature that describe the temperaturescaling of the thermal conductivity. For the most important materials, the values are given infigure 2, which is largely based on Ref. [ 1], see also [ 2].

    For example, if the value of VdT is 0.5V, the increase in temperature is 0.5 degrees Celsius.

    Material

    SiGeGaAsAlAsInAsInPGaPSiO2

    ATH

    1.31.251.251.371.11.41.40.7

    dT

    PdissRTHT CTH

    28 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    1.4.2 Model equations

    The total dissipated power is a sum of the dissipated power of each branch of the equivalentcircuit and is given by:

    The total dissipation applies for the geometrical model (mnt1, mpt2, mos40t3).

    1.4.3 Usage

    Below a Pstar example is given to illustrate how self-heating works.

    q Example

    Title: example self-heating 40;

    circuit;mnt_1(Vd, Vg, Vs, 0, dt) level=40, Rth=1e6,Cth=1e-9;R_1 ( Vdd, Vd) 100;R_2 ( Vgg, Vg) 1k;R_3 ( Vs, 0) 100;e_SRC_2 (Vgg ,net101) 5;e_SRC_1 ( Vdd, 0) 1;e_SRC_3 ( net101, 0) 0;end;

    dc;print: vn(dt), op(pdiss.mnt_1);end; run;

    result:DC Analysis.VN(DT) = 24.764E+00Pdiss.MNT_1 = 24.764E-06

    The voltage on node dT is 24.764e+0 V, which means that the local temperature is increased

    by 24.764e+0 oC.

    1.Pstar model name.2.Pstar model name.3.Spectre/ADS model name.

    Pdiss I DS V DS⋅=

    © NXP 1992-2011 29TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    1.5 DC operating point output

    The DC operating point output facility gives information on the state of a device at its opera-tion point. Besides terminal currents and voltages, the magnitudes of linearized internal ele-ments are given. In some cases meaningful quantities can be derived which are then alsogiven (e.g. u). The objective of the DCOP-facility is twofold:

    • Calculate small-signal equivalent circuit element values.

    • Open a window on the internal bias conditions of the device and its basic capabilities (e.g.u).

    Below the printed items are described. Cx(y) indicates the derivate of the charge Q at terminalx to the voltage at terminal y, when all other terminals remain constant.

    Quantity Equation Description

    Level 40 Model level

    Ids Ids Drain Source current

    Vds Drain Source voltage

    Vgs Gate Source voltage

    Vbs Bulk Source voltage

    Vp Vp Channel pinch-off voltage

    gm dIds/dVg Transconductance

    gmb dIds/dVb Bulk transconductance

    gds dIds/dVd Output conductance

    Qg Gate charge

    Cgd -dQg/dVd Gate charge dependence on drain voltage

    Cgg dQg/dVg Gate charge dependence on gate voltage

    Cgs -dQs/dVs Gate charge dependence on source voltage

    Cgb -dQg/dVb Gate charge dependence on bulk voltage

    Qb Bulk charge

    30 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    The additional operating point output for the model including self-heating (see section 1.4),is listed in the table below.

    Cbd -dQb/dVd Bulk charge dependence on drain voltage

    Cbg -dQb/dVg Bulk charge dependence on gate voltage

    Cbs -dQb/dVs Bulk charge dependence on source voltage

    Cbb +dQb/dVb Bulk charge dependence on bulk voltage

    Qd Drain charge

    Cdd +dQd/dVd Drain charge dependence on drain voltage

    Cdg -dQd/dVg Drain charge dependence on gate voltage

    Cds -dQd/dVs Drain charge dependence on source voltage

    Cdb -dQd/dVb Drain charge dependence on bulk voltage

    Qs Source charge

    Csd -dQs/dVd Source charge dependence on drain voltage

    Csg -dQs/dVg Source charge dependence on gate voltage

    Css +dQs/dVs Source charge dependence on source voltage

    Csb -dQs/dVb Source charge dependence on bulk voltage

    u gm/gds Transistor gain

    Rout 1/gds Small signal output resistance

    Vearly Ids /gds Equivalent Early voltage

    Iohm Iohm Drain source current excluding velocity saturation

    Ihc Ihc Critical current for velocity saturation

    Quantity Equation Description

    Tk Tk Actual temperature including self-heating

    Pdiss Pdiss Power dissipation

    © NXP 1992-2011 31TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    When the parameter PRINTSCALED is set to 1, the device parameter set after geometricaland temperature scaling is added to the OP output:

    Remarks:

    • When Vds

  • July 2011 MOS Model, level 40

    © NXP 1992-2011 33TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    1.6 Simulator specific items

    1.6.1 Pstar syntax

    n channel : mn_n (d,g,s,b) level=40, p channel : mp_n (d,g,s,b) level=40, n channel self-heating : mnt_n (d,g,s,b,dt) level=40, p channel self-heating : mpt_n (d,g,s,b,dt) level=40,

    n : occurrence indicator : list of model parameters

    d,g,s,b and dt are drain, gate, source, bulk and self-heating terminals respectively.

    1.6.2 Spectre syntax

    n channel : model modelname mos40 type=n componentname d g s b modelname

    p channel : model modelname mos40 type=p componentname d g s b modelname

    n channel self-heating : model modelname mos40t type=n componentname d g s b dt modelname

    p channel self-heating : model modelname mos40t type=p componentname d g s b dt modelname

    modelname : name of model, user definedcomponentname : occurrence indicator : list of model parameters : list of instance parameters

    d,g,s,b and dt are drain, gate, source, bulk and self-heating terminals respectively.

    Note3Warning! In Spectre, use only the parameter statements type=n or type=p. Using any otherstring and/or numbers will result in unpredictable and possibly erroneous results.

    34 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    1.6.3 ADS syntax

    n channel : model modelname mos40 gender=1 modelname:componentname d g s b

    p channel : model modelname mos40 gender=0 modelname:componentname d g s b

    n channel self-heating : model modelname mos40t gender=1 modelname:componentname d g s b dt

    p channel self-heating : model modelname mos40t gender=0 modelname:componentname d g s b dt

    modelname : name of model, user definedcomponentname : occurrence indicator : list of model parameters : list of instance parameters

    d,g,s,b and dt are drain, gate, source, bulk and self-heating terminals respectively.

    1.6.4 The ON/OFF condition for Pstar

    The solution for a circuit involves a process of successive calculations. The calculations arestarted from a set of ‘initial guesses’ for the electrical quantities of the nonlinear elements. Asimplified DCAPPROX mechanism for devices using ON/OFF keywords is mentioned in [3].By default the devices start in the default state.Nu

    n-channel p-channel

    Default ON OFF Default ON OFF

    VDS 2.0 2.0 2.0 VDS -2.0 -2.0 -2.0

    VGS -2.0 -2.0 -4.0 VGS 2.0 2.0 4.0

    VSB 0.0 0.0 -2.0 VSB 0.0 0.0 +2.0

    © NXP 1992-2011 35TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    1.6.5 The ON/OFF condition for Spectre Nu

    Nu

    1.6.6 The ON/OFF condition for ADS

    n-channel

    OFF Triode Saturation Subthreshold Reverse Forward Breakdown

    VDS 0.0 0.75 1.25 0.0 0 0 0

    VGS 0.0 2.0 1.25 0.0 0 0 0

    VSB 0.0 0.0 0.0 0.0 0 0 0

    p-channel

    OFF Triode Saturation Subthreshold Reverse Forward Breakdown

    VDS 0.0 -0.75 -1.25 0.0 0 0 0

    VGS 0.0 -2.0 -1.25 0.0 0 0 0

    VSB 0.0 0.0 -1.25 0.0 0 0 0

    n-channel p-channel

    Default Default

    VDS 0 VDS 0

    VGS 0 VGS 0

    VSB 0 VSB 0

    36 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • July 2011 MOS Model, level 40

    1.7 References

    [1] V. Palankovski R. Schultheis and S. Selberherr, Modelling of power hetero-junction bipolar transistor on gallium arsenide,IEEE Trans. Elec. Dev., vol 48, pp.1264-1269, 2001. Note: the paper uses = 1.65 for Si, but = 1.3 goves a better fit:also, k300 for GaAs is closer to 40 than to the published value of 46 (Palankovski,personal communication).

    [2] Sze, S.M., Physics of semiconductor devices, 2nd edition, John Wiley & Sons,Inc., New York, 1981

    [3] Pstar User Manual.

    α α

    © NXP 1992-2011 37TOC Index Quitfile

    ttt

    t

  • MOS Model, level 40 July 2011

    38 © NXP 1992-2011 TOC Index Quitfile

    ttt

    t

  • December 2009 Hyp functions

    A Hyp functions

    39TOC Index Quitfile

    ttt

    t

  • Hyp functions December 2009

    Figure 3:

    Figure 4:

    0 X

    ε

    hyp1

    hyp1 x ε;( )12--- x x2 4 ε2⋅++( )⋅=

    0

    ε

    hyp2

    x0

    x0 x

    hyp2 x x0; ε;( ) x hyp1 x x0– ε;( )–=

    40 TOC Index Quitfile

    ttt

    t

  • December 2009 Hyp functions

    Figure 5:

    Figure 6:

    0 x0 x

    hyp3

    εxo+hyp1(-xo;ε)

    hyp3 x x0; ε;( ) hyp2 x x0; ε;( ) hyp2 0 x0; ε;( )–= for ε ε x0( )=

    0

    x

    hyp4

    ε

    -hyp1(-xo;ε) xo

    hyp4 x x0; ε;( ) hyp1 x x0– ε;( ) hyp1 x0– ε;( )–=

    41TOC Index Quitfile

    ttt

    t

  • Hyp functions December 2009

    Figure 7:

    The hypm-function:

    (1.111)

    setlength{unitlength}{0.40900pt} begin{picture}(1500,900)(0,0) enrm hinlines drawline[-50](264,158)(1436,158) hinlines drawline[-50](264,158)(264,787) hicklines path(264,158)(264,178)hicklines path(264,787)(264,767) put(264,113){makebox(0,0){0}} hicklines path(264,158)(1436,158)(1436,787)(264,787)(264,158) put(45,472){makebox(0,0)[l]{shortstack{hyp

    0

    x0ε

    xo

    hyp5

    x

    hyp5 x x0; ε;( ) x0 hyp1 x0 xε2

    x0-----–– ε,

    –= for ε ε x0( )=

    hypm x, y;m[ ] x y⋅

    x2 m⋅

    y2 m⋅

    +( )1 2 m⋅( )⁄-----------------------------------------------------=

    42 TOC Index Quitfile

    ttt

    t

  • December 2009 Spectre Specific Information

    B Spectre Specific Information

    43TOC Index Quitfile

    ttt

    t

  • Spectre Specific Information December 2009

    Imax, Imelt, Jmelt parameters

    IntroductionImax, Imelt and Jmelt are Spectre-specific parameters used to help convergence and to pre-vent numerical problems. We refer in this text only to the use of Imax model parameter inSpectre with SiMKit devices since the other two parameters, Imelt and Jmelt, are not part ofthe SiMKit code. For information on Imelt and Jmelt refer to Cadence documentation.

    Imax model parameterImax is a model parameter present in the following SiMKit models:– juncap and juncap2– psp and pspnqs (since they contain juncap models)

    In Mextram 504 (bjt504) and Modella (bjt500) SiMKit models, Imax is an internal parameterand its value is set through the adapter via the Spectre-specific parameter Imax.The default value of the Imax model parameter is 1000A. Imax should be set to a value whichis large enough so it does not affect the extraction procedure.

    In models that contain junctions, the junction current can be expressed as:

    (1.112)

    The exponential formula is used until the junction current reaches a maximum (explosion)current Imax.

    (1.113)

    The corresponding voltage for which this happens is called Vexpl (explosion voltage). Thevoltage explosion expression can be derived from (1):

    (1.114)

    For the following linear expression is used for the junction current:

    I I sV

    N φTD⋅------------------ 1–

    exp=

    I max I sV lexp

    N φTD⋅------------------ 1–

    exp=

    V lexp N φTDI max

    I s----------

    1+log⋅=

    V V lexp>

    44 TOC Index Quitfile

    ttt

    t

  • December 2009 Spectre Specific Information

    (1.115)

    Region parameter

    Region is an Spectre-specific model parameter used as a convergence aid and gives an esti-mated DC operating region. The possible values of region depend on the model:

    – For Bipolar models:– subth: Cut-off or sub-threshold mode– fwd: Forward– rev: Reverse– sat: Saturation.– off1

    –– For MOS models:

    – subth: Cut-off or sub-threshold mode;– triode: Triode or linear region;– sat: Saturation– off1

    For PSP and PSPNQS all regions are allowed, as the PSP(NQS) models both have a MOSpart and a juncap (diode). Not all regions are valid for each part, but when e.g. region=for-ward is set, the initial guesses for the MOS will be set to zero. The same holds for setting aregion that is not valid for the JUNCAP.

    – For diode models:– fwd: Forward– rev: Reverse– brk: Breakdown– off1

    Model parameters for device reference temperature in Spectre

    This text describes the use of the tnom, tref and tr model parameters in Spectre with SiMKitdevices to set the device reference temperature.

    1.Off is not an electrical region, it just states that the user does not know in what state thedevice is operating

    I I max V V lexp–( )+I s

    N φTD⋅------------------

    V lexpN φTD⋅------------------

    exp=

    45TOC Index Quitfile

    ttt

    t

  • Spectre Specific Information December 2009

    A Simkit device in Spectre has three model parameter aliases for the model reference temper-ature, tnom, tref and tr. These three parameters can only be used in a model definition, not asinstance parameters.

    There is no difference in setting tnom, tref or tr. All three parameters have exactly the sameeffect. The following three lines are therefore completely equivalent:

    model nmos11020 mos11020 type=n tnom=30 model nmos11020 mos11020 type=n tref=30 model nmos11020 mos11020 type=n tr=30

    All three lines set the reference temperature for the mos11020 device to 30 C.

    Specifying combinations of tnom, tref and tr in the model definition has no use, only thevalue of the last parameter in the model definition will be used. E.g.:

    model nmos11020 mos11020 type=n tnom=30 tref=34

    will result in the reference temperature for the mos11020 device being set to 34 C, tnom=30will be overridden by tref=34 which comes after it.

    When there is no reference temperature set in the model definition (so no tnom, tref or tr isset), the reference temperature of the model will be set to the value of tnom in the optionsstatement in the Spectre input file. So setting:

    options1 options tnom=23 gmin=1e-15 reltol=1e-12 \ vabstol=1e-12 iabstol=1e-16 model nmos11020 mos11020 type=n

    will set the reference temperature of the mos11020 device to 23 C.

    When no tnom is specified in the options statement and no reference temperature is set in themodel definition, the default reference temperature is set to 27 C.So the lines:

    options1 options gmin=1e-15 reltol=1e-12 vabstol=1e-12 \ iabstol=1e-16 model nmos11020 mos11020 type=n

    will set the reference temperature of the mos11020 device to 27 C.

    46 TOC Index Quitfile

    ttt

    t

  • December 2009 Spectre Specific Information

    The default reference temperature set in the SiMKit device itself is in the Spectre simulatornever used. It will always be overwritten by either the default "options tnom", an explicitlyset option tnom or by a tnom, tref or tr parameter in the model definition.

    47TOC Index Quitfile

    ttt

    t

  • Spectre Specific Information December 2009

    48 TOC Index Quitfile

    ttt

    t

  • June 2010 OvervoltageSpecification

    C OvervoltageSpecification

    49TOC Index Quitfile

    ttt t

  • OvervoltageSpecification June 2010

    Overvoltage warnings in SiMKit

    IntroductionOvervoltage flagging is signalling that a (terminal) voltage is outside a specified safe range.A warning will be given when the conditions for giving a warning are fulfilled.

    Simple checks for overvoltage have been added to the following models: mos903, mos1100,mos1101, mos1102, mos2002, mos2003, mos3100, mos4000, psp102, psp103.The checks are done on terminal voltages of the models.

    There are many ways to define overvoltage. For a general overvoltage flagging solution Ver-ilog-A should be used.

    Extra parameters for overvoltage flaggingA set of extra parameters has been added to the mos models mos903, mos1100, mos1101,mos1102, mos2002, mos2003, mos3100, mos4000, psp102, psp103.

    For mos models the safe region is: and and

    Table 1:

    Name Unit Default Description

    VBOX V 0.0 Oxide breakdown voltage.Checking will be done if

    VBDS V 0.0 Drain-source breakdown voltageChecking will be done if

    TMIN s 0.0 Ovcheck tmin value

    VBOX 0>

    VBDS 0>

    V gs VBOX< V gd VBOX< V ds VBDS

  • June 2010 OvervoltageSpecification

    Ovcheck: two terminal dummy modelA (dummy) two-terminal model ovcheck has been implemented that can be used to check ifthe voltage between the two terminals is within or without a so called safe region.The model parameters are:

    For the ovcheck model the safe region is:, where t1 is the first and t2 is the second terminal.

    Functionality

    In Spectre and PstarAt the end of a DC analysis or in a transient analysis after each time step a check wil be doneif the device is inside or outside the safe region.A warning is given whenever the device enters or leaves the safe region.

    Name Unit Default Description

    VLOW V 0.0 Lower bound of safe region

    VHIGH V 0.0 Upper bound of safe regionChecking will be done when

    TMIN s 0.0 Ovcheck tmin value

    VBOX

    leave msg

    enter msg

    VHIGH VLOW>

    VLOW V t1 V t2– VHIGH≤ ≤

    51TOC Index Quitfile

    ttt t

  • OvervoltageSpecification June 2010

    In Spectre onlyTo prevent too many warnings in a Spectre transient analysis the model parameter TMIN hasbeen introduced. If the time between leaving and entering the safe region is less than theTMIN value no warning is given.Because of the TMIN parameter a warning cannot be issued when leaving the safe region. Awarning is given when the device enters the safe region again. This warning includes the timeand the voltage when the safe region was exited.At the end of the transient warnings aregiven for devices that are still out of the safe range.In Pstar TMIN may be specified as a model parameter, but it will be ignored.

    52 TOC Index Quitfile

    ttt t

  • July 2011 Parameter PARAMCHK

    D Parameter PARAMCHK

    53TOC Index Quitfile

    ttt

    t

  • Parameter PARAMCHK July 2011

    Parameter PARAMCHK

    IntroductionAll models have the parameter PARAMCHK. It is not related to the model behavior, but hasbeen introduced control the clip warning messages. Various situations may call for variouslevels of warnings. This is made possible by setting this parameter.

    PARAMCHK model parameterThis model parameter has been added to control the amount of clip warnings.

    PARAMCHK 0 No clip warnings

    PARAMCHK 0 Clip warnings for instance parameters (default)

    PARAMCHK 1 Clip warnings for model parameters

    PARAMCHK 2 Clip warnings for electrical parameters at initialisation

    PARAMCHK 3 Clip warnings for electrical parameters during evaluation.This highest level is of interest only for selfheating jobs,where electrical parameters may change dependent ontemperature.

    <

    54 TOC Index Quitfile

    ttt

    t

  • April 2008 Bibliography

    E Bibliography

    55TOC Index Quitfile

    ttt

    t

  • Bibliography April 2008

    [1] Sze, S.M., Physics of semiconductor devices, 2nd edition, John Wiley & Sons,Inc., New York, 1981

    [2] Muller, R.S. and Kamins, T.I., Device electronics for integrated circuits, 2nd

    edition, John Wiley & Sons, Inc., New York, 1986

    [3] Ong D.G., Modern MOS Technology: Processes, Devices and Design, McGraw-Hill Book Company, 1984

    [4] Tsividis Y.P., Operation and modelling of the MOS Transistor, McGraw-HillBook Company, 1987

    [5] Paolo Antognetti, Giuseppe Massobrio, Semiconductor Device Modeling withSPICE, McGraw-Hill, 1988.

    [6] Dileep A. Divekar, FET Modeling for Circuit Simulation, Kluwer AcademicPublishers, 1988

    [7] Laurence W. Nagel, Spice2: A computer program to simulate semiconductorcircuits, University of California, Berkeley, 1975

    [8] PSpice manual, MicroSim Corporation, January 1989

    [9] Pstar User Manual.

    [10] J.J.A. Hegge, Model Specification of MOS level 1 Spice model (Metal OxideSemiconductor Transistor), version 2, January 1991.

    [11] Andrei Vladimirescu, Sally Liu, The simulation of MOS integrated circuitsusing SPICE2, Univ. of Cal. Berkeley, 1980

    [12] N. Vossenstijn, G.J. Mulder, Model specification of a Junction Field EffectTransistor, CFT-CAD-E, 1990

    [13] Y. Tsividis, G. Masetti, Problems in precision of the MOS transistor for analogapplications, IEE trans. CAD, 1983

    [14] K.A. Sakallah, Yao-Tsung Yen, S. Greenberg, The Meyer model revisited:explaining and correcting the charge nonconservation problem, Proceedings IEEEICCAD, 1987

    [15] P.B.L. Meijer, Meijer model for Meyer model

    [16] SPICE version 2G6 source code, Dep. Elec. Eng. and Comput. Sci., Univ. ofCalifornia Berkeley, March 15, 1983.

    56 TOC Index Quitfile

    ttt

    t

  • April 2008 Bibliography

    [17] Klaassen, F.M., Compact models for circuit simulation, Springer, Vienna,chapter 7: Models for the enhancement - type MOSFET (1989)

    [18] Klaassen, F.M., Compact models for circuit simulation, Springer, Vienna,chapter 6: MOSFET - physics (1989)

    [19] Wright, G.T., Physical and CAD models for the VLSI mosfet, IEEE Trans. onElectron Devices, vol ED-34, page 823 (1987)

    [20] Oh, S.Y., Ward D.E. and Dutton R.W., Transient analysis of MOS transistors/,IEEE Journal Solid-State Circuits, Vol. SC-15, page 636 (1980)

    [21] Sevat, M.F., On the channel charge division in MOSFET modeling, Digesttechnical papers ICCAD-87, Santa Clara CA, page 208 (1987)

    [22] Ir. C. Kortekaas, Description and users guide of the MOS interconnect capaci-tance extractor; MICE 2.0/, Nat. Lab Technical note 1988

    [23] Ir. C. Kortekaas, Junction capacitance- and current description for simulatormodels/, Nat. Lab. Technical Note 1988

    [24] H. Elzinga, Extending INTCAP/LOCAL with lateral capacitances betweennon-overlapping PS-INS, IN-PS and INS-IN layers, RNR-46/92-IX-044, 17-09-1992

    [25] Bittel und Sturm, Rauschen, Springer, page 241, (1971)

    [26] Ir. A. v. Steenwijk, Private communication, (1994)

    [27] R.M.D.A. Velghe and D.B.M. Klaassen, First official parameter set for MOSModel 9.02 for the C150DM2 process, Nat. Lab. Report 6689

    [28] A.J. Scholten and D.B.M. Klaassen, Geometrical scaling of θ1 in MOS Model9, Nat. Lab. Report 6992

    [29] A.J. Scholten and D.B.M. Klaassen, Anomalous geometry dependence ofsource/drain resistance in narrow-width MOSFETs, Proc. IEEE 1998 Int. Confer-ence on Microelectronic Test Structures Vol. II, March 1998

    [30] Kwok K. Hung et al., IEEE Trans El. Dev. Vol. 37, No. 3, March 1990

    [31] Kwok K. Hung et al., IEEE Trans El. Dev. Vol. 37, No. 5, May 1990

    [32] A.J. Scholten and D.B.M. Klaassen, New 1/f noise model in MOS Model 9,level 903, Nat.Lab Unclassified Report, NL-UR 816/98

    [33] R. van Langevelde, MOS Model 11, Level 1100 NL-UR 2001/813, 2001.

    57TOC Index Quitfile

    ttt

    t

  • Bibliography April 2008

    internet: http://www.semiconductors.philips.com/Philips_Models.

    [34] R. van Langevelde, A.J. Scholten and D.B.M. Klaassen, MOS Model 11, Level1101 NL-UR 2002/802, 2002.internet: http://www.semiconductors.philips.com/Philips_Models.

    [35] R. van Langevelde, A Compact MOSFET Model for Distortion Analysis inAnalog Circuit Design, PhD Thesis, TU Eindhoven, Eindhoven 1998.Available on request. Write to: [email protected]

    [36] R. van Langevelde and F.M. Klaassen, An Explicit Surface-Potential BasedMOSFET Model for Circuit Simulation, Solid-State Electron., Vol. 44, pp. 409-418,2000.

    [37] R.M.D.A. Velghe, D.B.M. Klaassen, F.M. Klaassen, MOS Model 9,NL-UR 003/94, 1994. internet: http://www.semiconductors.philips.com/ PhilipsModels.

    [38] R. van Langevelde and F.M. Klaassen, Influence of Mobility Degradation onDistortion Analysis in MOSFETs, in Proceedings ESSDERC 1996, Bologna, Italy,pp. 667-670, 1996.

    [39] R. van Langevelde and F.M. Klaassen, Effect of Gate-Field Dependent Mobil-ity Degradation on Distortion Analysis in MOSFET s, IEEE Trans. ElectronDevices, Vol. ED-44, No. 11, pp. 2044-2052, 1997.

    [40] R. van Langevelde and F.M. Klaassen, Accurate Drain Conductance Mode-ling for Distortion Analysis in MOSFETs, IEDM 1997 Tech. Digest, pp. 313-316,1997.

    [41] A.R. Boothroyd, S.W. Tarasewicz and C. Slaby, MISNAN A Physically BasedContinuous MOSFET Model for CAD Applications, IEEE Trans. Computer-AidedDesign, Vol. CAD-10, No. 12, pp. 1512-1529, 1991.

    [42] K. Joardar, K.K. Gullapulli, C.C. McAndrew, M.E. Burnham and A. Wild, AnImproved MOSFET Model for Circuit Simulation, IEEE Trans. Electron Devices,Vol. ED-45, No. 1, pp. 134-148, 1998.

    [43] Z.A. Weinberg, On Tunneling in Metal-Oxide-Silicon Structures, J. Appl.Phys., Vol. 53, pp. 5052-56, 1982.

    [44] F. Stern, Quantum Properties of Surface Space-Charge Layers, CRC Crit.Rev. Solid State Sci., pp. 499-514, 1974.

    [45] S.-Y. Oh, D.E. Ward and R.W. Dutton, Transient Analysis of MOS Transistors,

    58 TOC Index Quitfile

    ttt

    t

  • April 2008 Bibliography

    IEEE J. Solid-State Circ., Vol. 15, pp. 636-643, 1980.

    [46] R. Rios and N.D. Arora, Determination of Ultra-Thin Gate Oxide Thicknessesfor CMOS Structures Using Quantum Effects, IEDM 1994 Tech. Digest, pp. 613-316, 1994.

    [47] A.J. Scholten, L.F. Tiemeijer, P.W.H. de Vreede and D.B.M. Klaassen, ALarge Signal Non-Quasi- Static MOS Model for RF Circuit Simulation, IEDM 1999Tech. Digest, pp. 163-166, 1999.

    [48] K.K. Hung, P.K. Ko, C. Hu and Y.C. Cheng, A Unified Model for the FlickerNoise in Metal-Oxide-Semiconductor Field-Effect Transistors, IEEE Trans. ElectronDevices, Vol. ED-37, No. 3, pp. 654-665, 1990.

    [49] K.K. Hung, P.K. Ko, C. Hu and Y.C. Cheng, A Physics-Based MOSFET NoiseModel for Circuit Simulators, IEEE Trans. Electron Devices, Vol. ED-37, No. 5, pp.1323-1333, 1990.

    [50] A.J. Scholten and D.B.M. Klaassen, New 1/f Noise Model in MOS Model 9,Level 903, NL-UR 816/98, 1998.

    [51] H.C. de Graaff and F.M. Klaassen, Compact transistor modelling for circuitdesign. Vienna/New York: Springer-Verlag, 1990.

    [52] R. van Langevelde et al., New Compact Model for Induced Gate CurrentNoise, IEDM 2003 Tech. Digest, pp. 867-870, 2003.

    [53] A.J. Scholten et al., Accurate Thermal Noise Model for Deep-SubmicronCMOS, IEDM 1999 Tech. Digest, pp. 155-158, 1999.

    [54] M. Minondo, G. Gouget and A. Juge, New Length Scaling of Current GainFactor and Characterization Method for Pocket Implanted MOSFET s, Proc.ICMTS 2001, pp. 263-267, 2001.

    [55] T.S. Hsieh, Y.W. Chang, W.J. Tsai and T.C. Lu, A New Leff ExtractionApproach for Devices with Pocket Implants, Proc. ICMTS 2001, pp. 15-18, 2001.

    [56] A.J. Scholten, R. Duffy, R. van Langevelde and D.B.M. Klaassen, CompactModelling of Pocket-Implanted MOSFETs, in Proceedings ESSDERC 2001, pp.311-314, 2001.

    [57] R. van Langevelde et al., Gate Current: Modeling, Extraction and Impacton RF Performance, IEDM 2001 Tech. Digest, pp. 289-292, 2001.

    [58] R. van Langevelde, A.J. Scholten and D.B.M. Klaassen, MOS Model 11, level

    ∆L

    59TOC Index Quitfile

    ttt

    t

  • Bibliography April 2008

    1101, Nat.Lab Unclassified Report, NL-UR 2002/802

    [59] http://www.semiconductors.philips/Philips_Models

    [60] N. D' Halleweyn, Modelling and Characterisation of Silicon-On-InsulatorLateral Double Diffused MOSFETs for Analogue Circuit Simulation, Ph.D. The-sis, University of Southampton, August 2001

    [61] R. van Langevelde and F.M. Klaassen, An Explicit Surface-Potential BasedMOSFET Model for Circuit Simulation, Solid-State Electronics, Vol 44, 2000, pp.409-418

    [62] R. van Langevelde, A.J. Scholten and D.B.M. Klaassen, MOS Model 11, level1101, Philips Research Unclassified Report, NL-UR 2002/802, December 2002 seehttp://www.semiconductors.philips.com/Philips_Models

    [63] A.C.T. Aarts and R. van Langevelde, A Robust and Physically Based CompactSOI-LDMOS Model, Proc. of the 32nd European Solid-State Device Research Con-ference (ESSDERC), University of Bologna, September 2002, pp. 455-458

    [64] D.E. Ward and R.W. Dutton, A Charge-Oriented Model for MOS TransistorCapacitances, IEEE Journal of Solid-State Electronics, Vol 13, No. 5, October1978, pp. 703-708

    [65] A.C.T. Aarts M.J. Swanenberg and W.J. Kloosterman, Modelling of High-Volt-age SOI-LDMOS Transistors including Self-Heating, Proc. SISPAD, Springer,2001, pp. 246-249

    [66] V. Palankovski R. Schultheis and S. Selberherr, Modelling of power hetero-junction bipolar transistor on gallium arsenide,IEEE Trans. Elec. Dev., vol 48, pp.1264-1269, 2001. Note: the paper uses = 1.65 for Si, but = 1.3 goves a better fit:also, k300 for GaAs is closer to 40 than to the published value of 46 (Palankovski,personal communication).

    [67] JUNCAP:http://www.semiconducors.philips.com/Philips_Models/

    [68] G.A.M. Hurkx, D.B.M. Klassen and M.P.G. Knuvers, A new recombinationmodel for device simulation including tunneling, IEEE Trans. El. Dev., Vol.39, No.2,pp.331-338, February 1992.

    [69] W. Jin, C.H. Chan, S.K.H. Fung, and P.K. Ko, Shot-noise-induced excess low-frequency noise in floating-body partially depleted SOI MOSFET’s, IEEE Trans. El.Dev., Vol. 46, No. 6, pp. 1180– 1185, June 1999.

    α α

    60 TOC Index Quitfile

    ttt

    t

  • April 2008 Bibliography

    [70] MOSModel 9:http://www.nxp.com/models/

    61TOC Index Quitfile

    ttt

    t

  • Bibliography April 2008

    62 TOC Index Quitfile

    ttt

    t

    1 MOS Model, level 401.1 Introduction1.1.1 Survey of modeled effects

    1.2 Parameters and constants1.2.1 Parameters and clipping1.2.2 Model constants

    1.3 Model equations1.3.1 Equivalent circuit and equations1.3.2 Temperature effects1.3.3 Model preprocessing1.3.4 Model evaluation1.3.5 Substrate charge model1.3.6 gate charge model1.3.7 Space charge in the channel1.3.8 Numerical Adaptation

    1.4 Self-heating1.4.1 Equivalent circuit1.4.2 Model equations1.4.3 Usage

    1.5 DC operating point output1.6 Simulator specific items1.6.1 Pstar syntax1.6.2 Spectre syntax1.6.3 ADS syntax1.6.4 The ON/OFF condition for Pstar1.6.5 The ON/OFF condition for Spectre1.6.6 The ON/OFF condition for ADS

    1.7 References

    A Hyp functionsB Spectre Specific InformationImax, Imelt, Jmelt parametersRegion parameterModel parameters for device reference temperature in Spectre

    C OvervoltageSpecificationOvervoltage warnings in SiMKit

    D Parameter PARAMCHKParameter PARAMCHK

    E Bibliography